
IMS Collections
High Dimensional Probability V: The Luminy Volume
Vol. 5 (2009) 239–257
c© Institute of Mathematical Statistics, 2009
DOI: 10.1214/09-IMSCOLL516

Stochastic compactness of Lévy processes
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This paper is dedicated to the memory of Sándor Csörgő

Abstract: We characterize stochastic compactness and convergence in distri-
bution of a Lévy process at “large times”, i.e., as t → ∞, by properties of its
associated Lévy measure, using a mechanism for transferring between discrete
(random walk) and continuous time results. We thereby obtain also domain of
attraction characterisations for the process at large times. As an illustration
of the stochastic compactness ideas, semi-stable laws are considered.

1. Introduction

Consider a Lévy process (Xt)t≥0, having nondegenerate infinitely divisible (inf. div.)
characteristic function (cf)

(1.1) EeiθXt = etΨ(θ), θ ∈ R,

where

(1.2) Ψ(θ) = iγθ − 1
2
σ2θ2 +

∫
R\ {0}

(
eiθx − 1 − iθx1{ |x|≤1}

)
Π(dx),

γ ∈ R, σ2 ≥ 0, and Π is a measure on R with
∫

R\ {0}(x2 ∧ 1)Π(dx) finite. We say
that Xt has canonical triplet (γ, σ2, Π). See Bertoin [1] and Sato [35] for properties
of Lévy processes.

We wish to study conditions for stochastic compactness, convergence in distrib-
ution and relative stability for Xt at “large times”, i.e., as t → ∞, and to express
them in terms of the Lévy tail functions

Π
+
(x) = Π{(x, ∞)}, Π

−
(x) = Π{(−∞, −x)}, and Π(x) = Π

+
(x) + Π

−
(x)

(all on x > 0), and the truncated mean and variance functions defined for x > 0 by

(1.3) ν(x) = γ +
∫

1<|y|≤x

yΠ(dy) and V (x) = σ2 +
∫

0<|y|≤x

y2Π(dy).
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(Note that ν(x) = γ −
∫

x<|y|≤1
yΠ(dy) for 0 < x < 1.)

We shall begin with a couple of motivating observations.

Observation 1. Let ξ, ξ1, ξ2, . . . , be i.i.d. nondegenerate random variables (rvs)
with cumulative distribution function F and for each integer n ≥ 1 denote their
partial sum by Sn =

∑n
i=1 ξi. Suppose that there exist a subsequence {nk } ⊂ {n}

and norming and centering constants B(nk) and A(nk) such that

(1.4)
Snk

− A (nk)
B (nk)

D−→ X1,

where here and elsewhere in this paper X1 is a nondegenerate inf. div. rv with cf
eΨ(θ). Associated with the X1 that appears as the distributional limit in (1.4) is a
Lévy process (Xt)t≥0. It arises as the distributional limit,

(1.5)
1

B (nk)

⎧⎨⎩
�tnk �∑
i=1

ξi − �tnk 	 A (nk)
nk

⎫⎬⎭ D−→ Xt, t > 0,

where Xt has cf EeiθXt = etΨ(θ). (This fact goes back to Lévy [24]. See also
Théoréme II of Doeblin [10]. Actually one can prove convergence in D[0, T ] for any
0 < T < ∞. For the appropriate theory and methodology refer to Chapter IX of
Gikhman and Skorokhod [17].) Note that the norming constants do not change with
t. We also record here the well-known fact that if X is an inf. div. rv then there
exists a Lévy process Xt such that X1

D= X. See Lévy [24] and Sato [35].

Observation 2. Let Xt, t ≥ 0, be a Lévy process and ξ, ξ1, ξ2, . . . , be i.i.d. X1.
Suppose for a subsequence {nk } of the integers {n} there exist sequences of norming
B(nk) and centering constants A(nk) such that

(1.6)
Snk

− A (nk)
B (nk)

D−→ Y,

where Y is an almost surely (a.s.) finite rv. Then obviously since Xnk

D= Snk
,

Xnk
− A (nk)

B (nk)
D−→ Y.

Conversely suppose for a sequence of positive constants tk → ∞ there exist se-
quences of norming B(tk) and centering constants A(tk) such that

Xtk
− A (tk)

B (tk)
D−→ Y,

where Y is an a.s. finite random variable. Set nk = �tk 	 ∨ 1. Clearly, for tk ≥ nk,

Xtk
− A (tk)

B (tk)
− Xnk

− A (tk)
B (tk)

D=
Xtk −nk

B (tk)
.

Further for tk ≥ nk, we see that

E exp (θiXtk −nk
/B (tk)) = e(tk −nk)Ψ(θ/B(tk)).

Noting that necessarily B(tk) → ∞ and 0 ≤ tk − nk ≤ 1 for tk ≥ nk, we can
conclude that Xtk −nk

/B(tk) P−→ 0. Thus since Xnk

D= Snk
, we have

Snk
− A (tk)

B (tk)
D−→ Y.
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Definition 1. We shall say that a Lévy process Xt, t ≥ 0, is in the Feller class
at infinity (stochastically compact at infinity) if there exist nonstochastic functions
B(t) > 0, A(t) such that every sequence tk → ∞ contains a subsequence tk′ → ∞
with

(1.7)
Xtk′ − A(tk′ )

B(tk′ )
D−→ Y ′,

where Y ′ is a finite nondegenerate rv, a.s. (The prime on Y ′ signifies that in general
it depends on the choice of subsequence tk′ .) We shall write this as “Xt ∈ FC”. If
the centering function A(t) can be chosen to be identically equal to zero, we shall
say that Xt is in the centered Feller class at infinity, written “Xt ∈ FC0”.

Definition 1′. We shall also have occasion to talk about another kind of Feller
class. We shall say that a Lévy process Xt, t ≥ 0, is in the Feller class at zero if
there exist nonstochastic functions B(t) > 0, A(t) such that every sequence tk ↓ 0
contains a subsequence tk′ ↓ 0 for which (1.7) holds. We shall write this as “Xt ∈ FC
at zero”. If the centering function A(t) can be chosen to be identically equal to
zero, we shall say that Xt is in the centered Feller class at zero, written “Xt ∈ FC0

at zero”.

We shall also need the notion of a partial sum being in the Feller class.

Definition 2. We shall say that a sequence of partial sums {Sn}n≥1 of i.i.d. ξ
rv with cumulative distribution function F is in the Feller class (stochastically
compact) if there exist norming and centering constants B(n) > 0, A(n) such that
every subsequence {nk } of {n} contains a further subsequence nk′ → ∞ with

(1.8)
Snk′ − A(nk′ )

B(nk′ )
D−→ Y ′,

where Y ′ is a finite nondegenerate rv, a.s. We shall write this as “Sn ∈ FC”. If
the centering function A(n) can be chosen to be identically equal to zero, we shall
say that Sn is in the centered Feller class at infinity, written “Sn ∈ FC0”.

The classic Feller [14] condition for Sn ∈ FC (stochastic compactness of F ) is

(1.9) lim sup
y→∞

y2P (|ξ| > y)
E

(
ξ21{ |ξ|≤y}

) < ∞.

Here are two additional useful characterizations of Sn ∈ FC.
Feller [15] and Maller [26] show that Sn ∈ FC if and only if there exist c ≥ 1

and 0 < α ≤ 2 such that for all λ ≥ 1,

(1.10) lim sup
y→∞

Vξ (λy) /Vξ (y) ≤ cλ2−α,

where Vξ(y) = E(ξ21{ |ξ|≤y}) for y > 0. The equivalence of (1.9) and (1.10) can also
be inferred from Lemma 1 below.

In the course of developing their quantile-empirical process approach to the as-
ymptotic distribution of partial sums of i.i.d. rvs, Csörgő, Haeusler and Mason [9]
show that Sn ∈ FC (namely the Feller condition (1.9) holds) if and only if for all
λ > 0

(1.11) lim sup
s↘0

√
s
{∣∣F −1 (λs)

∣∣ +
∣∣F −1 (1 − λs)

∣∣}
σ (s)

< ∞,
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where F −1 is the inverse or quantile function of F defined to be, for each 0 < s < 1,
F −1(s) = inf{x : F (x) ≥ s}, and for 0 < s < 1/2,

(1.12) σ2 (s) =
∫ 1−s

s

∫ 1−s

s

(u ∧ v − uv) F −1 (du) F −1 (dv) .

Csörgő et al. [9] also prove that whenever Sn ∈ FC one can always choose in (1.8)
for n ≥ 2

(1.13) B (n) =
√

nσ (1/n) and A (n) = n

∫ 1−1/n

1/n

F −1 (u) du.

Some standard norming and centering constants in (1.8), in terms of F , are

(1.14) B (n) , where Q (B (n)) = 1/n, and A (n) = nEX1{ |X|≤B(n)},

where Q is defined in (2.3) below. See Feller [14] complemented by Jain and Orey
[21].

Clearly Sn ∈ FC0 if and only if Sn ∈ FC and lim supn→∞ |A(n)/B(n)| < ∞.
Maller [25] (see also Giné and Mason [18] and Griffin and Maller [20]) proved that
Sn ∈ FC0 if and only if

(1.15) lim sup
y→ ∞

y2P (|ξ| > y) + y
∣∣E (

ξ1{ |ξ|≤y}
)∣∣

E
(
ξ21{ |ξ|≤y}

) < ∞.

In terms of the quantile function, Sn ∈ FC0 is equivalent to, for all λ > 0,

(1.16) lim sup
s↘0

√
s
{∣∣F −1 (λs)

∣∣ +
∣∣F −1 (1 − λs)

∣∣} + s−1/2
∣∣∣∫ 1−s

s
F −1 (u) du

∣∣∣
σ (s)

< ∞.

The notion of Sn ∈ FC0, respectively Xt ∈ FC0 at zero, plays an important role in
the study of the asymptotic distribution of self-normalized sums in Giné and Mason
[18] and Mason [30], respectively, self-normalized Lévy processes at small times in
Maller and Mason [28].

Specializing to the case when ξ, ξ1, ξ2, . . . , are i.i.d. X1, we can obviously readily
conclude from Observation 2 that Xt ∈ FC if and only if Sn ∈ FC if and only
if (1.9) holds with ξ = X1; and Xt ∈ FC0 if and only if Sn ∈ FC0 if and only if
(1.15) holds with ξ = X1. However, these conditions in terms of the distribution of
X1 are not easy to check.

The main goal of this paper is to establish conditions equivalent to (1.9) and
(1.15) in terms of the γ, σ2 and Π occuring in (1.2). We state these in the following
theorem. Recall also (1.3).

Theorem 1. Let X be a nondegenerate inf. div. rv having cf eΨ(θ), where Ψ is
defined in (1.2), and let Xt be a Lévy process with X1

D= X.
(i) We have Xt ∈ FC at infinity if and only if

(1.17) lim sup
y→∞

y2Π(y) /V (y) < ∞.

(ii) We have Xt ∈ FC0 at infinity if and only if

(1.18) lim sup
y→∞

(
y2Π(y) + y |ν(y)|

)
/V (y) < ∞.
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By applying a result of Pruitt [34], Theorem 1 leads to the following corollary.
In its statement, Sn, n ≥ 1, denotes a sequence of partial sums Sn =

∑n
i=1 ξi, with

ξ1, ξ2, . . . , being i.i.d. ξ, which is assumed to be nondegenerate.

Corollary 1. Whenever Sn ∈ FC, respectively, Sn ∈ FC0, then each of its asso-
ciated subsequential Lévy processes Xt, as introduced in (1.5) of Observation 1, is
in both FC (at infinity) and FC (at zero), respectively, in FC0 (at infinity) and
FC0 (at zero).

The complete proof of Theorem 1 will be given in Section 4. It follows from a
much more general result concerning transferring asymptotic distributional results
from continuous time to discrete time and vice versa. This result is stated and
proved in Section 3. A number of its consequences are detailed in Section 4. However
in the next section we will digress to give a direct proof of part (i) of Theorem 1,
which may be of separate interest. We shall also prove Corollary 1 in this section.
In Section 5 we point out how semistable processes provide a nice example of Lévy
processes, which possess the kind of asymptotic behavior that we will be describing.

2. A digression on stochastic compactness

We begin this section with a direct analytic proof of the first part of Theorem 1. We
do this by showing that a nondegenerate inf. div. rv X is stochastically compact,
meaning that it satisfies the classic Feller condition (1.9) with ξ = X, if and only
if (1.17) holds.

Proposition 1. Let X be a nondegenerate inf. div. rv having cf function eΨ(θ). We
have

(2.1) lim sup
y→ ∞

y2P (|X| > y)
E

(
X21{ |ξ|≤y}

) < ∞

if and only if (1.17) holds.

Proof. As in Pruitt [34] for y > 0 let

(2.2) G (y) = P (|X| > y)

and

(2.3) Q (y) = P (|X| > y) + y−2

∫
0<|u|≤y

u2F (du) .

Also set

(2.4) QΠ (y) = Π (y) + y−2

(
σ2 +

∫
0<|u|≤y

u2Π(du)

)
.

For future reference we note that by integrating by parts,
(2.5)

Q (y) = 2y−2

∫
0<x≤y

xG (x) dx and QΠ (y) = y−2

(
σ2 + 2

∫
0<x≤y

xΠ (x) dx

)
.

We shall be applying the lemma on page 968 of Pruitt [34], which says that as
y → ∞,

(2.6) QΠ (y) ≈ Q (y) ,
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in the sense that, for some constants c1 and c2, 0 < c1 ≤ QΠ(y)/Q(y) ≤ c2 < ∞
for all large enough y.

Let ρ be a nonnegative decreasing right continuous function such that for all
y > 0

0 < Uρ (y) :=
∫ y

0

uρ (u) du < ∞.

The next lemma is essentially familiar from “dominated variation” ideas. (For in-
stance, refer to Theorem 2 of Feller [14].) For completeness we provide a short proof
here.

Lemma 1. There exist c ≥ 1 and 0 < α ≤ 2 such that for all λ ≥ 1,

(2.7) lim sup
y→∞

Uρ (λy) /Uρ (y) ≤ cλ2−α

if and only if

(2.8) lim sup
y→∞

y2ρ (y)
Uρ (y)

= τ < 2.

Proof. First assume (2.8). We see that for some τ < κ < 2 for all y > 0 large
enough y2ρ(y)/Uρ(y) ≤ κ. Therefore for all large enough y > 0 for any λ ≥ 1

log
(

Uρ (λy)
Uρ (y)

)
=

∫ λy

y

U ′
ρ (u)

Uρ (u)
du

=
∫ λy

y

u2ρ (u)
Uρ (u)

du

u
≤ κ log λ,

which implies that
lim sup

y→∞
Uρ (λy) /Uρ (y) ≤ λ2−α,

where 2 − α = κ. Hence (2.7) holds.
Now assume (2.8) does not hold. We shall prove that then (2.7) cannot be sat-

isfied. Arguing exactly as on page 864 of Mason [30] one can show that for any
0 < κ < 2 there exists a strictly increasing sequence of positive constants ηn such
that for all λ ≥ 1

lim inf
n→∞

inf
ηn ≤u≤ληn

u2ρ (u)
Uρ (u)

≥ κ.

Thus for all λ ≥ 1

lim inf
n→∞

log
(

Uρ (ληn)
Uρ (ηn)

)
= lim inf

n→∞

∫ ληn

ηn

u2ρ (u)
Uρ (u)

du

u
≥ κ log λ.

This implies that (2.7) cannot hold for any c ≥ 1 and 0 < α ≤ 2.

Set
UG (y) =

∫ y

0

uG (u) du and UΠ (y) =
∫ y

0

uΠ(u) du.

In the remainder of the proof of Proposition 1, we will assume that UΠ(y) > 0 for
all y > 0. Otherwise for X to be nondegenerate it must be N(0, σ2) with σ2 > 0,
in which case (2.1) and (1.17) are trivially equivalent. Clearly by (2.5) and (2.6),
as y → ∞,

UG (y) ≈ UΠ (y) .
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Thus there exist c ≥ 1 and 0 < α ≤ 2 such that for all λ ≥ 1,

(2.9) lim sup
y→∞

UG (λy) /UG (y) ≤ cλ2−α

if and only if there exist c′ ≥ 1 and 0 < α′ ≤ 2 such that for all λ ≥ 1,

(2.10) lim sup
y→∞

UΠ (λy) /UΠ (y) ≤ c′λ2−α′
.

Applying Lemma 1 we see that

lim sup
y→∞

y2G (y)
UG (y)

= τ < 2 if and only if lim sup
y→∞

y2Π(y)
UΠ (y)

= τ ′ < 2.

After integrating by parts, this proves the equivalence of (2.1) and (1.17).

Remark. Notice that Lemma 1 provides a proof of Sn ∈ FC if and only if (1.10)
holds.

2.1. Proof of Corollary 1

Let Sn ∈ FC with norming and centering constants B(n) and A(n) and let X1 be
one of the nondegenerate subsequential limiting random variables. We shall assume
that Eξ2 = ∞. Otherwise the associated Lévy process is Brownian motion, which
is clearly both in FC at ∞ and at zero, with norming and centering functions
B(t) =

√
t and A(t) = 0 (and hence is in FC0 in both cases). Now X1 is inf. div.,

and we assume that X1 has Lévy measure Π. According to the theorem in Pruitt
[34], for some constant C > 0, for all y > 0,

(2.11) y2Π (y) ≤ CV (y) .

By Theorem 1 this implies Xt ∈ FC at infinity, and, by Theorem 2.1 in Maller
and Mason [28], that Xt ∈ FC at zero. (In Theorem 2.1 of [28] it is shown that
Xt ∈ FC at zero if and only if lim supx ↓ 0 x2Π(x)/V (x) < ∞.)

Now choose Sn ∈ FC0. Once more we shall assume that Eξ2 = ∞. Otherwise
one readily argues that Eξ = 0 (see the proof of Part (ii) of Theorem 1 in Section 4)
and that the associated Lévy process is Brownian motion, which is both in FC0 at
∞ and at zero, as just mentioned. Recall, as we stated in the Introduction, that
Sn ∈ FC0 if and only if (1.15) holds. Assume that F is in the centered Feller class
with sequence of norming constants B(n) and suppose that for a subsequence {nk }
of {n}, Snk

/B(nk) converges in distribution to a nondegenerate inf. div. rv X1

with canonical triplet (γ, σ2, Π). We can infer by Gnedenko and Kolmogorov [19],
Theorem 1, page 116, that necessarily for every choice of x > 0 and ε > 0 such that
Π{−x, x} = Π{ −ε, ε} = 0,

(2.12) nkP {|X| > xB (nk)} → Π(x) ,

and for some bε, as nk → ∞,

(2.13)
nk

B (nk)

∫ εB(nk)

−εB(nk)

yF (dy) → bε;
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further, Pruitt [34] shows that when Eξ2 = ∞,

(2.14)
nk

B2 (nk)

∫ xB(nk)

−xB(nk)

y2F (dy) → V (x) .

Thus by (1.15), (2.12), (2.13) and (2.14), for some C > 0,

C ≥ lim sup
k→∞

x2B2 (nk) P {|X| > xB (nk)} + xB (nk)
∣∣∣∫ xB(nk)

−xB(nk)
yF (dy)

∣∣∣∫ xB(nk)

−xB(nk)
y2F (dy)

(2.15) =
x2Π (x) + x

∣∣∣bε +
∫

ε≤ |y| ≤x
yΠ(dy)1{ε≤x} −

∫
x≤ |y| ≤ε

yΠ(dy)1{x≤ε}

∣∣∣
V (x)

.

By right continuity of Π this in fact holds for all x > 0. Observe that

(2.16) mΠ (x) := bε +
∫

ε≤ |y| ≤x

yΠ(dy)1{ε≤x} −
∫

x≤ |y|≤ε

yΠ(dy)1{x≤ε}

is independent of the particular ε > 0 satisfying Π{−ε, ε} = 0. Note that once bε is
defined for one ε > 0 satisfying Π{ −ε, ε} = 0, then for any other δ > 0 such that
Π{−δ, δ} = 0,

bδ = lim
k→∞

nk

B (nk)

∫ δB(nk)

−δB(nk)

yF (dy)

= bε +
∫

ε≤ |y| ≤δ

yΠ(dy)1{ε≤δ} −
∫

δ≤ |y| ≤ε

yΠ(dy)1{δ≤ε}.

Notice, moreover, that necessarily in the triplet (γ, σ2, Π),

(2.17) γ = bε +
∫

ε≤ |y| ≤1

yΠ(dy) , and thus mΠ (x) = ν(x).

We now get that from inequality (2.15) and (2.17), that for all x > 0,

(2.18) x2Π(x) + x |ν(x)| ≤ CV (x) .

This implies by Theorem 1 that Xt ∈ FC0 at infinity and by Theorem 2.3 of Maller
and Mason [28] that Xt ∈ FC0 at zero. (In Theorem 2.3 of [28] it shown that
Xt ∈ FC0 at zero if and only if lim supx ↓ 0(x2Π(x) + x|ν(x)|)/V (x) < ∞. )

Remark. Inequality (2.18) can be used to define a class of infinitely divisible
distributions I . Say that a distribution function H is in I if and only if H is
nondegenerate and infinitely divisible and has a Lévy measure Π such that, for
all x > 0, inequality (2.18) holds. Clearly if Xt is a Lévy process such that the
distribution of X1 is in I, then both Xt ∈ FC0 (at infinity) and Xt ∈ FC0 (at
zero).

3. Transferring between continuous and discrete time

In this section we develop a mechanism for systematically transferring weak con-
vergence results concerning Xt, with conditions specified in terms of its canonical
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triplet (γ, σ2, Π) (rather than in terms of its marginal distributions, or the distri-
bution of its increments), to a random walk, with conditions specified in terms of
the distribution of its increments, and vice versa.

We shall assume throughout that Π(x) > 0 for all x > 0. Whenever this does not
hold, Xt has finite variance. (See for instance Kruglov [23] and Csörgő [3].) Define
a distribution FΠ(x) on R as follows. Take x0 > 1 such that Π(x0)/Π(1) < 1, and
let

γ̃ = γ +
∫

1<|y|≤x0

yΠ(dy).

This is o(x0) as x0 → ∞, so we can choose x0 larger if necessary so that x0 > |γ̃| ∨1.
Let

FΠ(dx) =
Π(dx)1{ |x|>x0}

Π(1)
, for x ∈ IR,

with mass p := 1 − Π(x0)/Π(1) > 0 at point γ̃/(pΠ(1)). We can further assume
that

|γ̃|
pΠ(1)

< x0,

because p → 1 as x0 → ∞. Let XΠ have distribution FΠ. Then we have, for x > x0,

(3.1) P (XΠ > x) =
Π

+
(x)

Π(1)
and P (XΠ ≤ −x) =

Π
−

(x)
Π(1)

.

FΠ(x) is constant on [−x0, x0] except for the jump at γ̃/(pΠ(1)). Thus

E
(
XΠ1{ |XΠ|≤x0}

)
=

(
γ̃

pΠ(1)

)
p =

γ̃

Π(1)
.

When x > x0, we add to this a contribution from [−x, −x0) ∪ (x0, x] to get

νΠ(x) := E
(
XΠ1{ |XΠ|≤x}

)
=

1
Π(1)

(
γ̃ +

∫
x0<|y|≤x

yΠ(dy)

)

=
1

Π(1)

(
γ +

∫
1<|y|≤x

yΠ(dy)

)
=

ν(x)
Π(1)

(3.2)

(recall (1.3)). Similarly, when x > x0, letting

c0 =
γ̃2

pΠ(1)
− V (x0),

we have

V Π(x) := E
(
(XΠ)21{ |XΠ|≤x}

)
=

(
γ̃

pΠ(1)

)2

p +
1

Π(1)

∫
x0<|y|≤x

y2Π(dy)

=
c0 + V (x)

Π(1)
.(3.3)

(Note that the last expression is asymptotic to V (x)/Π(1), as x ↑ ∞, when EX2
1 =

∞.)
Now let XΠ

i be i.i.d. with distribution FΠ, and set

SΠ
n = XΠ

1 + · · · + XΠ
n , n = 1, 2, . . . .
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Proposition 2. Assume that Π(x) > 0 for all x > 0.
(i) Assume EX2

1 = ∞. Suppose there are nonstochastic functions A(t) and
B(t) > 0 and a sequence nk ↑ ∞ of integers for which

(3.4)
Xnk

− A(nk)
B(nk)

D−→ Y,

a finite random variable. Then

(3.5)
SΠ

nk
− AΠ

nk

BΠ
nk

D−→ YΠ,

where AΠ
n = A(n)/Π(1), BΠ

n = B(n), and YΠ is a finite random variable, related to
Y by

(3.6) E(eiθYΠ) =
(
E(eiθY )

)1/Π(1)
, for θ ∈ R.

Conversely, take any sequence tk → ∞ of real numbers and suppose (3.5) holds for
nonstochastic sequences AΠ

n , BΠ
n , with nk = �tk 	 and YΠ a finite rv. Then (3.4)

holds with A(t) = Π(1)A�t� and B(t) = BΠ
�t�, and again YΠ and Y are related by

(3.6).
(ii) Assume EX2

1 < ∞. Then (3.4) holds with

A(t) = tEX1 = tν(∞), B(t) = σ̃
√

t,

where
σ̃2 = EX2

1 − (EX1)
2 = V (∞) − ν2(∞),

and Y ∼ N(0, 1), while (3.5) holds with

AΠ
n = nEXΠ

1 = nνΠ(∞) = nν(∞)/Π(1), BΠ
n = σΠ

√
n,

where
(σΠ)2 = E(XΠ

1 )2 − (EXΠ
1 )2 = V Π(∞) − (νΠ(∞))2,

and YΠ ∼ N(0, 1/Π(1)).

Proof of Proposition 2. First we prove Part (ii). When EX2
1 < ∞, the claimed dis-

tributional convergences hold by the correspondence between central limit theorems
for Xt and SΠ

n that follows readily using the approach in Observation 2. (Alterna-
tively, we could apply Theorem 2 below to obtain the central limit theorem for
Xt.) The expressions for EX1 and VarX1 given in the statement of Part (ii) follow
from the classic representation of a Lévy process given in Chapter VI, Section 3, of
Gikhman and Skorokhod [17].

Next we turn to the proof of Part (i). For the remainder of the proof we assume
EX2

1 = ∞. As a preliminary step, take any sequence tk → ∞ of real numbers and
assume there are functions A(t), B(t) > 0, such that

(3.7)
Xtk

− A(tk)
B(tk)

D−→ Y,
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with Y an a.s. finite rv. Y must be inf. div., with triplet (β, τ2, Λ), say, where Λ is
a Lévy measure on R, and B(tk) → ∞. Thus, by (1.1),

E
(
eiθ(Xtk

−A(tk))/B(tk)
)

= exp
(

iθ (tkγ − A(tk))
B(tk)

− tkθ2σ2

2B2(tk)

)
×

× exp

(
tk

∫
R\ {0}

(
eiθu/B(tk) − 1 −

iθu1{ |u|≤1}
B(tk)

)
Π(du)

)
,

which, by the change of variables x = u/B(tk), equals

exp

(
iθ (tkγ − A(tk))

B(tk)
− tkθ2σ2

2B2(tk)
+

iθtk
B(tk)

∫
1<|u|≤B(tk)

uΠ(du)

)
×

× exp

(
tk

∫
R\ {0}

(eiθx − 1 − iθx1{ |x|≤1})Π(B(tk)dx)

)
,(3.8)

and by hypothesis this tends as k → ∞ to

(3.9) exp

(
iθβ − θ2

2
τ2 +

∫
R\ {0}

(eiθx − 1 − iθx1{ |x|≤1})Λ(dx)

)
.

Recalling the definition of ν(·) in (1.3), we see that (3.8) is an inf. div. cf with triple(
tkν(B(tk)) − A(tk)

B(tk)
,

tkσ2

B2(tk)
, tkΠ(B(tk)dx)

)
.

It converges to an inf. div. cf with triple (β, τ2, Λ(dx)), in (3.9). According to cri-
teria for the convergence of inf. div. distributions (Kallenberg [22], Theorem 15.14,
page 295), this means that, as k → ∞,

tkΠ(B(tk)dx) → Λ(dx),

vaguely, on R \ {0}, and, for each x > 0 such that ±x are continuity points of Λ(x),

tkν(B(tk)) − A(tk)
B(tk)

− tk

∫
x<|y|≤1

yΠ(B(tk)dy) → β −
∫

x<|y|≤1

yΛ(dy),

and
tkσ2

B2(tk)
+ tk

∫
|y|≤x

y2Π(B(tk)dy) → τ2 +
∫

|y|≤x

y2Λ(dy).

These say precisely that, as k → ∞, at continuity points x > 0 of the limits,

(3.10) tkΠ
±

(xB(tk)) → Λ
±

(x),

where Λ
±

(x) are the positive and negative tails of Λ, and further,

(3.11)
tkν(xB(tk)) − A(tk)

B(tk)
→ β +

∫
1<|y|≤x

yΛ(dy),



250 R. Maller and D. M. Mason

and

(3.12)
tkV (xB(tk))

B2(tk)
→ τ2 +

∫
|y|≤x

y2Λ(dy).

Now, assume (3.4), so that tk is restricted to be a sequence of integers, tk = nk ↑
∞. Then (3.10)–(3.12) hold with tk replaced by nk. Let

ΛΠ(dx) :=
Λ(dx)
Π(1)

, βΠ :=
β

Π(1)
, and τ2

Π :=
τ2

Π(1)
,

and let An = A(n), AΠ
n := A(n)/Π(1), and BΠ

n := B(n). Because EX2
1 = ∞, the

convergence (3.12) implies BΠ
nk

/
√

nk → ∞, so, given any x > 0, we can choose nk

large enough for xBΠ
nk

> x0, where x0 is as in (3.1)–(3.3). Then, as k → ∞, at
continuity points x > 0 of the limits,

(3.13) nkP (XΠ > xBΠ
nk

) =
nkΠ

+
(xB(nk))
Π(1)

→ Λ
+

Π(x),

(3.14) nkP (XΠ ≤ −xBΠ
nk

) =
nkΠ

−
(xB(nk))
Π(1)

→ Λ
−
Π(x),

(3.15)
nkE

(
XΠ1{ |XΠ|≤xBΠ

nk
}

)
− AΠ

nk

BΠ
nk

=
nkν(xB(nk)) − Ank

B(nk)Π(1)
→ βΠ +

∫
1<|y|≤x

yΛΠ(dy),

and, because nk = o(B2
nk

),
(3.16)

nkE
(
(XΠ)21{ |XΠ|≤xBΠ

nk
}

)
(BΠ

nk
)2Π(1)

=
nkV (xB(nk))
B2(nk)Π(1)

+ o(1) → τ2
Π +

∫
0<|y|≤x

y2ΛΠ(dy).

Now when EX2
1 = ∞, for the random walk SΠ

n these mean, by Gnedenko and
Kolmogorov [19], Theorem 1, page 116, that (3.5) holds, where YΠ is inf. div. with
canonical triplet (

βΠ, τ2
Π, ΛΠ

)
=

(
β, τ2, Λ

)
/Π(1).

So we also have (3.6), as asserted, in this case.
For the converse, take tk ↑ ∞, let nk := �tk 	, and suppose (3.5) holds for some

sequences AΠ
n and BΠ

n > 0. Then BΠ
nk

→ ∞, and (3.13)–(3.16) hold for some triplet
(βΠ, τΠ, ΛΠ). Thus (3.10)–(3.12) hold, but with tk replaced by nk, A(tk) and B(tk)
replaced by

Ank
:= Π(1)AΠ

nk
and BΠ

nk
,

and with (β, τ, Λ) = (βΠ, τΠ, ΛΠ)Π(1). Then by (Kallenberg [22], Theorem 15.14,
page 295), the convergence in (3.9) holds with this replacement, so we deduce the
existence of sequences An and Bn for which

Xnk
− Ank

Bnk

D−→ Y, finite a.s.

Finally, define A(t) = A�t� and B(t) = B�t�, t > 0. Then

A(tk) = A�tk � = Ank
, B(tk) = B�tk � = Bnk

,
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and, by the argument in Observation 2,

(3.17)
Xtk

− A(tk)
B(tk)

=
Xnk

− Ank

Bnk

+
Xtk

− Xnk

Bnk

=
Xnk

− Ank

Bnk

+ oP (1).

Thus we obtain (3.4), completing the proof of Proposition 2.

Remarks. There are various ways of transferring results from the discrete time
random walks to the continuous time Lévy processes. In Observation 2 we pointed
out a simple connection that can sometimes be used, noting that (Xt)t≥0 evaluated
at integer times, (Xn)n≥1, is a random walk with i.i.d. increments distributed as X1.
However as also pointed out in the Introduction, this method leads to conditions
expressed in terms of the marginal distribution of X1, which are inaccessible for
most Lévy processes. The aim of our paper is to express conditions in terms of
the canonical measure of Xt since in practice, this is how most Lévy processes are
specified.

Another, more sophisticated, method of transferring between discrete and con-
tinuous time is developed in Doney [11], and applied in Doney and Maller [13]
to transfer moment and other conditions for exit times. In the present paper this
method seems not to be useful for the kinds of results that we are interested in.
But the straightforward method outlined in the present section suffices to transfer
many weak convergence results.

4. Consequences of the discrete-continuous time transfer proposition

First we shall prove Theorem 1.

4.1. Proof of Theorem 1

We shall begin by assuming that Π(x) > 0 for all x > 0. Set, for x > 0,

HΠ (x) = P
(∣∣XΠ

∣∣ > x
)

(and recall definitions (3.1)–(3.3)).

Part (i): Notice by (1.9) that SΠ
n ∈ FC if and only if

lim sup
x→∞

x2HΠ(x)/V Π(x) < ∞,

so the equivalence of Xt ∈ FC at infinity and (1.17) follows from an application of
Proposition 2. (Both cases, EX2

1 ≤ ∞, are covered.)
Part (ii): The equivalence of Xt ∈ FC0 at infinity and (1.18) follows just as in

the proof of Part (i), noting by (1.15) that SΠ
n ∈ FC0 if and only if

lim sup
x→∞

(
x|νΠ(x)| + x2HΠ(x)

)
/V Π(x) < ∞.

Now assume

(4.1) Π(x) = 0 for all large enough x > 0.

As mentioned above, this implies that 0 < EX2
1 < ∞. In this case by the central

limit theorem

(4.2)
Xn − nEX1√

nVarX1

D−→ N (0, 1) .
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Therefore by the argument in Observation 2, Xt ∈ FC with B(t) =
√

tVarX1 and
A(t) = �t	EX1. Thus the equivalence of Xt ∈ FC and (1.17) is trivial in this case.

Further note that whenever Xt ∈ FC0 and EX2
1 < ∞, then by an argument

based on the convergence of types theorem, necessarily EX1 = 0 in (4.2), which
in combination with (4.1) forces EX1 = 0 and ν(x) = 0 for all large x, so that
(1.18) holds. On the other hand, whenever (4.1) holds, then EX2

1 < ∞ and (1.18)
forces EX1 = 0 = ν(x) for all large enough x, so by an elementary argument as
in Observation 2, we see that (4.2) holds, which implies Xt ∈ FC0 with B(t) =√

tVarX1. Thus we see that in the case (4.1), we also have Xt ∈ FC0 if and only if
(1.18).

Using our discrete-continuous time transfer proposition we could also readily
deduce from well-known convergence criteria for partial sums, the following as-
ymptotic normality and stability theorem for a Lévy process Xt, as t → ∞, after
norming and possibly centering. It is a combination of Theorems 3.2 and 3.5 of
Doney and Maller [12].

Theorem 2. Assume Π(x) > 0 for all x > 0.
(i) There are nonstochastic functions A(t) and B(t) > 0 such that

(4.3)
Xt − A(t)

B(t)
D−→ N(0, 1),

a standard normal rv, if and only if

(4.4) lim
x↑ ∞

V (x)
x2Π(x)

= ∞.

(ii) There is a nonstochastic function B(t) > 0 such that

(4.5)
Xt

B(t)
D−→ N(0, 1)

if and only if

(4.6) lim
x↑ ∞

V (x)
x|ν(x)| + x2Π(x)

= ∞.

(iii) There is a nonstochastic function B(t) > 0 such that

(4.7)
Xt

B(t)
P−→ ±1

if and only if

(4.8) lim
x↑ ∞

|ν(x)|
xΠ(x)

= ∞.

Remarks. When (4.3) holds we say that Xt is in the domain of attraction of the
normal distribution, denoted Xt ∈ D(N). When (4.5) holds we say that Xt is in the
centered domain of attraction of the normal distribution, denoted Xt ∈ D0(N). This
is equivalent to Xt ∈ D(N) (in which case E|X1| < ∞), together with EX1 = 0. The
relative stability described by (4.7) is denoted by Xt ∈ RS. These are analogues of
similar classes of random walks. Likewise, Domains of Attraction are characterized
in the next theorem. The class of real functions regularly varying at infinity with
index α will be denoted by “RV (α)”; “SV ” will be the slowly varying functions.
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Theorem 3. Assume Π(x) > 0 for all x > 0. The following are equivalent:

(i) there are nonstochastic functions A(t), B(t) > 0, such that

(4.9)
Xt − A(t)

B(t)
D−→ Y, as t → ∞,

for an a.s. finite, nondegenerate random variable Y .

(ii) (a) V (x) ∈ SV as x → ∞, or (b) Π(x) ∈ RV (−α) as x → ∞, for some
α ∈ (0, 2), and the limits limx→∞ Π

±
(x)/Π(x) exist.

Proof of Theorem 3. When Π
+
(x), Π

−
(x), Π(x) and V (x) are replaced by

1 − FΠ(x), FΠ(−x), 1 − FΠ(x) + FΠ(−x) and V Π(x),

in the notation of Section 3, we see from (3.1)–(3.3) and by Feller [16] (Theorem 1a,
page 303) that Conditions (ii) of Theorem 3 are precisely the conditions for SΠ

n to
be in the domain of attraction of a stable law, i.e., for there to exist nonstochastic
sequences An, Bn > 0, such that

(4.10)
SΠ

n − An/Π(1)
Bn

D−→ YΠ

(convergence through the whole sequence n), where YΠ is a finite nondegenerate
(stable) rv. If (4.9) holds then (3.4) holds with {nk } = {k}, so (4.10) holds by (3.5),
and we get Conditions (ii) of Theorem 3.

Conversely, if Conditions (ii) of Theorem 3 are satisfied, then (4.10) holds, so
(3.6) and hence (3.4) hold with nk = k, A(t) = A�t� and B(t) = B�t�. For t > 1 let
k = k(t) = �t	, then

Xt − A(t)
B(t)

=
Xk − Ak

Bk
+ oP (1),

where the oP (1) term is so just as in (3.17). Hence (4.9).

Remarks. It is clear from the proof of Theorem 3 that the limit rv Y in (4.9)
is a stable rv, with index α ∈ (0, 2] (a normal rv, if α = 2; in this case, (4.4) is
equivalent to V (x) ∈ SV ). The result of course is not unexpected but seems not to
have been written out before.

5. Semistable laws and Lévy processes

An illustrative example of a class of random variables in the Feller Class are those
in the domain of geometric partial attraction of a semistable law. We say that the
random walk Sn = ξ1 + · · · + ξn is in the domain of geometric partial attraction of
a semistable law if there exists an increasing sequence of positive integers nk such
that for some constant c ≥ 1,

(5.1) nk+1/nk → c,

and centering and norming sequences Ank
and Bnk

such that

(5.2)
∑nk

i=1 ξi − Ank

Bnk

D−→ Y,
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for an a.s. finite, nondegenerate, rv Y . Notice that when c = 1, Sn is in the domain
of attraction of a stable law.

Whenever (5.1) and (5.2) hold, with c > 1, there exist centering and norming
sequences Ãn and B̃n such that ∑n

i=1 ξi − Ãn

B̃n

is stochastically compact and all of its subsequential limit random variables are
contained in the class

(5.3) Yc =
{
λ−1Yλ : 1 ≤ λ ≤ c

}
,

where for each 1 ≤ λ ≤ c the rv Yλ has cf

E exp
(
iθλ−1Yλ

)
= exp

(
λ−1Ψ(θλ)

)
, θ ∈ R,

where E exp(iθY1) = E exp(iθY ) = exp(Ψ(θ)) is the cf of the inf. div. rv Y in (5.2).
(This is a special case of Theorem 8.3.18 in Meerschaert and Scheffler [31], who give
a thorough presentation of the theory of the domain of geometric partial attraction
of a semistable law.)

This paper is dedicated to the memory of the late Sándor Csörgő. Much of his
research from the 1990s to his passing was devoted to the study of the Saint Peters-
burg game. He uncovered an amazing variety of unexpected stochastic properties of
the game. In fact, he was writing with Gordon Simons a monograph on this topic.
The Saint Petersburg game is the classic example of a partial sum in the domain of
geometric partial attraction of a semistable law. Here ξ (denoting Paul’s winnings)
has distribution

P
(
ξ = 2k

)
= 2−k for k = 1, 2, . . .

Martin-Löf [29] has shown that (5.1) and (5.2) hold with c = 2, nk = 2k, Bn = 2n

and An = n, n = 1, 2, . . . , and Y having the cf exp(Ψ(θ)), with

(5.4) Ψ (θ) =
∫ ∞

0

(
eiθx − 1 − iθx1{ |x|≤1}

)
Λ(dx), θ ∈ R,

where Λ is the Lévy measure on R
+ with tail function

(5.5) Λ(x) = Λ{(x, ∞)} = exp (− �log2(x)	) , x > 0.

From Theorem 2.1 and Theorem 2.2 of Csörgő and Dodunekova [6] it can be inferred
that ∑n

i=1 ξi

2n
− �log2 (n)	

is stochastically compact (hence, Sn ∈ FC), and every rv in Yc is obtainable as a
subsequential limit of an appropriately chosen subsequence of {n}. A subsequential
limit rv λ−1Yλ in Yc has Lévy tail function

(5.6) Λλ(x) = Λλ{(x, ∞)} = λ−1e− �log2(λx)�, x > 0.

On the other hand it is easy to check directly that ξ satisfies Feller’s necessary and
sufficient condition for Sn ∈ FC, namely,

(5.7) lim sup
x→∞

x2P (|ξ| > x)
E

(
ξ21{ |ξ|≤x}

) < ∞.
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The Lévy process Xt having cf exp(tΨ(θ)) with Ψ(θ) as in (5.4) is a special case of
a semistable Lévy process of index α = 1. Since ξ ∈ FC, we know by Corollary 1
that both Xt ∈ FC at infinity and Xt ∈ FC at zero.

It turns out that any semistable Lévy process Xt of index α ∈ (0, 2] satisfies
both Xt ∈ FC (at zero) and Xt ∈ FC at infinity. For α = 2 this is trivial since in
this case Xt is Brownian motion. For 0 < α < 2 it can be inferred from the readily
established fact, using the representations of the Lévy measure of a semistable law
given in Corollary 7.4.4 of Meerschaert and Scheffler [31], that, with Π as usual
denoting the Lévy measure of Xt,

lim sup
x↓0

x2Π(x)/V (x) < ∞ and lim sup
x→∞

x2Π(x)/V (x) < ∞,

from which we can infer by Theorem 1 that Xt ∈ FC at infinity and by Theorem 2.3
of Maller and Mason [28] that Xt ∈ FC0 at zero.

Csörgő [2] and Csörgö and Megyesi [8] show how for any choice of 0 < α < 2,
a generalized version of the St. Petersburg game converges in distribution along
subsequences to a semistable law of index α. Csörgő [4] carried out a deep analysis
of the analytic properties of semistable laws. Csörgő and coauthors have conducted a
thorough study of merge theorems and central limit theorems for sums and trimmed
sums in the domain of geometric partial attraction of a semistable law based on
a mixture of quantile and Fourier methods. For details consult Csörgő [2] and
[5], Csörgő and Dodunekova [6] and Csörgő and Megyesi [7] and [8]. Also refer to
Megyesi [32] and [33] for further investigations along this line.
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