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A Degenerate Variance Control Problem

with Discretionary Stopping

Daniel Ocone1 and Ananda Weerasinghe2,∗

Rutgers University and Iowa State University

Abstract: We consider an infinite horizon stochastic control problem with dis-
cretionary stopping. The state process is given by a one dimensional stochastic
differential equation. The diffusion coefficient is chosen by an adaptive choice
of the controller and it is allowed to take the value zero. The controller also
chooses the quitting time to stop the system. Here we develop a martingale
characterization of the value function and use it and the principle of smooth
fit to derive an explicit optimal strategy when the drift coefficient of the state
process is of the form b(x) = −θx where θ > 0 is a constant.

1. Introduction.

Degenerate variance control problems are those in which the controller has access
to the diffusion coefficient in the state dynamics and may even set it to zero. A
simple model is the one-dimensional equation

(1.1) Xu
x (t) = x +

∫ t

0

b(Xu
x (s))ds +

∫ t

0

u(s)dW (s)

where x is a real number, {W (t) : t ≥ 0} is a standard one-dimensional Brownian
motion and u(·) is a suitably adapted control process subject to the constraint

(1.2) 0 ≤ u(t) ≤ σ0 for all t ≥ 0.

Here σ0 is a given positive constant.

Several control problems based on (1.1)-(1.2) are considered in the literature.
Assaf [1] studies minimizing a combination of location and control cost when σ0 ↑ ∞
for a specific control problem generated by a model for dynamic sampling. Papers
[10] and [11] generalize Assaf’s control structure, but for σ0 < ∞. In these papers
the cost is a discounted, infinite horizon integral of location cost, which increases as
the state approaches the origin, plus a control cost, which increases in the control
effort u. The deterministic solutions to ẋ = b(x) associated with fully degenerate
control (u ≡ 0) evolve toward the origin in the direction of higher cost. In [10] and
[11], it is shown how to construct cost minimizing controls of bang-bang type that
use maximum variance control (u = σ0) to move the state to lower cost regions.
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This article presents an example of control of (1.1) combined with discretionary
stopping. The object is now to choose a control u(·) and a stopping time τ to
maximize the reward functional

(1.3) J(x, u, τ) = E

∫ τ

0

e−αtC(Xu
x (t))dt.

Here, the discount rate α is a positive constant. The value function is given by

(1.4) V (x) = sup
U

J(x, u, τ),

where U is a collection of all policies (u(·), τ) to be described precisely below.
We have in mind here a situation in which:

(i) the origin is a unique asymptotically stable equilibrium point for ẋ = b(x);
and

(ii) C(·) is a unimodal function with a unique positive maximum at the origin
and limx→−∞ C(x) = limx→∞ C(x) = −∞.

We will place more restrictive hypotheses on b(·) and C(·) for the statements and
proofs of the results, but the assumptions (i) and (ii) will serve for motivation. In
this case, the solution to ẋ = b(x) obtained for the zero variance control u ≡ 0 does
evolve in a favorable direction, in contrast to the problems in [1], [10] and [11]. It
is of interest to ask whether and, if so, where, positive variance control should be
employed to boost the expected reward. Consider first the deterministic stopping
problem when u ≡ 0 is imposed. The discounted reward if τ = ∞ is given by
V0(x) = E[

∫∞
0

e−αtC(X0
x(t)) dt]. If (i) and (ii) hold and, say, b grows linearly, V0(x)

decreases with increasing |x|, and there will be constants −∞ < a0 < 0 < b0 < ∞
such that V0(x) > 0 if and only if a0 < x < b0. The optimal choice of τ is then
easy; the controller, having the option of stopping, will not accept a negative re-
ward. Hence τ = ∞, if a0 < x < b0, and τ = 0 otherwise. Consider next adding
the possibility of positive variance control. Intuitively, if the state is close to the
origin, positive variance control ought never to be applied, as diffusive behavior of
the state would lessen the reward. However, let x be a point larger than b0 but
close to it. Then, if u(·) is positive, some sample paths of Xu

x (·) will move more
quickly toward the origin than the solution of ẋ = b(x) and doing so will enable
an overall positive reward; at the same time, the option to stop allows bailing out
along sample paths that move the wrong way. Therefore, one should have positive
expected reward even for some x > b0. Assuming concavity of C and linearity of b,
the main result of this paper verifies this scenario and shows how to construct an
optimal feedback control and stopping rule.

For precise results, the following conditions will often be assumed throughout
this article.

(1.5) (i) The function b is continuously differentiable on R and b(0) = 0.

(1.6) (ii) C(·) is a twice continuously differentiable, strictly concave func-
tion which attains its unique maximum at x = 0 and C(0) = 1.

The continuous differentiability of b(·) assumed in (1.5) guarantees local existence
and uniqueness of solutions to (1.1). The requirement that C(0) = 1 is just a
normalization convention of no consequence to the results.
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Admissible controls are defined precisely as follows: An admissible control sys-
tem is a quintuple ((Ω,F , P ), {Ft},W (·), u(·), τ) such that (Ω,F , P ) is a complete
probability space, {Ft} is a right-continuous, complete filtration, W (·) is a one-
dimensional Brownian motion adapted to {Ft}, such that W (t + s) − W (t) is in-
dependent of Ft for all t > 0 and s > 0, u(·) is an {Ft}-progressively measurable
process satisfying (1.2), and τ is an {Ft}-stopping time less than or equal to the
explosion time of the solution to (1.1). (In the situation of interest in this paper,
xb(x) ≥ 0 for all x and the explosion time is infinite almost surely.) With a slight
abuse of notation, henceforth we denote an admissible policy by the pair (u, τ). The
class of admissible policies is denoted by U and this is the class that should be used
in (1.4) in the definition of the value function.

Theorem 1.1. Let the drift coefficient in (1.1) be given by b(x) = −θx for all x,
where θ > 0 is a positive constant. Assume C(·) satisfies (1.6). Then an explicit
representation of the value function V (·) defined in (1.4) is given in (3.11) and the
value function is continuously differentiable everywhere. Furthermore, there exist
four points c∗ < p∗ < 0 < q∗ < d∗ so that the following admissible control strategy
(u∗, τ∗) with the corresponding state process Xu∗

x (·) is an optimal strategy.

1. If x ≤ c∗ or x ≥ d∗ then choose τ∗ = 0 and stop.

2. If p∗ ≤ x ≤ q∗, then choose τ∗ = ∞, u∗(t) = 0 for all t and follow the deter-
ministic motion.

3. If q∗ < x < d∗ then choose u∗(t) = σ0 and let τ̂ be the first exit time of the
process Xu∗

x (·) from the interval (q∗, d∗). Thereafter, follow as in the steps 1
or 2 appropriately.
In this case, τ∗ = τ̂ I[Xu∗

x (τ̂)=d∗] +∞ · I[Xu∗
x (τ̂)=q∗].

4. If c∗ < x < p∗ then choose u∗(t) = σ0 and let τ̂ be the first exit time of the
process Xu∗

x (·) from the interval (c∗, p∗). Thereafter, follow as in the steps 1
or 2 appropriately.
In this case, τ∗ = τ̂ I[Xu∗

x (τ̂)=c∗] +∞ · I[Xu∗
x (τ̂)=p∗].

That allowing positive variance control boosts the expected reward in a way sim-
ilar to Theorem 1.1 should be a general fact. The linearity of b(·) and the concavity
of C(·) are used to derive the particularly simple optimal policy of Theorem 1.1
by smooth fit. The value function V (·) is continuously differentiable and thus “the
principle of smooth fit” holds for the first derivative of V (·) and its second derivative
has jump discontinuities only at the points c∗, p∗, q∗ and d∗. Some of the results
preliminary to the proof of Theorem 1.1 are proved under more general assumptions.

Solvable stochastic control problems with discretionary stopping have received
attention recently(see [2],[4],[6],[7],[9] and [13]). Variational inequalities related to
higher dimensional problems are developed in [9]. A discretionary stopping prob-
lem arising in mathematical finance is addressed in [6]. The articles [2] and [4]
treat singular stochastic control problems with discretionary stopping, while [13]
studies a two player stochastic differential game with degenerate variance control.
The existence and characterization of optimal Markov controls for several types of
stochastic control problems are developed in [8]. They use a martingale problem
approach. To obtain their results, they show that the original stochastic control
problem is equivalent to a linear programming problem over a space of measures.
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In [7], authors address a finite time horizon problem with combined control and
discretionary stopping. Their control process affects only the drift coefficient. Moti-
vated by their martingale characterization of the optimal strategy, we also formulate
a martingale characterization for the value function in section 2. We use it in sec-
tion 3 to construct the optimal state process of Theorem 1.1. Our optimal control
is “feed-back” type and hence the optimal state process is a Markov process. As
noted in [7], this martingale condition is analogous to the “equalization” condition
developed by Dubins and Savage [3] in a discrete time context.

2. A Martingale Formulation

The first result in this section is a martingale characterization of the optimal value
function. Then, we derive simple bounds and monotonicity properties of the value
function. Since b(0) = 0 and C(x) ≤ C(0), we are also able to show that the origin
can be considered as an absorption point without any change in the value function.
This enables us to solve the control problem in each of the regions (−∞, 0) and
(0,+∞) separately and then to paste the two solutions together.
For the results in this section, we do not need the full power of assumptions (1.5)
and (1.6). The martingale characterization theorem remains valid under quite gen-
eral assumptions as listed below. All the other results in this section remain valid
if the drift coefficient b(·) is a continuously differentiable function which satisfies
b(0) = 0 and C(·) is a continuous function which is strictly increasing in (−∞, 0)
and strictly decreasing in (0,∞). We take C(0) = 1 for simplicity.
The following theorem requires only that the drift coefficient b(·) in (1.1) be contin-
uous and that the reward function C(·) in (1.3) be continuous and bounded above
by a constant.

Theorem 2.1. Let Q(·) be a non-negative, bounded continuous function defined on
R and let the initial point x be fixed.

(i) If Q(Xu
x (t ∧ τ))e−α(t∧τ) +

∫ t∧τ

0
e−αsC(Xu

x (s))ds is a super-martingale for
the state process Xu

x (·) corresponding to each admissible control policy (u, τ)
in U , then Q(x) ≥ V (x).

(ii) If Q(·) satisfies the above condition (i) and if there is a state process Zu∗

x (·)
corresponding to an admissible control policy (u∗, τ∗) so that
Q(Zu∗

x (t ∧ τ∗))e−α(t∧τ∗) +
∫ t∧τ∗

0
e−αsC(Zu∗

x (s))ds is a martingale and
Q(Zu∗

x (τ∗)) = 0 on the set [τ∗ < ∞], then Q(x) = V (x), Zu∗

x (·) is an optimal
state process and (u∗, τ∗) is the corresponding optimal control policy.

Proof. Let Xu
x (·) be a state process corresponding to an admissible control policy

(u, τ). Then, using the super-martingale property in condition (i) and the non-
negativity of the function Q(·), we obtain

(2.1) Q(x) ≥ E

[∫ t∧τ

0

e−αsC(Xu
x (s))ds

]
for all t ≥ 0.

Since C(·) is bounded above, we have

(2.2) lim
t→∞

E

[∫ t∧τ

0

e−αsC(Xu
x (s))ds

]
= E

[∫ τ

0

e−αtC(Xu
x (t))dt

]
.
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Therefore, by (2.1) and (2.2) we obtain

Q(x) ≥ E

[∫ τ

0

e−αtC(Xu
x (t))dt

]
and consequently, Q(x) ≥ V (x). The proof of part (i) is complete.

Now let (u∗, τ∗) be an admissible control policy with associated state process
Zu∗

x (·) which satisfies the assumptions in part (ii). Using the martingale condition,
then we have

(2.3) Q(x) = E

[
Q(Zu∗

x (t ∧ τ∗))e−α(t∧τ∗) +
∫ t∧τ∗

0

e−αsC(Zu∗

x (s))ds

]
.

Using the fact that Q(Zu∗

x (τ∗)) = 0 on the set [τ∗ < ∞], we obtain

E
[
Q(Zu∗

x (t ∧ τ∗))e−α(t∧τ∗)
]

= E
[
Q(Zu∗

x (t))I[t<τ∗]

]
e−αt.

Since Q(·) is a bounded function, from the above equation it clearly follows that

lim
t→∞

E
[
Q(Zu∗

x (t ∧ τ∗))e−α(t∧τ∗)
]

= 0.

Now letting t tend to infinity in (2.3) and using the above results, we obtain

Q(x) = E

∫ τ∗

0

e−αtC(Zu∗

x (t))dt,

and hence (u∗, τ∗) is an optimal control policy. This completes the proof.

Let (u, τ) be an admissible control policy associated with the state process Xu
x (·)

which satisfies (1.1). Introduce the stopping time τx
0 by

(2.4)
τx
0 = inf{t ≥ 0 : Xu

x (t) = 0}
= +∞ if the above set is empty.

Now we introduce the new admissible control process ũ(·) by

(2.5)
ũ(t) = u(t) for 0 ≤ t ≤ τx

0

= 0 for t > τx
0 .

Since the drift term b(·) is continuously differentiable, we can consider the associ-
ated state process X ũ

x (·) on the same probability space using the equation (1.1).
The condition b(0) = 0 implies that X ũ

x (t) = Xu
x (t ∧ τx

0 ) for all t ≥ 0. Hence, we
have the following proposition.

Proposition 2.2. Assume that the drift b(·) is a continuously differentiable func-
tion which satisfies b(0) = 0 and the reward function C(·) is a continuous function
which is strictly increasing in (−∞, 0), strictly decreasing in (0,∞) and satisfies
C(0) = 1. Let the state processes Xu

x (·) and X ũ
x (·) be defined as above. Then the

following results hold.
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(i) J(x, u, τ) ≤ J(x, ũ, τ) for each stopping time τ .
Furthermore, if we let D be the sub-collection of admissible control policies
(ũ, τ) of U so that the corresponding state process X ũ

x (·) is stopped at the
origin, then

(2.6) V (x) = sup
D

J(x, u, τ)

(ii) V (x) ≤ 1
α for all x and V (0) = 1

α .

Proof. Since X ũ
x (t) = Xu

x (t ∧ τx
0 ) for all t ≥ 0 and the reward function C(·) has a

unique maximum at the origin, it follows that C(X ũ
x (t)) ≥ C(Xu

x (t)) for all t ≥ 0.
Therefore, J(x, u, τ) ≤ J(x, ũ, τ) for any stopping time τ . As an immediate conse-
quence, V (x) = sup

D
J(x, u, τ) follows.

To prove part (ii), observe that C(Xu
x (t)) ≤ C(0) for all t and consequently

J(x, u, τ) ≤ C(0)
α for each admissible policy (u, τ). Hence V (x) ≤ 1

α . If the ini-
tial point is at the origin, one can choose u0(t) ≡ 0 and τ∞ = ∞ to obtain
J(x, u0, τ∞) = 1

α . Hence V (0) = 1
α . This completes the proof.

Remark. Notice that the above Proposition 2.2 implies that if the assumptions
in part (i) of the Theorem 2.1 holds for the admissible control policies in the sub-
collection D, then the conclusion there still remains valid.

The next lemma establishes monotonicity of the value function.

Lemma 2.3. Under the assumptions of Proposition 2.2, the value function V (·)
defined in (1.4) is non-negative, monotone increasing on (−∞, 0) and monotone
decreasing on (0,∞).

Proof. If we choose the zero stopping time, J(x, u, 0) = 0 and hence V (x) ≥ 0 for
all x. Here, we show that V (·) is decreasing on (0,∞). A similar argument works
on (−∞, 0).
Let x > y > 0 and let (u, τ) be any admissible control policy. Because of the
assumed continuous differentiability of b(·), the solutions to (1.1) are path-wise
unique and so Xu

y (t) ≤ Xu
x (t) for all t ≥ 0.

Now introduce τy
0 as in (2.4) and the admissible control process ũ(t) = u(t)I[0,τy

0 ](t)
as similar to (2.5). The state process X ũ

y (·) is given by X ũ
y (t) = Xu

y (t ∧ τy
0 ). Then

by the proof of Proposition 2.2, it follows that

(2.7)
J(y, ũ, τ) = E[

∫ τ∧τy
0

0

e−αtC(Xu
y (t))dt +

∫ τ

τ∧τy
0

e−αtC(0)dt]

> J(x, u, τ).

Therefore, V (y) ≥ V (x) when x > y > 0. This completes the proof.

Next, we show that any smooth solution to the corresponding Hamilton-Jacobi-
Bellman(HJB) equation of the discretionary stopping problem is an upper bound
for the value function.

Proposition 2.4. Make the same assumptions as in Proposition 2.2. Let Q(·) be
a non-negative, bounded and continuously differentiable function which satisfies the
following:
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(i) Q′′(·) is continuous everywhere except in a finite set. Furthermore, the one-
sided derivatives Q′′(x−) and Q′′(x+) exists and are finite for all x.

(ii) There is a positive constant M > 0 so that |Q′(x)| < M for all x.
(iii) The function Q(·) satisfies the HJB equation

max
{

sup
0≤u≤σ0

u2

2
Q′′(x) + b(x)Q′(x)− αQ(x) + C(x),−Q(x)

}
= 0

for almost every x in R.
Then Q(x) ≥ V (x) for all x.

Proof. We use Proposition 2.2 and consider an initial point x > 0. We in-
tend to verify the condition (i) of Theorem 2.1 for all the admissible control poli-
cies in D (see also the remark below the proof of Proposition 2.2). Let Xu

x (·) be
the state process which satisfies (1.1) corresponding to an admissible control pol-
icy (u, τ) in D. Using a mollification for the function Q(·) to smooth it and us-
ing Theorem 7.1 of page 218 and the ex. 7.10 in page 225 of [5] (see also Ap-
pendix D, page 301 in [12]), we can extend Itô’s lemma to the function Q(·)
to obtain Q(Xu

x (t ∧ τ))e−α(t∧τ) −
∫ t∧τ

0
(u(s)2

2 Q′′(Xu
x (s)) + b(Xu

x (s))Q′(Xu
x (s)) −

αQ(Xu
x (s)))e−αsds is a martingale. Therefore, using the assumption (iii), we ob-

serve that Q(Xu
x (t∧τ))e−α(t∧τ) +

∫ t∧τ

0
C(Xu

x (s))e−αsds is a super-martingale. Now
the conclusion follows from part (i) of Theorem 2.1.

Remark. Let Q satisfy the conditions of Proposition 2.4. Any function u∗ satisfy-
ing,

(2.8) sup
0≤u≤σ0

u2

2
Q′′(x) + b(x)Q′(x)− αQ(x) + C(x) = 0, a.e. for Q(x) > 0,

is natural candidate for an optimal control; it is not necessary to define u∗(x) on
the set where Q(x) = 0, since it is optimal to stop on this set. Solutions u∗ to (2.8)
are easy to come by; for example, σ01G(x), where G = {x : Q′′(x) > 0} will work.
But (2.8) does not uniquely specify u∗ because it does not prescribe its values at
points x such that Q′′(x) = 0 or such that Q′′(x) is not defined. Not all choices of
u∗ will necessarily work. First, it must be chosen so that there is at least a weak
solution to (1.1) using u∗ as a feedback control. A discussion in [10] shows that this
will be the case for a model like (1.1) when u∗ is the indicator of an open set, but
that other choices of u∗ off the set G = {x : Q′′(x) > 0} may not work. Second, one
must verify that for the solution Xu∗

corresponding to the feedback control u∗, the
process Q(Xu∗

x (t ∧ τ))e−α(t∧τ) +
∫ t∧τ

0
C(Xu∗

x (s))e−αsds is a martingale, and this
requires us to pay some attention to how Xu∗ behaves in the regions where the
feedback variance control degenerates.

We do not attempt to frame a general theorem on synthesis of an optimal control
under the hypotheses of Proposition 2.4. In the problem that we analyze in the next
section, our candidate for an optimal strategy exercises maximum variance control
in a disjoint union G of two open intervals only until the corresponding state process
X hits a boundary point of G. After this state process X hits a boundary point of
G, it will never return to G. Therefore the construction of the candidate process
and the proof of optimality present no difficulties.
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3. Linear Drift

In this section, we use the assumption (1.6) and the drift term b(x) = −θx for all x
where θ > 0 is a positive constant. Therefore, for a given control process u(·), the
corresponding state process in (1.1) takes the form

(3.1) Xu
x (t) = x− θ

∫ t

0

Xu
x (s)ds +

∫ t

0

u(s)dW (s).

First we derive the properties of the pay-off function with zero control and infinite
stopping time. Notice that when u(t) = 0 for all t, the state process is given by
X0

x(t) = xe−θt. Therefore, the pay-off function from the zero control and the infinite
stopping time is given by J(x, 0,+∞) and for convenience, we label it by V0(x).
Hence,

(3.2) V0(x) =
∫ ∞

0

e−αtC(xe−θt)dt.

Notice that the above integral is uniformly convergent on compact sets.

Lemma 3.1. Let V0(·) be as in (3.2). Then the following results hold:

(i) V0(·) satisfies the differential equation θxV ′
0(x) + αV0(x) = C(x)

for all x and V0(0) = 1
α .

(ii) For x 6= 0, V0(·) is given by V0(x) = 1

θx
α
θ

∫ x

0
C(r)r

α
θ −1dr and

lim
x→0

V0(x) = 1
α .

(iii) V0(·) is strictly increasing on (−∞, 0) and strictly decreasing on (0,∞). Fur-
thermore, V0(·) is a strictly concave function which has a unique maximum
at x = 0.

Proof. The proofs of parts (i) and (ii) are straightforward. The limit lim
x→0

V0(x) can
be computed using L’Hopital’s rule.

To prove part (iii), notice that the following formulas also follow from (3.2):

(3.3) V ′
0(x) =

∫ ∞

0

e−(θ+α)tC ′(xe−θt)dt for all x

and

(3.4) V ′′
0 (x) =

∫ ∞

0

e−(2θ+α)tC ′′(xe−θt)dt for all x.

Now using the assumption(1.6) for C(·), part (ii) of Proposition 2.2 and the above
formulas, the conclusions of part (iii) hold.

Since V0(·) is a concave function with a unique global maximum at x = 0 and
V0(0) = 1

α > 0, there exist two points a0 and b0 so that a0 < 0 < b0 and V0(a0) =
V0(b0) = 0. Furthermore, the set [V0 > 0] is equal to the open interval (a0, b0).

Let us introduce the infinitesimal generator G related to the Ornstein-Uhlenbeck
process corresponding to the constant control u(t) ≡ σ0 for all t ≥ 0 in (3.1) by

(3.5) G =
σ2

0

2
d2

dx2
− θx

d

dx
.
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For a constant α > 0, we also write G − α for

(3.6) G − α =
σ2

0

2
d2

dx2
− θx

d

dx
− α.

Consider next the family of solutions Qd(·), for d ≥ b0 of

(3.7)
(G − α)Qd(x) + C(x) = 0 for all x > 0,

Qd(d) = Q′d(d) = 0.

Our aim is to build the value function on (0,∞) from V0(·) and Qd∗(·), where
the point d∗ > b0 is chosen so that Qd∗(·) meets V0(·) tangentially.

Lemma 3.2. Let V0(·) be as in Lemma 3.1 and the family of functions Qd(·) be as
described above. Then the following hold:

(i) There is a δ1 > 0 so that for each d in (b0, b0 + δ1), Qd(·) meets V0(·) at some
point in the interval (0, b0).

(ii) There is a point l0 > b0 so that for every d > l0, Qd(x) > V0(x) for all x > 0.

Proof. By part (iii) of Lemma 3.1, we have V ′
0(x) < 0 for all x > 0. By evaluating

the differential equation for V0(·) in the part (i) of Lemma 3.1 at the point b0 and
using V ′

0(b0) < 0, we conclude C(b0) < 0. Now consider the function Qb0(·) which
satisfies (3.7) with d = b0. Then Qb0(b0) = Q′b0(b0) = V0(b0) = 0 and we evaluate
(3.7) for the function Qb0(·) at the point b0 and obtain Q′′b0(b0) = − 2

σ2 C(b0) > 0.
Therefore, the function Qb0(·) is strictly convex in an interval (b0 − ε, b0 + ε) and
V0(·) is strictly concave everywhere. Hence, there is a δ0 > 0 so that Qb0(x) < V0(x)
for all x in (b0− δ0, b0). The solutions Qd(x) of (3.7) are jointly continuous in (d, x)
and therefore, we can find a δ1 > 0 so that

Qd(b0 −
δ0

2
) < V0(b0 −

δ0

2
)

for all d in [b0, b0 + δ1). By (3.7), Q′′d(d) = − 2
σ2 C(d) > 0, and hence the function

Qd(·) is strictly convex in a neighborhood of the point x = d. Consequently, Q′d(x) <
0 in an interval (d− εd, d) for some εd > 0.
For each d in (b0, b0 + δ1), we intend to show that Qd(x) > 0 for all x in (b0, d). For
this, it suffices to prove Q′d(·) < 0 on the interval (b0, d). We let

η = inf{x : Q′d(y) < 0 on (x, d)}.

The above set is non-empty, since Q′d(·) < 0 on the interval (d − εd, d). Notice
that, we attain our conclusion if we can show η ≤ b0. Suppose that η > b0. Then,
clearly Qd(η) > 0, Q′d(η) = 0 and by (3.7), Q′′d(η) = αQd(η)− 2

σ2 C(η) > 0. Hence,
Q′d(x) > 0 for all x in an interval (η, η + ε′) for some ε′ > 0. This contradicts with
the definition of η and hence we conclude that η ≤ b0. From this, it follows that
Q′d(·) < 0 on (b0, d). Therefore, Qd(x) > 0 > V0(x) on (b0, d).
We have already shown that Qd(b0 − δ0

2 ) < V0(b0 − δ0
2 ), for each d in (b0, b0 + δ1).

Therefore, Qd(·) intersects V0(·) at some point in the interval (0, b0) for each d in
(b0, b0 + δ1).
Next, we intend to show that for large values of d, Qd(·) does not intersect V0(·) at
all. First we prove that for each d > b0, Qd(·) is strictly decreasing on the interval
(b0, d). By evaluating (3.7) at the point d, we know that Q′′d(d) > 0 and hence Qd(·)
is strictly decreasing in an interval (d − ε, d) for some ε > 0. If Q′d(ζ) = 0 and
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Qd(ζ) > 0 for some ζ in the interval (b0, d), then by (3.7), and by the fact that
C(x) < 0 for all x > b0, we obtain Q′′d(ζ) > 0. Hence, x = ζ is necessarily a local
minimum for Qd(·). Therefore, Qd(·) cannot have any local maxima on the interval
(b0, d) and consequently, it is strictly positive and is strictly decreasing on (b0, d).
Next, we show that lim

d→∞
Qd(b0) = ∞. By (3.7), we obtain

σ2

2
Q′′d(x) + C(x) > θxQ′d(x)

for all x in (b0, d). By integrating this, using integration by parts in the right hand
side and using the boundary conditions in (3.7) we obtain

−σ2

2
Q′d(x) +

∫ d

x

C(u)du > −θxQd(x)− θ

∫ d

x

Qd(u)du

for all x in (b0, d). Next, integrating the above inequality again and using the fact
that Qd(·) is decreasing on (b0, d) we derive
σ2

2 Qd(b0) +
∫ d

b0

∫ d

x
C(u)dudx > − θ

2 [(d2 − b2
0) + (d− b0)2]Qd(b0).

But Qd(b0) > 0 and therefore we obtain

(3.8)
(

σ2

2
+ θd2

)
Qd(b0) +

∫ d

b0

∫ d

x

C(u)dudx > 0.

Since C(·) is a strictly concave, strictly decreasing function and C(b0) < 0, there
are two constants k0 and k1 so that k1 > 0 and
C(x) < k0 − k1x for all x > b0. Therefore, we obtain the estimate∫ d

b0

∫ d

x

C(u)dudx < −k1

3
d3 +

k0

2
(d− b0)2 +

k1b0

2
d2.

Consequently, lim
d→∞

1
d2

∫ d

b0

∫ d

x
C(u)dudx = −∞. This together with (3.8) implies

that lim
d→∞

Qd(b0) = ∞. Therefore, we can conclude that there is a point l0 > b0 so

that for every d > l0, Qd(b0) > 1
α . Now let d > l0 and suppose that Qd(·) inter-

sects V0(·) at some point in (0, b0). Then Qd(·) attains a positive local maximum at
some point ζ in (0, b0) and Qd(·) is decreasing on (ζ, b0). Then, by (3.7) we obtain
σ2

2 Q′′d(ζ) + C(ζ) = αQd(ζ). But αQd(ζ) ≥ αQd(b0) > C(0) > C(ζ) and hence
Q′′d(ζ) > 0 and Qd(·) cannot have a local maximum at x = ζ. Consequently, Qd(·)
cannot intersect V0(·) at any point in (0, b0), Qd(·) is strictly decreasing on (0,∞)
and Qd(x) > V0(x) for all x ≥ 0. This implies the proof of part (ii) of the lemma.

Now consider

(3.9) d∗ = sup{d > b0 : ∃ Qd(·) which satisfies (3.7) and intersects V0(·)}

By part (i) of the above lemma, the above set is non-empty and d∗ is well defined.
By part (ii) of the lemma, d∗ is finite and d∗ < l0. Next, we consider the function
Qd∗(·) and show that its graph intersects the graph of V0(·) tangentially.

Lemma 3.3. Let d∗ be as in (3.9) and consider the function Qd∗(·) which satisfies
(3.7) with d = d∗. Then the following results hold:

(i) There is a point q∗ in (0, b0) so that Qd∗(·) intersects V0(·) at the point q∗

and Qd∗(·) is a strictly decreasing convex function on the interval (q∗, d∗).
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(ii) Q′d∗(q
∗) = V ′

0(q∗).

Proof. If Qd∗(·) does not intersect V0(·) in the interval [0, b0], then by the joint
continuity of Qd(·) in the variables (d, x), there is an ε > 0 so that Qd(·) does
not intersect V0(·) on [0, b0] for each d in (d∗ − ε, d∗) and this contradicts with the
definition of d∗ in (3.9). Hence, Qd∗(·) intersects V0(·) at least once in the interval
[0, b0]. Now let

q∗ = sup{z in [0, b0] : Qd∗(z) = V0(z)}.

Then, Qd∗(q∗) = V0(q∗), Qd∗(x) > V0(x) on (q∗, d∗) and Q′d∗(q
∗) ≥ V ′

0(q∗).
Let us introduce the function P (x) = Q′′d∗(x) on [q∗, d∗]. Notice that

σ2

2
P (q∗) = θq∗Q′d∗(q

∗) + αQd∗(q∗)− C(q∗)

≥ θq∗V ′
0(q∗) + αV0(q∗)− C(q∗) = 0.

By (3.7) and since d∗ > b0 we have P (d∗) > 0. We intend to show that the function
P (·) is increasing on (q∗, d∗). Differentiating (3.7), we derive,

(3.10)

σ2

2
P ′(q∗) = θq∗P (q∗) + (θ + α)Q′d∗(q

∗)− C ′(q∗)

≥ (θ + α)V ′
0(q∗)− C ′(q∗)

= −θq∗V ′′
0 (q∗) > 0.

Here, we have differentiated the differential equation for V0(·) in Lemma 3.1 and
and used it in the last equality of (3.10). Hence, P (·) is strictly increasing on an
interval (q∗, q∗+ ε) for some ε > 0. Now suppose P (·) has a positive local maximum
at some point ζ > q∗ and P (·) is increasing on (q∗, ζ). Then P (ζ) > 0 and P ′(ζ) = 0.
Furthermore, using parts (ii) and (iii) of Lemma 3.1, we have V ′′

0 (ζ) ≤ 0 and

Q′d∗(ζ) > Q′d∗(q
∗) ≥ V ′

0(β) > V ′
0(ζ).

Therefore,
σ2

2
P ′(ζ) = θζP (ζ) + (θ + α)Q′d∗(ζ)− C ′(ζ)

> θζV ′′
0 (ζ) + (θ + α)V ′

0(ζ)− C ′(ζ) = 0.

This is a contradiction and hence we can conclude that P (·) is increasing and
P (x) > 0 on (q∗, d∗). Consequently, Qd∗(·) is a strictly convex function on (q∗, d∗).
Since Q′d∗(d

∗) = 0, it is also strictly decreasing on (q∗, d∗) as well.
Since V0(·) is a strictly concave function, we can rule out the case q∗ = 0. Other-
wise, there is an ε > 0 so that Qd∗(·) < V0(·) on the interval (0, ε) and now using
the joint continuity of Qd(x) in the variables d and x, we can find d > d∗ where
Qd(·) intersects with V0(·). This is a contradiction and hence q∗ > 0. Also, since
Qd∗(b0) > 0, it is clear that q∗ < b0. This completes the proof of part (i).
Now if Q′d∗(q

∗) > V ′
0(q∗), since Qd∗(q∗) = V0(q∗), we can find an ε > 0 so that

Qd∗(x) < V0(x) for all x in (β∗ − ε, q∗) and β∗ − ε > 0. Now again using the joint
continuity of Qd(x) in (d, x), we can find d > d∗ so that Qd(·) intersects V0(·).
Hence, we conclude that Q′d∗(q

∗) = V ′
0(q∗). This completes the proof of the lemma.

By a similar argument, there exist points c∗ < p∗ < 0 and a function Qc∗(·)
on (−∞, 0) satisfying the following: Qc∗(·) is a solution to (3.7) with boundary
conditions Qc∗(c∗) = Q′c∗(c

∗) = 0; Qc∗(p∗) = V0(p∗), Q′c∗(p
∗) = V ′

0(p∗), and Qc∗(·)
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is a strictly increasing convex function on (c∗, p∗).
Theorem 1.1 will follow immediately if we show that the value function for the
control problem is given by

(3.11) V ∗(x) =


V0(x) for p∗ ≤ x ≤ q∗

Qc∗(x) for c∗ ≤ x ≤ p∗

Qd∗(x) for q∗ ≤ x ≤ d∗

0 otherwise.

Proof of Theorem 1.1.
The function V ∗(·) is continuously differentiable by Lemma 3.3 and by the dis-
cussion above (3.11). Furthermore, V ∗′′(·) is continuous everywhere except at the
points c∗, p∗, q∗ and d∗. Also, it is easy to check that the one-sided derivatives
V ∗′′(x+) and V ∗′′(x−) exists everywhere. Since, Qd∗(·) and Qc∗(·) are convex func-
tions which satisfy the differential equation in (3.7) and since V0(·) is a concave func-
tion which satisfies the differential equation in Lemma 3.1, it is a straight forward
computation to check that V ∗(·) satisfies all the assumptions in the Proposition
2.4. Therefore, we can conclude that V ∗(x) ≥ V (x) for all x.

We can apply Itô’s lemma to verify that the pay-off function from the admissible
control strategy (u∗, τ∗) is indeed V ∗(·) and hence V ∗(x) = V (x) for all x. This
completes the proof.
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