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Gaussian integrals involving absolute

value functions

Wenbo V. Li1,∗ and Ang Wei1

University of Delaware

Abstract: We provide general formulas to compute the expectations of ab-
solute value and sign of Gaussian quadratic forms, i.e. E | 〈X, AX〉 + 〈b,X〉 +c|
and E sgn(〈X, AX〉 + 〈b,X〉 +c) for centered Gaussian random vector X, fixed
matrix A, vector b and constant c. Products of Gaussian quadratics are also
discussed and followed with several interesting applications.

1. Introduction

Evaluating the Gaussian integrals (expectation, moments, etc.) involving the ab-
solute value function has been playing important roles in various contents. For
example, in [10] and [12], the expected number of zeros of random harmonic func-
tions, which is also the average number of images of certain gravitational lensing
system, was associated with the expectation of absolute value of certain Gaussian
quadratic forms. In [2], the dislocation point density of Gaussian random wave was
expressed as the expectation of absolute value of certain Gaussian quadratic form.
In [LMOS83], the authors were interested in the average of absolute multiplicative
structures, e.g. E |X1X2 · · · Xn|, which arised in the analysis of learning curves of
many adaptive systems. Selberg’s integral and Mehta’s integral are also equiva-
lent to this structure for certain Gaussian random vectors, see [14]. Very recently,
an elegant Gaussian inequality E |X1X2 · · · Xn| ≤

√
perm(E XiXj), due to the first

author, was established in [13], where perm(E XiXj) is the permanent of the covari-
ance matrix of the centered Gaussian vector (X1, X2, . . . , Xn). The explicit expres-
sion of the simplest absolute multiplicative structure E |X1X2| and related series
expansions were re-derived in [17], and were used to study the correlation between
two dependent Brownian area integrals. Here we concentrate on exact evaluations
which also appeared in the theory of Gaussian random matrices in various settings.
In [1], the authors used the spectral analysis on the Gaussian Orthogonal Ensemble
random matrix to compute the first order approximation for stationary isotropic
process defined on a polyhedron, which provided an upper bound for the density
of maximum of certain smooth Gaussian fields. In particular, they dealt with the
expectation E | det(Gn − νIn)| where Gn was a GOE matrix and In standed for
the n × n identity matrix. A Gaussian representation for the intrinsic volumes of
convex body was given in terms of E | det M |, where M was the random matrix
with independent standard Gaussian entries, see [19]. In [4], a special Gaussian
integral involving absolute value function was studied to provide the density of
critical points of given holomorphic section which was related to counting vacua in
string theory.
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In this article, we also provide a formula for the expected sign of Gaussian
quadratic forms, which is also useful in applications. For example, the best known
constant in Grothendieck inequality was obtained by using the expectation
E sgn (XY ) where X and Y are Gaussians, see [9]. In [20], the author also used
this expectation to study the proportion of the time that a Brownian sheet on
[0, 1]d is positive. The explicit expression of E sgn (XY ), see Corollary 3.1, is often
known as Sheppard’s formula; see e.g. [3].

In general, evaluating Gaussian integrals involving absolute value functions or
sign functions are technically difficult, and there is no universal method available. In
this article, we provide a systematic study of techniques and associated examples.
In particular, we focus on Gaussian quadratic forms. This paper is organized as
follows: Section 2 is about the representations of absolute function and sign function
which are helpful in dealing with quadratic forms of Gaussian random variables.
Several interesting corollaries and examples are included in Section 3 based on
these representations. Most of these results are new and of independent interest.
In Section 4, we discuss other approaches for Gaussian integrals involving absolute
value functions.

2. Representations and the main theorems

Gaussian quadratic forms appear in the problem of finding the number of zeros of
random functions. In [12], we represent the number of zeros of random harmonic
polynomials as an integral of expectation of absolute value of certain Gaussian
quadratic form, according to the Rice formula. Our techniques are extended to
obtain the following theorems.

Theorem 2.1. Assume X = (X1, X2, . . . , Xn)T is a real centered Gaussian random
vector with covariance matrix Σn×n = Mn×kMT

n×k, where k = rank Σ. For any n×n
symmetric matrix A, n-dim column vector b, and constant c,

E | 〈X, AX〉 + 〈b,X〉 + c| =
2
π

∫ ∞

0

t−2
(
1 − F (t) − F (t)

)
dt,

where

F (t) =
exp
(
itc − 2−1t2〈b, M

(
I − 2itMT AM

)−1
MT b〉

)
2 det(I − 2itΣA)1/2

.(2.1)

Several remarks are needed here. First, for a general matrix A, other than sym-
metric matrices, we can replace A by (A + AT )/2 which is symmetric, and then
apply the theorem for (A + AT )/2. This is because

〈X, AX〉 =
〈
X,

1
2
(A + AT )X

〉
.

Second, for a nonsingular covariance matrix Σ, M −1 exists. Thus the conclusion in
Theorem 2.1 is reduced to

E | 〈X, AX〉 + 〈b,X〉 + c| =
2
π

∫ ∞

0

{
1
t2

−
exp
(
itc − 2−1t2〈b,

(
Σ−1 − 2itA

)−1
b〉
)

2t2 det(I − 2itΣA)1/2

−
exp
(

−itc − 2−1t2〈b,
(
Σ−1 + 2itA

)−1
b〉
)

2t2 det(I + 2itΣA)1/2

}
dt.
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This implies that for a nonsingular covariance matrix, we don’t need to find Mn×n

(it may be much more complicated than Σ). We can also see that although it
is typical to make the transformation X = Mn×nξn×1 when we are dealing with
a correlated vector X, it is easier in this case to keep the structure of X. Here
and throughout this paper, ξ = (ξ1, ξ2, . . . , ξn)T and ξj ’s are independent standard
Gaussian random variables. Third, if the covariance matrix of X is Σ, then

〈X, AX〉 = 〈Mξ, AMξ〉 = 〈ξ, (MT AM)ξ〉.(2.2)

Note that in general, 〈ξ, (MT AM)ξ〉 �=d 〈ξ, (ΣA)ξ〉 even we know MT AM and ΣA
have the same nonzero eigenvalues, see [7]. However E | 〈X, AX〉 | = E |ξ, ΣAξ|, and
we only need to consider the independent Gaussian vectors in the pure quadratic
case. Fourth, all remarks above also apply to the next two results.

Now we consider the expected sign function of Gaussian quadratic forms. We
can apply a similar argument and obtain the following theorem:

Theorem 2.2. Assume X = (X1, X2, . . . , Xn)T is a real centered Gaussian random
vector with covariance matrix Σn×n = Mn×kMT

n×k where k = rank Σ. For any n×n
symmetric matrix A, n-dim column vector b, and constant c,

E sgn (〈X, AX〉 + 〈b,X〉 + c) =
2i
π

∫ ∞

0

t−1
(
F (t) − F (t)

)
dt,

where F (t) is given in (2.1).

Similar techniques can be used to find the expected absolute values of products
of Gaussian quadratic forms. Actually, the study of the variance of zeros of random
harmonic polynomial is associated with this expectation, see [12] for the connection.

Theorem 2.3. Assume X = (X1, X2, · · · , Xn)T is a real centered Gaussian ran-
dom vector with nonsingular covariance matrix Σn×n. For any n × n symmetric
matrix A1 and A2, we have

E | 〈X, A1X〉 · 〈X, A2X〉|

=
4
π2

∫ ∞

0

∫ ∞

0

1
t2s2

{
1 − 1

2 det(I − 2itΣA1)1/2
− 1

2 det(I + 2itΣA1)1/2

− 1
2 det(I − 2isΣA2)1/2

− 1
2 det(I + 2isΣA2)1/2

+
1

4 det(I − 2iΣ(tA1 + sA2))1/2

+
1

4 det(I − 2iΣ(tA1 − sA2))1/2

+
1

4 det(I − 2iΣ(−tA1 + sA2))1/2

+
1

4 det(I − 2iΣ(−tA1 − sA2))1/2

}
dt ds.

Proof of the Theorems. To prove Theorem 2.1, we start with the case when Σ = I,
the identity matrix, and then move to the general cases. We start with the following
representation:

|x| =
2
π

∫ ∞

0

1
t2

(1 − cos(xt)) dt =
2
π

∫ ∞

0

1
t2
(
1 − E εe

iεxt
)

dt,(2.3)
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where P(ε = 1) = P(ε = −1) = 1/2. Then we can rewrite the expectation as

E | 〈X, AX〉 + 〈b,X〉 + c| =
2
π

∫ ∞

0

1
t2

(
1 − E εE Xeiεt(〈X,AX〉+〈b,X〉+c)

)
dt.

Since the covariance matrix Σ = I, the density function of X is

fX(x) = (2π)−n/2 exp
(

− 1
2

〈x,x〉
)

.

Therefore we have

E X exp (iεt (〈X, AX〉 + 〈b,X〉 + c))

=
∫

Rn

(2π)−n/2 exp
(

− 1
2

〈x,x〉
)

exp (iεt (〈x, Ax〉 + 〈b,x〉 + c)) dx

=
∫

Rn

(2π)−n/2 exp
(

− 1
2

(〈x, (I − 2iεtA)x〉 − 〈2iεtb,x〉 − 2iεtc)
)

dx

= det (I − 2itεA)−1/2 exp
(
iεtc − t2

2
〈b, (I − 2iεtA)−1 b〉

)

= det (I − 2itεA)−1/2 exp
(
iεtc − t2

2
〈b, (I − 2iεtA)−1 b〉

)
.

Note that

det(I − 2itεA) · det(I + 2itεA) = det(I + 4t2A2) �= 0,

since A2 = AAT is positive definite. This implies that det(I ± 2itεA) �= 0 and
(I ± 2itεA)−1 exist. Hence

E εE Xeiεt(〈X,AX〉+〈b,X〉+c) =
exp
(
itc − 2−1t2〈b, (I − 2itA)−1 b〉

)
2 det(I − 2itA)1/2

+
exp
(

−itc − 2−1t2〈b, (I + 2itA)−1 b〉
)

2 det(I + 2itA)1/2

which is real since the two terms are conjugate to each other. Thus for identity
covariance matrix, the statement is true with M = I.

Next we consider a general covariance matrix Σ = MMT . Here M can be
uniquely determined by projecting X = (X1, X2, . . . , Xn)T onto ξ = (ξ1, ξ2, . . . ,
ξk)T with ξ1 = X1/

√
E X2

1 and ξj ’s are independent standard Gaussian random
variables for j = 1, . . . , k. It is clear that X = Mξ from the definition. As a conse-
quence, we have

〈X, AX〉 = 〈Mξ, AMξ〉 = 〈ξ, MT AMξ〉, 〈b,X〉 = 〈b, Mξ〉 = 〈MT b, ξ〉.

Define Ã = MT AM and b̃ = MT b and applying the result from the first part of
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the proof, we have

E | 〈X, AX〉 + 〈b,X〉 + c|
= E | 〈ξ, Ãξ〉 + 〈b̃, ξ〉 + c|

=
2
π

∫ ∞

0

{
1
t2

−
exp
(
itc − 2−1t2〈b̃,

(
I − 2itÃ

)−1

b̃〉
)

2t2 det(I − 2itÃ)1/2

−
exp
(

−itc − 2−1t2〈b̃,
(
I + 2itÃ

)−1

b̃〉
)

2t2 det(I + 2itÃ)1/2

}
dt

=
2
π

∫ ∞

0

{
1
t2

−
exp
(
itc − 2−1t2〈b, M

(
I − 2itMT AM

)−1
MT b〉

)
2t2 det(I − 2itMT AM)1/2

−
exp
(

−itc − 2−1t2〈b, M
(
I + 2itMT AM

)−1
MT b〉

)
2t2 det(I + 2itMT AM)1/2

}
dt.

According to the fact that (see Theorem 1.3.20 in [7])

det(I ± 2itMT AM) = det(I ± 2itMMT A) = det(I ± 2itΣA),

we complete the proof of Theorem 2.1.
To prove Theorem 2.2 we use the representation

sgn (x) =
2
π

∫ ∞

0

1
t

sin(xt)dt =
2
π

∫ ∞

0

1
t

E ε exp [iε(π/2 − xt)] dt,(2.4)

which can be regarded as a differential form of (2.3). Following the similar argument
of Theorem 2.1 we obtain Theorem 2.2. For Theorem 2.3, we apply (2.3) for both of
the absolute values of Gaussian quadratic forms and the computation of expectation
leads us to the result in Theorem 2.3.

3. Consequences and examples

Based on different assumptions on A, Σ, b and c, we obtain several interesting
corollaries. For example, when rank A = 1 or 2, and when det(I ± 2itΣA) is the
square of a polynomial of t, the explicit expressions of the expectations can be
found.

3.1. Rank A = 1

If the rank of matrix A is one, then there exists u = (u1, . . . , un)T and v =
(v1, . . . , vn)T such that A = uvT . Therefore we can change the quadratic form
into the product of two new Gaussian random variables:

〈X, AX〉 = 〈X,uvT X〉 = 〈uT X,vT X〉 = Y1Y2,

where E Y1Y2 =
∑

j,k σj,kujvk and σj,k = E XjXk. For the absolute value of the
product of two Gaussians, we have the following well known proposition:
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Corollary 3.1. If (Y1, Y2) is a centered Gaussian vector with E Y 2
1 = σ2

1, E Y 2
2 = σ2

2

and E Y1Y2 = ρσ1σ2, then

E |Y1Y2| =
2
π

(
√

1 − ρ2 + ρ arcsin ρ)σ1σ2, E sgn (Y1Y2) =
2
π

arcsin ρ.

Proof. Here we use Theorem 2.1 and 2.2 to prove the results. (One can also prove
these results by polar coordinates substitution.) In this case we assume, without
loss of generality, that σ1 = σ2 = 1, and therefore

Σ =
(

1 ρ
ρ 1

)
, A =

(
0 1/2

1/2 0

)
.

Plugging det(I ± 2itΣA) = 1 ± 2iρt + (1 − ρ2)t2 into Theorem 2.1 and Theorem
2.2 we obtain the results after integrations.

3.2. Rank A = 2

In this case, A can be decomposed into UT V , where U and V are full-row-rank
matrices, and U = (uj,k)2×n, V = (vj,k)2×n. Therefore we have

〈X, AX〉 = 〈X, UV T X〉 = 〈UT X, V T X〉 = Y1Y2 + Y3Y4,

where

Y1 =
n∑

k=1

u1,kXk, Y2 =
n∑

k=1

v1,kXk, Y3 =
n∑

k=1

u2,kXk, Y4 =
n∑

k=1

v2,kXk.

It is clear that det(I ± 2itΣA) = det(I ± 2itΣUT V ) = det(I ± 2itV ΣU), which
leads to

det(I ± 2itΣA)

= det
(

I ± 2it
(∑n

j=1 v1,jσj,1 · · ·
∑n

j=1 v1,jσj,n∑n
j=1 v2,jσj,1 · · ·

∑n
j=1 v2,jσj,n

)
UT

)

= det
(

I ± 2it
(∑n

j,k=1 v1,jσj,ku1,k

∑n
j,k=1 v1,jσj,ku2,k∑n

j,k=1 v2,jσj,ku1,k

∑n
j,k=1 v2,jσj,ku2,k

))

=

(
1 ± 2it

n∑
j,k=1

v1,jσj,ku1,k

)(
1 ± 2it

n∑
j,k=1

v2,jσj,ku2,k

)

+ 4t2

⎛
⎝ n∑

j,k=1

v1,jσj,ku2,k

n∑
j,k=1

v2,jσj,ku1,k

⎞
⎠ .

In order to obtain an explicit formula, we need to assume that
n∑

j,k=1

v1,jσj,ku1,k = −
n∑

j,k=1

v2,jσj,ku2,k,(3.5)

which means E Y1Y2 = −E Y3Y4, or equivalently E 〈X, AX〉 = 0. Then under the
assumption (3.5), the determinant becomes

det(I ± 2itΣA)

= 1 + 4t2

⎛
⎝( n∑

j,k=1

v1,jσj,ku1,k

)2

+
n∑

j,k=1

v1,jσj,ku2,k

n∑
j,k=1

v2,jσj,ku1,k

⎞
⎠ .
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Denote that

r =

(
n∑

j,k=1

v1,jσj,ku1,k

)2

+
n∑

j,k=1

v1,jσj,ku2,k ·
n∑

j,k=1

v2,jσj,ku1,k,

and the following integral can be computed:

E | 〈X, AX〉| =
2
π

∫ ∞

0

1
t2

(
1 − 1√

1 + 4rt2

)
dt

=
2
π

∫ ∞

0

4r√
1 + 4rt2(

√
1 + 4rt2 + 1)

dt

=
2
π

∫ π/2

0

2r1/2

1 + cos θ
dθ =

4
π

r1/2.

Thus we have

E | 〈X, AX〉| =
4
π

⎛
⎝( n∑

j,k=1

v1,jσj,ku1,k

)2

+
n∑

j,k=1

v1,jσj,ku2,k

n∑
j,k=1

v2,jσj,ku1,k

⎞
⎠

1/2

.

Corollary 3.2. When rankA = 2, under the assumption (3.5) we always have
E sgn 〈X, AX〉 = 0.

Corollary 3.3. Suppose (X1, X2, . . . , X4n−1, X4n) is a Gaussian random vector
with E X2

k = 1 and E XjXk = ρ when j �= k. Then

E

∣∣∣∣ ∑
(j,k)∈Ω1

XjXk −
∑

(j,k)∈Ω2

XjXk

∣∣∣∣ = 4n

π
(1 − ρ),

where

Ω1 := {(j, k)
∣∣ j + k ≡ 3 mod 4},

Ω2 := {(j, k)
∣∣ j + k ≡ 1 mod 4}.

Proof. In this case, we have the decomposition A = AT
0 A0, where

A0 =
(

0 1 0 −1 · · · 0 1 0 −1
1 0 −1 0 · · · 1 0 −1 0

)
2×4n

.

Now det(I ± 2itΣA) is equal to

det(I ± it
(
A0ΣAT

0

)
= det(I ± it(1 − ρ)

(
0 2n
2n 0

)
= 1 + 4n2(1 − ρ)2t2.

Applying Theorem 2.1, we have

E

∣∣∣∣ ∑
(j,k)∈A

XjXk −
∑

(j,k)∈B

XjXk

∣∣∣∣ = 4n

π
(1 − ρ).

Proposition 3.1. Suppose (X1, X2, . . . , X2n−1, X2n) is a Gaussian random vector
with E XjXk = E Xj+nXk+n = αjk for j ≤ n and k ≤ n, and E XjXk = βjk for
all |j − k| ≥ n, we have

E

∣∣∣∣∣
n∑

j,k=1

XjXk −
2n∑

j,k=n+1

XjXk

∣∣∣∣∣ = 4
π

⎡
⎢⎣
⎛
⎝ n∑

j,k=1

αjk

⎞
⎠

2

−

⎛
⎝ n∑

j,k=1

βjk

⎞
⎠

2
⎤
⎥⎦

1/2

.
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Proof. In this case we have

A =
(

1n×n 0n×n

0n×n −1n×n

)
, Σ =

(
Σ1 Σ2

ΣT
2 Σ1

)
=
(

(αjk)n×n (βjk)n×n

(βjk)T
n×n (αjk)n×n

)
.

An observation is that A = AT
1 A1, where

A1 =
(

1 · · · 1 0 · · · 0
0 · · · 0 −1 · · · −1

)
.

Now det(I ± 2itΣA) can be expressed as

det(I ± 2it
(
A1ΣAT

1

)
) = det

(
I ± 2it

( ∑n
j,k=1 αj,k

∑n
j,k=1 βj,k

−
∑n

j,k=1 βj,k −
∑n

j,k=1 αj,k

))
.

Thus we have

det(I ± 2itΣA) = 1 + 4

⎡
⎢⎣
⎛
⎝ n∑

j,k=1

αjk

⎞
⎠

2

−

⎛
⎝ n∑

j,k=1

βjk

⎞
⎠

2
⎤
⎥⎦ t2,

which leads to the result by applying Theorem 2.1.

3.3. det(I ± 2itΣA) is the square of a polynomial of t

In this subsection, we consider some of the most interesting consequences and ex-
amples based on our general approach.

Proposition 3.2. If (X1, X2) and (X̃1, X̃2) are two centered i.i.d Gaussian random
vectors with E X2

1 = σ2
1, E X2

2 = σ2
2 and E X1X2 = σ12, then

E |X2
1 − X2

2 + X̃2
1 − X̃2

2 | =
2σ4

1 + 2σ4
2 − 4σ2

12√
(σ2

1 + σ2
2)2 − 4σ2

12

.

Proof. In this case, we have

A = diag (1, −1, 1, −1), Σ =

⎛
⎜⎜⎝

σ2
1 σ12 0 0

σ12 σ2
2 0 0

0 0 σ2
1 σ12

0 0 σ12 σ2
2

⎞
⎟⎟⎠ .

Therefore

det(I ± 2itΣA) =
(
1 ± (2iσ2

1 − 2iσ2
2)t + (4σ2

1σ2
2 − 4σ2

12)t
2
)2

.

Denote p = 4σ2
1σ2

2 − 4σ2
12 and q = σ2

1 − σ2
2 and simple algebra gives us that

E |X2
1 − X2

2 + X2
3 − X2

4 |

=
2
π

∫ ∞

0

1
t2

(
1 − 1 + pt2

(1 + pt2)2 + 4q2t2

)
dt

(3.6)
=

1
π

∫ ∞

− ∞

p(1 + pt2) + 4q2

(1 + pt2)2 + 4q2t2
dt

= 2i
∑

{residues in upper half plane} + i
∑

{residues on x−axis},
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and the four single poles of the integrand are at (±p−1
√

p + q2 ± p−1q)i for nonsin-
gular covariance matrix. Because p > 0, (p−1

√
p + q2 ± p−1q)i provides the upper

half plane residues and no residues come from the x-axis. Therefore we have

E |X2
1 − X2

2 + X2
3 − X2

4 | =
p + 2q2√

p + q2
=

2σ4
1 + 2σ4

2 − 4σ2
12√

(σ2
1 + σ2

2)2 − 4σ2
12

.

Corollary 3.4. If (X1, X2) and (X̃1, X̃2) are two centered i.i.d Gaussian random
vectors with E X2

1 = σ2
1, E X2

2 = σ2
2 and E X1X2 = σ12, then

E sgn (X2
1 − X2

2 + X̃2
1 − X̃2

2 ) =
σ2

1 − σ2
2√

(σ2
1 + σ2

2)2 − 4σ2
12

.

Proof. Following the proof of Proposition 3.2, we have

E sgn (X2
1 − X2

2 + X̃2
1 − X̃2

2 ) =
i

π

∫ ∞

0

−4iq
(1 + pt2)2 + 4q2t2

dt

=
q√

p + q2
=

σ2
1 − σ2

2√
(σ2

1 + σ2
2)2 − 4σ2

12

.

Proposition 3.3. If (X1, X2) and (X̃1, X̃2) are two centered i.i.d Gaussian random
vectors with E X2

1 = E X2
2 = 1, E X1X2 = ρ, then E |X1X̃1 − X2X̃2| =

√
1 − ρ2.

Proof. In this case

A =
1
2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , Σ =

⎛
⎜⎜⎝

1 ρ 0 0
ρ 1 0 0
0 0 1 ρ
0 0 ρ 1

⎞
⎟⎟⎠ .

Therefore
det(I ± 2itΣA) = (1 + t2 − ρ2t2)2.

Applying Theorem 2.1 we have

E |X1X̃1 − X2X̃2| =
2
π

∫ ∞

0

1 − ρ2

1 + (1 − ρ2)t2
dt =

√
1 − ρ2.

Remark 1. There is an alternative approach based on the special structure of
E |X1X̃1 − X2X̃2|. We can write X2 = ρX1 +

√
1 − ρ2ξ and X̃1 = ρX̃2 +

√
1 − ρ2η,

where X1, X̃2, ξ, η are independent standard Gaussians. And using substitutions
and identity in laws

(X1, η) =d

(
X1 + η

2
,
X1 − η

2

)
, (X̃2, ξ) =d

(
X̃2 + ξ

2
,
X̃2 − ξ

2

)
,

the expectation is rewritten as

E |X1X̃1 − X2X̃2| =
√

1 − ρ2 E |X1η − X̃2ξ|

=
√

1 − ρ2 E

∣∣∣∣X1 + η√
2

X1 − η√
2

− X2 + ξ√
2

X2 − ξ√
2

∣∣∣∣
=
√

1 − ρ2 E

∣∣∣∣12(X2
1 + ξ2) − 1

2
(X2

2 + η2)
∣∣∣∣

=
√

1 − ρ2 E |e1 − e2|
=
√

1 − ρ2 E (e1 + e2 − 2 min(e1, e2))

=
√

1 − ρ2.
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Here e1 and e2 are i.i.d. exponential random variables with intensity 1.

Remark 2. Actually, in this setting, we have E |X1X̃2 − X2X̃1| = E |X1X̃1 −
X2X̃2| =

√
1 − ρ2. Note that

E |X1X̃2 − X2X̃1| = E

∣∣∣∣det
(

X1 X̃1

X2 X̃2

)∣∣∣∣
= E

∣∣∣∣det
(

X1 X̃1

ρX1 +
√

1 − ρ2ξ1 ρX̃1 +
√

1 − ρ2ξ̃1

)∣∣∣∣
=
√

1 − ρ2E

∣∣∣∣det
(

X1 X̃1

ξ1 ξ̃1

)∣∣∣∣
=
√

1 − ρ2.

The last equality comes from Proposition 3.4, with zero correlations. To extend
this idea, we have the following proposition:

Proposition 3.4. If (X1,j , X2,j , · · · , Xn,j), j = 2, . . . , n, are independent copies
of the Gaussian random vector (X1,1, X2,1, · · · , Xn,1), and the covariance matrix of
(X1,1, X2,1, · · · , Xn,1) is Σ, then

E | det(Xj,k)n×n| =
√

det Σ E | det Gn| = 2n/2
√

det Σ
n∏

j=1

Γ(j/2 + 1/2)
Γ(j/2)

,

where Gn is the n × n random matrix with i.i.d. standard Gaussian entries.

Proof. To simplify the problem we project (X1,j , X2,j , · · · , Xn,j) onto a set of in-
dependent Gaussian random variables (ξ1,j , ξ2,j , · · · , ξn,j) for j = 1, 2, . . . , n as

X1,j = m1,1ξ1,j ,

X2,j = m2,1ξ1,j + m2,2ξ2,j ,

· · ·
Xn,j = mn,1ξ1,j + mn,2ξ2,j + · · · + mn,nξn,j .

Therefore det(Xj,k)n×n =
∏n

j=1 mj,j det(ξj,k)n×n. Set mj,k = 0 if j < k and M =
(mj,k) which is an lower triangle matrix, we have Σ = MMT and thus

n∏
j=1

mj,j = det M =
√

det Σ.

According to [6] and [14], (also see Proposition 4.2), it is well known that |det Gn| =d√∏n
j=1 χ2

j and thus

E | det Gn| = E

√√√√ n∏
j=1

χ2
j = 2n/2

n∏
j=1

Γ(j/2 + 1/2)
Γ(j/2)

,

where χ2
j is independent chi-square random variable with degree of freedom j.

Corollary 3.5. If (X1, X2) and (X̃1, X̃2) are centered i.i.d Gaussian random vec-
tors with E X2

1 = E X2
2 = 1, E X1X2 = ρ, then for any real c, we have

E |X2
1 − X2

2 + X̃2
1 − X̃2

2 + c| = 2
√

1 − ρ2 exp
(

− |c|
2
√

1 − ρ2

)
+ |c|.
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Proof. According to the assumption, det(I ±2itΣA) =
(
1 + 4(1 − ρ2)t2

)2. Applying
Theorem 2.1 we have

E |X2
1 − X2

2 + X̃2
1 − X̃2

2 + c|

=
2
π

∫ ∞

0

1
t2

(
1 − cos ct

1 + 4(1 − ρ2)t2

)
dt

=
1
π

∫ ∞

− ∞

1 + 4(1 − ρ2)t2 − cos ct

t2(1 + 4(1 − ρ2)t2)
dt

= 2i
∑

{residues in upper half plane} + i
∑

{residues on x−axis}.

The residues come from the two poles at (4 − 4ρ2)−1/2i and 0. And therefore we
obtain

E |X2
1 − X2

2 + X̃2
1 − X̃2

2 + c|

= 2
√

1 − ρ2 cosh
(

|c|
2
√

1 − ρ2

)

− 2
√

1 − ρ2 sinh
(

|c|
2
√

1 − ρ2

)
+ |c|

= 2
√

1 − ρ2 exp
(

− |c|
2
√

1 − ρ2

)
+ |c|.

Corollary 3.6. If (X1, X2) and (X̃1, X̃2) are centered i.i.d Gaussian random vec-
tors with E X2

1 = E X2
2 = 1, E X1X2 = ρ, then for any real c, we have

E sgn
(
X2

1 − X2
2 + X̃2

1 − X̃2
2 + c

)
= sgn(c)

(
1 − exp

(
− c

2
√

1 − ρ2

))
.

Proof. Applying Theorem 2.2 we have

E sgn
(
X2

1 − X2
2 + X̃2

1 − X̃2
2 + c

)
=

2
π

∫ ∞

0

1
t

sin ct

1 + 4(1 − ρ2)t2
dt

= sgn(c)

(
1 − exp

(
− c

2
√

1 − ρ2

))
.

3.4. Infinite dimensional covariance matrix

Here we only consider the standard Brownian motion Bt for simplicity. In general,
we can represent

Bt =
∞∑

n=1

ξn

∫ t

0

φn(u) du,

where {φn(t)}n≥1 is any complete orthogonal system in L2(0, 1). Based on the above
representation, the result below follows easily from Theorem 2.1 and we omit the
proof.

Proposition 3.5. Suppose Bt is a standard Brownian motion in [0, 1], then for
κ(t, s) satisfying ∫ 1

0

∫ 1

0

|κ(t, s)| dtds < ∞,
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we have

E

∣∣∣∣∣
∫ 1

0

∫ 1

0

κ(t, s) dBtdBs

∣∣∣∣∣
= lim

n→∞
2
π

∫ ∞

0

1
u2

(
1 − 1

2 det(I − 2iuAn)1/2
− 1

2 det(I + 2iuAn)1/2

)
du,

where

An = (ajk)n×n, ajk =
∫ 1

0

∫ 1

0

κ(t, s)φj(t)φk(s) dtds, for j ≥ 1, k ≥ 1.

3.5. Products of Gaussian quadratic forms

According to Theorem 2.3, we can compute several special cases involving the
product of quadratic forms. Here we present two interesting examples:

Corollary 3.7. Let X1 and X2 be standard Gaussians with E X1X2 = ρ, then

E |X1X2(X1 + X2)(X1 − X2)| = E |X3
1X2 − X3

2X1| =
4
π

√
1 − ρ2 (1 + ρ2).

Proof. To find the expectation, we set A1 =
(

1 0
0 −1

)
and A2 =

(
0 1/2

1/2 0

)
, and

Σ =
(

1 ρ
ρ 1

)
. Then it is easy to see that

det(I ± 2itΣA1) = 1 + 4(1 − ρ2)t2,
det(I ± 2isΣA2) = 1 ± 2isρ + (1 − ρ2)s2,

which is denoted by I±(s) for convenience. Therefore

det(I + 2iΣ(±tA1 + sA2)) = I+(s) + 4(1 − ρ2)t2,
det(I + 2iΣ(±tA1 − sA2)) = I−(s) + 4(1 − ρ2)t2.

We first compute the inner integral (with respect to t) in Theorem 2.3, which is
I1 + I2 + I3 where

I1 =
∫ ∞

0

t−2

(
1 − 1√

1 + 4(1 − ρ2)t2

)
dt = 2

√
1 − ρ2,

I2 =
∫ ∞

0

t−2

(
− 1

2
√

I−(s)
+

1
2
√

I−(s) + 4(1 − ρ2)t2

)
dt = −

√
1 − ρ2

I−(s)
,

I3 =
∫ ∞

0

t−2

(
− 1

2
√

I+(s)
+

1
2
√

I+(s) + 4(1 − ρ2)t2

)
dt = −

√
1 − ρ2

I+(s)
.

Therefore we have

E |X3
1X2 − X3

2X1| =
4
π2

√
1 − ρ2

∫ ∞

0

ds

s2

(
2 − 1

I−(s)
− 1

I+(s)

)

=
4
π2

√
1 − ρ2

∫ ∞

0

2 + 6ρ2 + 2(1 − ρ2)2s2

I−(s)I+(s)
ds.

Single poles of the integrand are at ±(1 ± ρ)−1i, and among them (1 ± ρ)−1i are
in the upper half plane. By the Residue theorem (3.6), we finish the proof.
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Corollary 3.8. Suppose X1, X2, X3 and X4 are standard Gaussian random vari-
ables with E X1X3 = E X2X4 = ρ and other correlations between Xj and Xk (j �= k)
are zero, then

E |(X2
1 + X2

2 − X2
3 − X2

4 )(X1X4 − X2X3)| =
8(1 − ρ2)

π
.

Proof. In this case, following the notation in Theorem 2.3 we have

det(I ± 2itΣA1) = (1 − 4ρ2t2)2, det(I ± 2isΣA2) = (1 − ρ2s2)2,
det(I ± 2itΣA1 ± 2isΣA2) = (1 − ρ2s2 − 4ρ2t2)2.

Applying Theorem 2.3 and the Residue theorem we complete the proof.

4. Other approaches

The techniques in the proof of the theorems in Section 2 work well for the absolute
value of functions involving quadratic terms. For other types of functions, they
might not be efficient. For example, it seems more difficult and not amenable to
provide a derivation of Proposition 4.3 and 4.4, based on the method presented
in Section 2 and 3. In this section, we briefly overview other techniques used in
evaluating the Gaussian integrals involving absolute value functions.

4.1. Direct computations

Obviously we can compute the Gaussian integral directly in simple cases, and spher-
ical coordinates transformation or series expansion can be used in the examples like
Corollary 3.1. Generally, following the argument in [15], one can see that for real
α, β > −1,

E |X|α|Y |β = 2(α+β)/2σα
1 σβ

2 Γ
(

α + 1
2

)
Γ
(

β + 1
2

)
F

(
− α

2
, − β

2
;
1
2
; ρ2

)
,

where X and Y are correlated Gaussians with E X2 = σ2
1 , E Y 2 = σ2

2 and E XY =
ρσ1σ2, and F is a hypergeometric function given by

F (a, b; γ; z) = 1 +
ab

1!γ
z +

a(a + 1)b(b + 1)
2!γ(γ + 1)

z2 + · · · .

Other related computations and applications were given in [8] and [18]. Actually,
in [18], the authors provided three different methods to find equivalent formulas for
E |XY |. The first series formula

E |XY | =
2√
π

(1 − ρ2)3/2
∞∑

k=0

ρ2k Γ(k + 1)
Γ(k + 1/2)

σ1σ2

was obtained by conditioning and using the series representation for the non-central
chi-square distribution. The second formula

E |XY | =
1
2π

⎛
⎜⎝4 +

∞∑
k=1

ρ2k(2k)!

⎛
⎝ k∑

j=0

(−1)j 2k−j+1(k − j)!
j!2j(2k − 2j)!

⎞
⎠

2
⎞
⎟⎠σ1σ2
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was obtained by using Mehler’s formula for the Radon-Nikodym derivative of the
bivariate normal distribution with correlation ρ with respect to the normal distrib-
ution with correlation 0 (independence). The third expression, which was the same
as the first formula in Corollary 3.1, was obtained by representing (X, Y ) in terms
of independent N(0, 1) random variables and integrating via polar coordinates.

4.2. Product of Gaussians

In [16], the author used the representation similar to (2.2) to deal with the expec-
tation of absolute value of the Gaussian products such as E |

∏n
j=1 X

mj

j |. In fact if
m1,. . . ,mp are odd, mp+1,. . . ,mn are even and m =

∑n
j=1 mj , then

E

∣∣∣∣∣
n∏

j=1

X
mj

j

∣∣∣∣∣ = 1
ip+mπp

∫
· · ·
∫

dt1 · · · dtp
t1 · · · tp

(
∂mφ(t1, t2, . . . , tn)

∂tm1
1 · · · ∂tmn

n

) ∣∣
tp+1=···=tn=0

,

where φ is the characteristic function of (X1, X2, . . . , Xn). As an example, the
author evaluated the following:

Proposition 4.1. Let X1, X2 and X3 be centered Gaussian random variables with
E X2

j = 1 and E XjXk = ρjk if j �= k, then

E |X1X2X3| =
(

2
π

)3/2
[

√
det Σ + (ρ12 + ρ13ρ23) sin−1

(
ρ12 − ρ13ρ23√

(1 − ρ2
13)(1 − ρ2

23)

)

+ (ρ13 + ρ12ρ23) sin−1

(
ρ13 − ρ12ρ23√

(1 − ρ2
12)(1 − ρ2

23)

)

+ (ρ23 + ρ13ρ12) sin−1

(
ρ23 − ρ13ρ12√

(1 − ρ2
13)(1 − ρ2

12)

)]
,

where Σ is the covariance matrix of (X1, X2, X3).

However, this method does not seem to work for some of the examples in Sec-
tion 3.

4.3. Diagonalization

In [4], the authors studied a Gaussian integral which is associated with the density
of critical points of given holomorphic section which is related to counting vacua in
string theory.

The Gaussian integral is of the form

I =
∫

Sym(m,C)×C

| det(HH∗ − |x|2I)| exp
(

−Λ−1〈(H, x), (H, x)〉
)

dHdx,(4.7)

where Sym(m, C) is the space of m × m complex symmetric matrices, dH and dx
denote Lebesgue measures. As mentioned in [4], the integral contains an absolute
value, which makes it difficult to evaluate the density explicitly when the dimension
is greater than one, or even analyze its dependence. In particular, one cannot sim-
plify it with Wick’s formula. When the dimension is smaller than 5, they obtained
results using Maple 10. For the general cases, they used a limiting procedure and the
Itzykson-Zuber integral to rewrite (4.7) into a different Gaussian integral involving
absolute value of products. The products come from an interesting diagonalization
procedure, see [4] for details.
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4.4. Properties of random matrices

Sometimes Gaussian integral related with random matrices can be obtained by
applying certain properties of random matrices. Examples can be found in [6] and
[14] such as the result we used in the proof of Proposition 3.5:

Proposition 4.2. Assume M is a random matrix with i.i.d. standard complex
Gaussian entries, then

det MM ∗ ∼
n∏

j=1

χ2
j and | det M | ∼

√√√√ n∏
j=1

χ2
j .

Remark. The expression can be proved by computing the characteristic function
or the Gram-Schmidt process on the random matrix. This result is used in a proof of
the Gaussian representation of intrinsic volume of convex body, see [19] for details.

For Gaussian Orthogonal Ensemble matrix, which has independent real Gaussian
entries and is invariant under orthogonal transformation M → O−1MO, the fol-
lowing proposition about the absolute value function is proved:

Proposition 4.3. ([1]) Let Gn be a Gaussian Orthogonal Ensemble matrix, then
for ν ∈ R one has

E (| det(Gn − νIn)|) = 23/2Γ
(

n + 3
2

)
exp
(

ν2

2

)
qn+1(ν)
n + 1

,

where qn(ν) denotes the density of eigenvalues of n × n GOE matrices at the point
ν, that is, qn(ν)dν is the probability of Gn having an eigenvalue in the interval
(ν, ν + dν).

The basic idea of the proof uses the eigenvalues of Gn, which are denoted by
ν1, . . . , νn. It is well known that the joint density fn of the n-tuple of random
variables (ν1, . . . , νn) is given by the formula:

fn(ν1, . . . , νn) = cn exp
(

−
∑n

j=1 ν2
j

2

) ∏
1≤j<k≤n

|νj − νk |,

where cn := (2π)−n/2(Γ(3/2))n(
∏n

j=1 Γ(1 + j/2))−1. Then one has

E (| det(Gn − νIn)|)

= E

(
n∏

j=1

|νj − ν|
)

=
∫

Rn

n∏
j=1

|νj − ν|cn exp
(

−
∑n

j=1 ν2
j

2

) ∏
1≤j<k≤n

|νj − νk | dν1 · · · dνn

= eν2/2 cn

cn+1

∫
Rn

fn+1(ν1, . . . , νn, ν) dν1 · · · dνn

= eν2/2 cn

cn+1

qn+1(ν)
n + 1

.
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Note that for GOE matrices, qn(ν) can be expressed via Hermite polynomials.
In fact (see [14]),

eν2/2qn(ν) = e−ν2/2
n−1∑
k=0

a2
kH2

k(ν)

+ 1/2(n/2)1/2an−1anHn−1(μ)

×
(∫ +∞

− ∞
e−y2/2Hn(y)dy − 2

∫ +∞

ν

e−y2/2Hn(y)dy

)

+ 1{n odd}
Hn−1(ν)∫ +∞

− ∞ e−y2/2Hn−1(y)dy
,

where ak := (2kk!
√

π)−1/2 and Hk(x) := − exp(x2)(exp(−x2))(k) is the Hermite
polynomials.

Another example comes from the Selberg integral and its random matrix for-
mulation in terms of Mehta’s integral. From our point of view, they are Gaussian
integrals for certain absolute value functions. The following proposition is discussed
extensively in [14] with other related examples.

Proposition 4.4. Assume that ξj ’s are independent standard Gaussian random
variables, j = 1, 2, . . . , n. Then

E

∏
1≤j<k≤n

|ξj − ξk |2γ =
n∏

j=1

Γ(1 + jγ)
Γ(1 + γ)

.

Note that when γ = 1/2, 1 and 2, this integral is related to the distributions
of eigenvalues of Gaussian Orthogonal, Unitary and Symplectic Ensembles, respec-
tively. The proof follows the standard argument of Selberg integral. For history
and recent development, see the excellent survey [5]. There are also interesting
connections with the so called linear polarization conjecture, see [11].
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