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From Charged Polymers to Random Walk

in Random Scenery

Xia Chen1,∗ and Davar Khoshnevisan2,†

University of Tennessee and University of Utah

Abstract: We prove that two seemingly-different models of random walk in
random environment are generically quite close to one another. One model
comes from statistical physics, and describes the behavior of a randomly-
charged random polymer. The other model comes from probability theory, and
was originally designed to describe a large family of asymptotically self-similar
processes that have stationary increments.
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1. Introduction and the Main Results

The principal goal of this article is to show that two apparently-disparate models—
one from statistical physics of disorder media (Kantor and Kardar [9], Derrida et
al. [5], Derrida and Higgs [6]) and one from probability theory (Kesten and Spitzer
[10], Bolthausen [1])—are very close to one another.

In order to describe the model from statistical physics, let us suppose that q :=
{qi} ∞

i=1 is a collection of i.i.d. mean-zero random variables with finite variance
σ2 > 0. For technical reasons, we assume here and throughout that

(1.1) μ6 := E(q6
1) < ∞.

In addition, we let S := {Si} ∞
i=0 denote a random walk on Zd with S0 = 0 that

is independent from the collection q. We also rule out the trivial case that S1 has
only one possible value.

The object of interest to us is the random quantity

(1.2) Hn :=
∑∑
1≤i<j≤n

qiqj1{Si=Sj }.
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In statistical physics, Hn denotes a random Hamiltonian of spin-glass type that is
used to build Gibbsian polymer measures. The qi’s are random charges, and each
realization of S corresponds to a possible polymer path; see the paper by Kantor
and Kardar [9], its subsequent variations by Derrida et al. [5, 6] and Wittmer et al.
[17], and its predecessos by Garel and Orland [7] and Obukhov [14]. The resulting
Gibbs measure then corresponds to a model for “random walk in random environ-
ment.” Although we do not consider continuous processes here, the continuum-limit
analogue of Hn has also been studied in the literature (Buffet and Pulé [2], Mart̀ınez
and Petritis [13]).

Kesten and Spitzer [10] introduced a different model for “random walk in random
environment,” which they call random walk in random scenery.1 We can describe
that model as follows: Let Z := {Z(x)}x∈Zd denote a collection of i.i.d. random
variables, with the same common distribution as q1, and independent of S. Define

(1.3) Wn :=
n∑

i=1

Z(Si).

The process W := {Wn} ∞
n=0 is called random walk in random scenery, and can be

thought of as follows: We fix a realization of the d-dimensional random field Z—the
“scenery”—and then run an independent walk S on Zd. At time j, the walk is at
Sj ; we sample the scenery at that point. This yields Z(Sj), which is then used as
the increment of the process W at time j.

Our goal is to make precise the assertion that if n is large, then

(1.4) Hn ≈ γ1/2 · Wn in distribution,

where

(1.5) γ :=

{
1 if S is recurrent,∑∞

k=1 P{Sk = 0} if S is transient.

Our derivation is based on a classification of recurrence vs. transience for random
walks that appears to be new. This classification [Theorem 2.4] might be of inde-
pendent interest.

We can better understand (1.4) by considering separately the cases that S is
transient versus recurrent. The former case is simpler to describe, and appears
next.

Theorem 1.1. If S is transient, then

(1.6)
Wn

n1/2

D→ N(0 , σ2) and
Hn

n1/2

D→ N(0 , γσ2).

Kesten and Spitzer [10] proved the assertion about Wn under more restrictive
conditions on S. Similarly, Chen [3] proved the statement about Hn under more
hypotheses.

Before we can describe the remaining [and more interesting] recurrent case, we
define

(1.7) an :=

(
n

n∑
k=0

P{Sk = 0}
)1/2

.

It is well known (Polya [15], Chung and Fuchs [4]) that S is recurrent if and only
if an/n1/2 → ∞ as n → ∞.

1Kesten and Spitzer ascribe the terminology to Paul Shields.
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Theorem 1.2. If S is recurrent, then for all bounded continuous functions f :
Rd → R,

(1.8) E
[
f

(
Wn

an

)]
= E

[
f

(
Hn

an

)]
+ o(1),

where o(1) converges to zero as n → ∞. Moreover, both {Wn/an}n≥1 and
{Hn/an}n≥1 are tight.

We demonstrate Theorems 1.1 and 1.2 by using a variant of the replacement
method of Liapounov [11] [pp. 362–364]; this method was rediscovered later by
Lindeberg [12], who used it to prove his famous central limit theorem for triangular
arrays of random variables.

It can be proved that when S is in the domain of attraction of a stable law, Wn/an

converges in distribution to an explicit law (Kesten and Spitzer [10], Bolthausen
[1]). Consequently, Hn/an converges in distribution to the same law in that case.
This fact was proved earlier by Chen [3] under further [mild] conditions on S and
q1.

We conclude the introduction by describing the growth of an under natural
conditions on S.

Remark 1.3. Suppose S is strongly aperiodic, mean zero, and finite second mo-
ments, with a nonsingular covariance matrix. Then, S is transient iff d ≥ 3, and by
the local central limit theorem, as n → ∞,

(1.9)
n∑

k=1

P{Sk = 0} ∼ const ×
{

n1/2 if d = 1,

log n if d = 2.

See, for example (Spitzer [16] [P9 on p. 75]). Consequently,

(1.10) an ∼ const ×
{

n3/4 if d = 1,
(n log n)1/2 if d = 2.

This agrees with the normalization of Kesten and Spitzer [10] when d = 1, and
Bolthausen [1] when d = 2.

2. Preliminary Estimates

Consider the local times of S defined by

(2.1) Lx
n :=

n∑
i=1

1{Si=x}.

A little thought shows that the random walk in random scenery can be represented
compactly as

(2.2) Wn =
∑

x∈Zd

Z(x)Lx
n.

There is also a nice way to write the random Hamiltonian Hn in local-time terms.
Consider the “level sets,”

(2.3) Lx
n := {i ∈ {1 , . . . , n} : Si = x} .
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It is manifest that if j ∈ {2 , . . . , n}, then Lx
j > Lx

j−1 if and only if j ∈ Lx
n. Thus,

we can write

Hn =
1
2

⎛⎝∑
x∈Zd

∣∣∣∣∣
n∑

i=1

qi1{Si=x}

∣∣∣∣∣
2

−
n∑

i=1

q2
i

⎞⎠
=
∑

x∈Zd

hx
n,

(2.4)

where

(2.5) hx
n :=

1
2

⎛⎜⎝
∣∣∣∣∣∣
∑
i∈Lx

n

qi

∣∣∣∣∣∣
2

−
∑
i∈Lx

n

q2
i

⎞⎟⎠ .

We denote by P̂ the conditional measure, given the entire process S; Ê denotes
the corresponding expectation operator. The following is borrowed from Chen [3]
[Lemma 2.1].

Lemma 2.1. Choose and fix some integer n ≥ 1. Then, {hx
n}x∈Zd is a collection

of independent random variables under P̂, and

(2.6) Êhx
n = 0 and Ê

(
|hx

n|2
)

=
σ2

2
Lx

n (Lx
n − 1) P-a.s.

Moreover, there exists a nonrandom positive and finite constant C = C(σ) such
that for all n ≥ 1 and x ∈ Zd,

(2.7) Ê
(

|hx
n|3
)

≤ Cμ6 |Lx
n (Lx

n − 1)|3/2 P-a.s.

Next we develop some local-time computations.

Lemma 2.2. For all n ≥ 1,

(2.8)
∑

x∈Zd

ELx
n = n and

∑
x∈Zd

E
(

|Lx
n|2
)

= n + 2
n−1∑
k=1

(n − k)P{Sk = 0}.

Moreover, for all integers k ≥ 1,

(2.9)
∑

x∈Zd

E
(

|Lx
n|k
)

≤ k! n

∣∣∣∣∣∣
n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣
k−1

.

Proof. Since ELx
n =

∑n
j=1 P{Sj = x} and

∑
x∈Zd P{Sj = x} = 1, we have∑

x ELx
n = n. For the second-moment formula we write

E
(

|Lx
n|2
)

=
∑

1≤i≤n

P{Si = x} + 2
∑∑
1≤i<j≤n

P{Si = Sj = x}

=
∑

1≤i≤n

P{Si = x} + 2
∑∑
1≤i<j≤n

P{Si = x}P{Sj−i = 0}.
(2.10)

We can sum this expression over all x ∈ Zd to find that

(2.11)
∑

x∈Zd

E
(

|Lx
n|2
)

= n + 2
∑∑
1≤i<j≤n

P{Sj−i = 0}.
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This readily implies the second-moment formula. Similarly, we write

E
(

|Lx
n|k
)

≤ k!
∑

· · ·
∑

1≤i1≤···≤ik ≤n

P{Si1 = · · · = Sik
= x}

= k!
∑

· · ·
∑

1≤i1≤···≤ik ≤n

P{Si1 = x}P{Si2−i1 = 0} · · · P{Sik −ik−1 = 0}

≤ k!
n∑

i=1

P{Si = x} ·

∣∣∣∣∣∣
n∑

j=1

P{Sj = 0}

∣∣∣∣∣∣
k−1

.

(2.12)

Add over all x ∈ Zd to finish.

Our next lemma provides the first step in a classification of recurrence [versus
transience] for random walks.

Lemma 2.3. It is always the case that

(2.13) lim
n→∞

1
n

∑
x∈Zd

E
(

|Lx
n|2
)

= 1 + 2
∞∑

k=1

P{Sk = 0}.

Proof. Thanks to Lemma 2.2, for all n ≥ 1,

(2.14)
1
n

∑
x∈Zd

E
(

|Lx
n|2
)

= 1 + 2
n−1∑
k=1

(
1 − k

n

)
P{Sk = 0}.

If S is transient, then the monotone convergence theorem ensures that

(2.15) lim
n→∞

1
n

∑
x∈Zd

E
(

|Lx
n|2
)

= 1 + 2
∞∑

k=1

P{Sk = 0}.

This proves the lemma in the transient case.
When S is recurrent, we note that (2.14) readily implies that for all integers

m ≥ 2,

lim inf
n→∞

1
n

∑
x∈Zd

E
(

|Lx
n|2
)

≥ 1 + 2
m−1∑
k=1

(
1 − k

m

)
P{Sk = 0}

≥ 1 +
∑

1≤k≤m/2

P{Sk = 0}.

(2.16)

Let m ↑ ∞ to deduce the lemma.

Next we “remove the expectation” from the statement of Lemma 2.3.

Theorem 2.4. As n → ∞,

(2.17)
1
n

∑
x∈Zd

(Lx
n)2 → 1 + 2

∞∑
k=1

P{Sk = 0} in probability.
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Remark 2.5. The quantity In :=
∑

x∈Zd(Lx
n)2 is the socalled self-intersection

local time of the walk S. This terminology stems from the following elementary
calculation: For all integers n ≥ 1,

(2.18) In =
∑∑
1≤i,j≤n

1{Sj=Si }.

Consequently, Theorem 2.4 implies that a random walk S on Zd is recurrent if and
only if its self-intersection local time satisfies In/n → ∞ in probability.

Remark 2.6. Nadine Guillotin–Plantard has kindly pointed out to us that the
mode of convergence in Theorem 2.4 can be strengthened to almost-sure conver-
gence. This requires a direct subadditivity argument (Guillotin–Plantard [8]). It
follows also from the estimates that follow, together with a classical blocking argu-
ment, which we skip.

Proof. First we study the case that {Si} ∞
i=0 is transient.

Define

(2.19) Qn :=
∑∑
1≤i<j≤n

1{Si=Sj }.

Then it is not too difficult to see that

(2.20)
∑

x∈Zd

(Lx
n)2 = 2Qn + n for all n ≥ 1.

This follows immediately from (2.18), for example. Therefore, it suffices to prove
that, under the assumption of transience,

(2.21)
Qk

k
→

∞∑
j=1

P{Sj = 0} in probability as k → ∞.

Lemma 2.3 and (2.20) together imply that

(2.22) lim
k→∞

EQk

k
=

∞∑
j=1

P{Sj = 0}.

Hence, it suffices to prove that VarQn = o(n2) as n → ∞. In some cases, this
can be done by making an explicit [though hard] estimate for Var Qn; see, for
instance, (Chen [3] [Lemma 5.1]), and also the technique employed in the proof of
Lemma 2.4 of Bolthausen [1]. Here, we opt for a more general approach that is
simpler, though it is a little more circuitous. Namely, in rough terms, we write Qn

as Q
(1)
n + Q

(2)
n , where EQ

(1)
n = o(n), and Var Q

(2)
n = o(n2). Moreover, we will soon

see that Q
(1)
n , Q

(2)
n ≥ 0, and this suffices to complete the proof.

For all m := mn ∈ {1 , . . . , n − 1} we write

(2.23) Qn = Q1,m
n + Q2,m

n ,

where

(2.24) Q1,m
n :=

∑∑
1≤i<j≤n:

j≥i+m

1{Si=Sj } and Q2,m
n :=

∑∑
1≤i<j≤n:

j<i+m

1{Si=Sj }.
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Because n > m, we have

(2.25) EQ1,m
n ≤ n

∞∑
k=m

P{Sk = 0}.

We estimate the variance of Q2,m
n next. We do this by first making an observation.

Throughout the remainder of this proof, define for all subsets Γ of N2,

(2.26) Υ(Γ) :=
∑∑
(i,j)∈Γ

1{Si=Sj }.

Supppose Γ1, Γ2, . . . , Γν are finite disjoint sets in N2, with common cardinality,
and the added property that whenever 1 ≤ a < b ≤ ν, we have Γa < Γb in the sense
that i < k and j < l for all (i , j) ∈ Γa and (k , l) ∈ Γb. Then, it follows that

(2.27) {Υ(Γν)}ν
μ=1 is an i.i.d. sequence.

For all integers p ≥ 0 define

Bm
p :=

{
(i , j) ∈ N2 : (p − 1)m < i < j ≤ pm

}
,

Wm
p :=

{
(i , j) ∈ N2 : (p − 1)m < i ≤ pm < j ≤ (p + 1)m

}
.

(2.28)

In Figure 1, {Bm
p } ∞

p=1 denotes the collection black and {Wm
p } ∞

p=1 the white triangles
that are inside the slanted strip.

We may write

(2.29) Q2,m
(n−1)m =

n−1∑
p=1

Υ(Bm
p ) +

n−1∑
p=1

Υ(Wm
p ).

Consequently,

(2.30) Var Q2,m
(n−1)m ≤ 2Var

n−1∑
p=1

Υ(Bm
p ) + 2Var

n−1∑
p=1

Υ(Wm
p ).

Fig 1. A decomposition of Qn.
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If 1 ≤ a < b ≤ m − 1, then Bm
a < Bm

b and Wm
a < Wm

b . Consequently, (2.27) implies
that

(2.31) Var Q2,m
(n−1)m ≤ 2(n − 1) [Var Υ(Bm

1 ) + Var Υ(Wm
1 )] .

Because Υ(Bm
1 ) and Υ(Wm

1 ) are individually sums of not more than
(
m
2

)
-many

ones,

(2.32) VarQ2,m
(n−1)m ≤ 2(n − 1)m2.

Let Q
(1)
n := Q1,m

n and Q
(2)
n := Q2,m

n , where m = mn := n1/4 [say]. Then,
Qn = Q

(1)
n + Q

(2)
n , and (2.25) and (2.32) together imply that EQ

(1)
(n−1)m = o((n −

1)m). Moreover, Var Q
(2)
(n−1)m = o((nm)2). This gives us the desired decomposition

of Q(n−1)m. Now we complete the proof: Thanks to (2.22),

(2.33) EQ
(2)
(n−1)m ∼ nm ·

∞∑
j=1

P{Sj = 0} as n → ∞.

Therefore, the variance of Q
(2)
(n−1)m is little-o of the square of its mean. This and the

Chebyshev inequality together imply that Q
(2)
(n−1)m/(nm) converges in probability

to
∑∞

j=1 P{Sj = 0}. On the other hand, we know also that Q
(1)
(n−1)m/(nm) converges

to zero in L1(P) and hence in probability. Consequently, we can change variables
and note that as n → ∞,

(2.34)
Qnm

nm
→

∞∑
j=1

P{Sj = 0} in probability.

If k is between (n − 1)m and nm, then

(2.35)
Q(n−1)m

nm
≤ Qk

k
≤ Qnm

(n − 1)m
.

This proves (2.21), and hence the theorem, in the transient case.
In order to derive the recurrent case, it suffices to prove that Qn/n → ∞ in

probability as n → ∞.
Let us choose and hold an integer m ≥ 1—so that it does not grow with n—and

observe that Qn ≥ Q2,m
n as long as n is sufficiently large. Evidently,

EQ2,m
n =

∑∑
1≤i<j≤n:

j<i+m

P{Sj = Si}

= (n − 1)
m−1∑
k=1

P{Sk = 0}.

(2.36)

We may also observe that (2.32) continues to hold in the present recurrent setting.
Together with the Chebyshev inequality, these computations imply that as n → ∞,

(2.37)
Q2,m

n(m−1)

n
→

m−1∑
k=1

P{Sk = 0} in probability.
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Because Qn(m−1) ≥ Q2,m
n(m−1), the preceding implies that

(2.38) lim
n→∞

P

{
Qn(m−1)

n
≥ 1

2

m∑
k=1

P{Sk = 0}
}

= 1.

A monotonicity argument shows that Qn(m−1) can be replaced by Qn without al-
tering the end-result; see (2.35). By recurrence, if λ > 0 is any predescribed positive
number, then we can choose [and fix] our integer m such that∑m

k=1 P{Sk = 0} ≥ 2λ. This proves that limn→∞ P{Qn/n ≥ λ} = 1 for all λ > 0,
and hence follows the theorem in the recurrent case.

3. Proofs of the Main Results

Now we introduce a sequence {ξx}x∈Zd of random variables, independent [under P]
of {qi} ∞

i=1 and the random walk {Si} ∞
i=0, such that

(3.1) Eξ0 = 0, E
(
ξ2
0

)
= σ2, and μ̂3 := E

(
|ξ0|3

)
< ∞.

Define

(3.2) ĥx
n :=

∣∣∣∣Lx
n (Lx

n − 1)
2

∣∣∣∣1/2

ξx for all n ≥ 1 and x ∈ Zd.

Evidently, {ĥx
n}x∈Zd is a sequence of [conditionally] independent random variables,

under P̂, and has the same [conditional] mean and variance as {hx
n}x∈Zd .

Lemma 3.1. There exists a positive and finite constant C∗ = C∗(σ) such that if
f : Rd → R is three time continuously differentiable, then for all n ≥ 1,

(3.3)

∣∣∣∣∣∣Ef

⎛⎝∑
x∈Zd

ĥx
n

⎞⎠− Ef(Hn)

∣∣∣∣∣∣ ≤ C∗Mf (μ̂3 + μ6)n

∣∣∣∣∣∣
n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣
2

,

with Mf := supx∈Rd |f ′ ′ ′(x)|.

Proof. Temporarily choose and fix some y ∈ Zd, and notice that

f(Hn)

= f

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+ f ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠hy
n +

1
2
f ′ ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠ |hy
n|2

+ Rn,

(3.4)

where |Rn| ≤ 1
6 ‖f ′ ′ ′ ‖ ∞ |hy

n|3. It follows from this and Lemma 2.1 that

Êf(Hn)

= Êf

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+
σ2

2
Ly

n (Ly
n − 1) Êf ′ ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+ R(1)
n ,

(3.5)
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where ∣∣∣R(1)
n

∣∣∣ ≤ CMfμ6

12
|Lx

n (Lx
n − 1)|3/2 P-a.s.

≤ CMfμ6

12
|Ly

n|3 .

(3.6)

We proceed as in (3.4) and write

f

⎛⎝ĥy
n +

∑
x∈Zd \ {y}

hx
n

⎞⎠
= f

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+ f ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠ ĥy
n +

1
2
f ′ ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠∣∣∣ĥy
n

∣∣∣2
+ R̂n,

(3.7)

where |R̂n| ≤ 1
6Mf |ĥy

n|3 ≤ 1
12

√
2
Mf |Ly

n|3 |ξy |3. It follows from this and Lemma 2.1
that

Êf

⎛⎝ĥy
n +

∑
x∈Zd \ {y}

hx
n

⎞⎠
= Êf

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+
σ2

2
Ly

n (Ly
n − 1) Êf ′ ′

⎛⎝ ∑
x∈Zd \ {y}

hx
n

⎞⎠+ R(2)
n ,

(3.8)

where |R(2)
n | ≤ 1

12
√

2
μ̂3Mf |Ly

n|3. Define C∗ := (C +1)/2 to deduce from the preced-
ing and (3.5) that P-a.s.,

(3.9)

∣∣∣∣∣∣Êf

⎛⎝ĥy
n +

∑
x∈Zd \ {y}

hx
n

⎞⎠− Êf

⎛⎝∑
x∈Zd

hx
n

⎞⎠∣∣∣∣∣∣ ≤ A

6
|Ly

n|3,

where A := C∗Mf (μ̂3 + μ6). The preceding computes the effect of replacing the
contribution of hx

n to Hn by the independent quantity ĥy
n, for each fixed y, and

uses only the fact that the ĥ’s are a conditionally independent sequence with the
same means and variances as their corresponding h’s. Therefore, if we choose and
fix another point y ∈ Zd \ {y}, then the very same constant A satisfies the following:
Almost surely [P],

(3.10)

∣∣∣∣∣∣Êf

⎛⎝ĥz
n + ĥy

n +
∑

x∈Zd \ {y,z}
hx

n

⎞⎠− Êf

⎛⎝ĥy
n +

∑
x∈Zd \ {y}

hx
n

⎞⎠∣∣∣∣∣∣ ≤ A

6
|Lz

n|3.

And hence, the triangle inequality yields the following: P-a.s.,∣∣∣∣∣∣Êf

⎛⎝ĥz
n + ĥy

n +
∑

x∈Zd \ {y,z}
hx

n

⎞⎠− Êf

⎛⎝∑
x∈Zd

hx
n

⎞⎠∣∣∣∣∣∣
≤ A

6
(

|Ly
n|3 + |Lz

n|3
)
.

(3.11)
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Because
∑

x∈Zd hx
n = Hn, it is now possible to see how we can iterate the previous

inequality to find that P-a.s.,

(3.12)

∣∣∣∣∣∣Êf

⎛⎝∑
x∈Zd

ĥx
n

⎞⎠− Êf(Hn)

∣∣∣∣∣∣ ≤ A

6

∑
y∈Zd

|Ly
n|3.

We take expectations and appeal to Lemma 2.2 to finish.

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We choose, in Lemma 3.1, the collection {ξx}x∈Zd to be i.i.d.
mean-zero normals with variance σ2. Then, we apply Lemma 3.1 with
f(x) := g(x/n1/2) for a smooth bounded function g with bounded derivatives.
This yields,

(3.13)

∣∣∣∣∣∣Eg(Hn/n1/2) − Eg

⎛⎝ 1
n1/2

∑
x∈Zd

ĥx
n

⎞⎠∣∣∣∣∣∣ ≤ const
n1/2

.

In this way,

∑
x∈Zd

ĥx
n

D=
σ√
2

∣∣∣∣∣∣
∑

x∈Zd

Lx
n (Lx

n − 1)

∣∣∣∣∣∣
1/2

N(0 , 1) under P̂

=
σ√
2

∣∣∣∣∣∣−n +
∑

x∈Zd

(Lx
n)2

∣∣∣∣∣∣
1/2

N(0 , 1),

(3.14)

where D= denotes equality in distribution, and N(0 , 1) is a standard normal random
variable under P̂ as well as P. Therefore, in accord with Theorem 2.4,

1
n1/2

∑
x∈Zd

ĥx
n

D=
σ√
2

∣∣∣∣∣∣−1 +
1
n

∑
x∈Zd

(Lx
n)2

∣∣∣∣∣∣
1/2

N(0 , 1)

= o
P̂
(1) + γ1/2 · N(0 , σ2),

(3.15)

where o
P̂
(1) is a term that converges to zero as n → ∞ in P̂-probability a.s. [P].

Equation (3.13) then completes the proof in the transient case.

Theorem 1.2 relies on the following “coupled moderate deviation” result.

Proposition 3.2. Suppose that S is recurrent. Consider a sequence {εj } ∞
j=1 of

nonnegative numbers that satisfy the following:

(3.16) lim
n→∞

ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}
∣∣∣∣∣
2

= 0.

Then for all compactly supported functions f : Rd → R that are infinitely differen-
tiable,

(3.17) lim
n→∞

|E [f (εnWn)] − E [f (εnHn)]| = 0.
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Proof. We apply Lemma 3.1 with the ξx’s having the same common distribution
as q1, and with f(x) := g(εnx) for a smooth and bounded function g with bounded
derivatives. This yields,∣∣∣∣∣∣E

⎡⎣g

⎛⎝εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

⎞⎠⎤⎦ − E [g (εnHn)]

∣∣∣∣∣∣
≤ 2C∗Mgμ6nε3n

∣∣∣∣∣
n∑

k=0

P{Sk = 0}
∣∣∣∣∣
2

= o(1),

(3.18)

owing to Lemma (3.4).
According to Taylor’s formula,

g

⎛⎝εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

⎞⎠
= g

⎛⎝εn

∑
x∈Zd

Z(x)Lx
n

⎞⎠+ εn

∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)
Z(x) · R,

(3.19)

where |R| ≤ supx∈Rd |g′(x)|. Thanks to (2.2), we can write the preceding as follows:

g

⎛⎝εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

⎞⎠− g (εnWn)

= εn

∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)
Z(x) · R.

(3.20)

Consequently, P-almost surely,∣∣∣∣∣∣Ê
⎡⎣g

⎛⎝εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

⎞⎠⎤⎦ − Ê [g (εnWn)]

∣∣∣∣∣∣
≤ sup

x∈Rd

|g′(x)|σ · εn

⎧⎨⎩Ê

⎛⎝∑
x∈Zd

(
|Lx

n (Lx
n − 1)|1/2 − Lx

n

)2

⎞⎠⎫⎬⎭
1/2

.

(3.21)

We apply the elementary inequality (a1/2 −b1/2)2 ≤ |a−b|—valid for all a, b ≥ 0—to
deduce that P-almost surely,∣∣∣∣∣∣Ê

⎡⎣g

⎛⎝εn

∑
x∈Zd

|Lx
n (Lx

n − 1)|1/2
Z(x)

⎞⎠⎤⎦ − Ê [g (εnWn)]

∣∣∣∣∣∣
≤ sup

x∈Rd

|g′(x)|σ · εn

⎧⎨⎩Ê

⎛⎝∑
x∈Zd

Lx
n

⎞⎠⎫⎬⎭
1/2

= sup
x∈Rd

|g′(x)|σ · εnn1/2.

(3.22)
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We take E-expectations and apply Lemma (3.4) to deduce from this and (3.18) that

(3.23) |E [g (εnWn)] − E [g (εnHn)]| = o(1).

This completes the proof.

Our proof of Theorem 1.2 hinges on two more basic lemmas. The first is an
elementary lemma from integration theory.

Lemma 3.3. Suppose X := {Xn} ∞
n=1 and Y := {Yn} ∞

n=1 are Rd-valued random
variables such that: (i) X and Y each form a tight sequence; and (ii) for all bounded
infinitely-differentiable functions g : Rd → R,

(3.24) lim
n→∞

|Eg(Xn) − Eg(Yn)| = 0.

Then, the preceding holds for all bounded continuous functions g : Rd → R.

Proof. The proof uses standard arguments, but we repeat it for the sake of com-
pleteness.

Let Km := [−m , m]d, where m takes values in N. Given a bounded continuous
function g : Rd → R, we can find a bounded infinitely-differentiable function
hm : Rd → R such that |hm − g| < 1/m on Km. It follows that

|Eg(Xn) − Eg(Yn)| ≤ 2/m + |Ehm(Xn) − Ehm(Yn)|
+ 2 sup

x∈Rd

|g(x)|
(
P{Xn �∈ Km} + P{Yn �∈ Km}

)
.(3.25)

Consequently,

lim sup
n→∞

|Eg(Xn) − Eg(Yn)|

≤ 2/m + 2 sup
x∈Rd

|g(x)| sup
j≥1

(P{Xj �∈ Km} + P{Yj �∈ Km}) .
(3.26)

Let m diverge and appeal to tightness to conclude that the left-had side vanishes.

The final ingredient in the proof of Theorem 1.1 is the following harmonic-
analytic result.

Lemma 3.4. If εn := 1/an, then (3.16) holds.

Proof. Let φ denote the characteristic function of S1. Our immediate goal is to
prove that |φ(t)| < 1 for all but a countable number of t ∈ Rd. We present an
argument, due to Firas Rassoul-Agha, that is simpler and more elegant than our
original proof.

Suppose S′
1 is an independent copy of S1, and note that whenever t ∈ Rd is

such that |φ(t)| = 1, D := exp{it · (S1 − S′
1)} has expectation one. Consequently,

E(|D − 1|2) = E(|D|2) − 1 = 0, whence D = 1 a.s. Because S1 is assumed to have
at least two possible values, S1 �= S′

1 with positive probability, and this proves that
t ∈ 2πZd. It follows readily from this that

(3.27)
{
t ∈ Rd : |φ(t)| = 1

}
= 2πZd,

and in particular, |φ(t)| < 1 for almost all t ∈ Rd.
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By the inversion theorem (Spitzer [16] [P3(b), p. 57]), for all n ≥ 0,

(3.28) P{Sn = 0} =
1

(2π)d

∫
(−π,π)d

{φ(t)}n
dt.

This and the dominated convergence theorem together tell us that P{Sn = 0} =
o(1) as n → ∞, whence it follows that

(3.29)
n∑

k=1

P{Sk = 0} = o(n) as n → ∞.

For our particular choice of εn we find that

(3.30) ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}
∣∣∣∣∣
2

=

(
1
n

n∑
k=1

P{Sk = 0}
)1/2

,

and this quantity vanishes as n → ∞ by (3.29). This proves the lemma.

Proof of Theorem 1.2. Let εn := 1/an. In light of Proposition 3.2, and Lemmas 3.3
and 3.4, it suffices to prove that the sequences n → εnWn and n → εnHn are tight.

Lemma 2.2, (2.2), and recurrence together imply that for all n large,

E
(

|εnWn|2
)

= σ2ε2n
∑

x∈Zd

E
(

|Lx
n|2
)

≤ const · ε2nn

n∑
k=1

P{Sk = 0}

= const.

(3.31)

Thus, n → εnWn is bounded in L2(P), and hence is tight.
We conclude the proof by verifying that n → εnHn is tight. Thanks to (2.4) and

recurrence, for all n large,

E
(

|εnHn|2
)

≤ const · ε2nE
∑

x∈Zd

(Lx
n)2

≤ const · ε2nn
n∑

k=1

P{Sk = 0}

= const.

(3.32)

Confer with Lemma 2.2 for the penultimate line. Thus, n → εnHn is bounded in
L2(P) and hence is tight, as was announced.
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