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A Class of Multivariate Micromovement

Models of Asset Price and Their Bayesian

Model Selection via Filtering∗
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Abstract: A filtering model with counting process observations has been re-
cently developed as a reasonable framework for the micromovement of asset
price. In this paper, we first highlight such an extension to multivariate case for
modeling multi-stocks and related results on Bayes estimation via filtering. For
this rich class of multivariate models, we develop the Bayesian model selection
using Bayes factor. Based on the unnormalized, Duncan-Mortensen-Zakai-like
filtering equation, we derive a system of SPDE characterizing the evolution
of the Bayes factors and prove their uniqueness. Furthermore, applying Kush-
ner’s Markov chain approximation method, we propose a numerical scheme to
derive recursive algorithms, and we prove the consistency (or robustness) of
the recursive algorithms.

1. Introduction

Micro-movements of asset price are referred to transactional price behavior in con-
trast to the macro-movements referring to daily, weekly, or monthly closing price be-
havior. Such micromovement data are called ultra high frequency data by Engle [4].
There are strong connections as well as striking distinctions between the macro- and
micro-movements. Zeng [17] proposed a general class of Filtering Micro-movement
models (FM models, as we simply call it) that bridge the gap between the macro-
and micro- movements caused by noise, and amalgamate the sample characteristics
of micro-movement and macro-movement of price in a consistent manner. The main
appeal of the proposed model is that prices are viewed as a collection of counting
processes, each of which represents a price level. Then, the model is framed as a fil-
tering problem with counting process observations. Alternatively, the price process
can be constructed from the intrinsic value process by incorporating the trading
noise. Zeng [17] also developed continuous-time Bayes parameter estimation via fil-
tering for the model and Kouritzin and Zeng [9] further developed Bayesian model
selection via filtering for the class of models based on Bayes factor.

The multivariate extension of FM model and its Bayes estimation via filtering is
studied in Scott and Zeng [14]. In this paper, we study the model selection of this
class of multivariate FM model. Model selection, a significant and persistent area
of research, evaluates which of competing models best fits transaction price data.
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Moreover, to the degree that economic theory can be modeled statistically, model
selection provides a powerful tool for testing the economic theories related to market
microstructure. The Bayesian approach offers a general methodology for hypothesis
testing and model selection based on Bayes factor with many merits. See Kass and
Raftery [8], a survey of Bayes factor in both methodology and applications. Here, we
also adopt the Bayesian approach for the model selection of the class of multivariate
FM models.

Kouritzin and Zeng [9] introduce a two-step approach to calculate the Bayes
factor. The first step is to derive the system of two stochastic differential equations
(SDEs) that govern the evolution of the Bayes factors of Models 1 vs. 2 and that
of Models 2 vs. 1. The second step is to apply the Markov chain approximation
method to the system of SDEs to develop a recursive algorithm for computing the
Bayes factors. Following this approach, we first derive the system of SDEs govern-
ing the evolutions of Bayes factors for the multivariate FM models and prove the
uniqueness of the solution. Then, we prove a convergence theorem guaranteeing the
consistency (or robustness) of the recursive algorithms generated from the Markov
chain approximation method.

The rest of the paper goes as follows. Section 2 highlights the multivariate
FM models in two equivalent representations. Section 3 reviews the unnormal-
ized, Duncan Mortensen Zakai-like filtering equation, and the normalized, Kushner
Stratonovich (or Fujisaki Kallianpur Kunita)-like filtering equations respectively.
Section 4 first reviews the methodology of Bayesian model selection and then de-
rives the system of SDEs for the Bayes factors for the multivariate FM models and
prove the uniqueness. Section 5 proves the convergence theorem and provides a
numerical scheme to calculate the Bayes factors. We conclude in Section 6.

2. Multivariate Micromovement Models

This section presents the class of multivariate FM models in two equivalent ways:
one as a collection of counting processes of price levels and the other as a con-
struction of price from the intrinsic value of an asset by incorporating noises. These
two representations are equivalent in the sense that they have the same probability
distribution, which is proven in [14].

2.1. Counting Process Observations

In real world trading, the price of an asset fluctuates as the result of inflowing
information and trading noise. In micromovement level, the price does not move
continuously as the common asset price models such as diffusion or jump-diffusion
processes suggest, but moves level-by-level due to price discreteness (caused by the
minimum price variation set by trading regulation). From this viewpoint, we can
formulate the prices of an asset as a collection of counting processes as described
below.

Now, suppose that ~θ is a vector of parameters and ~X is a vector Markov process
representing the intrinsic values of m assets, which are not observable directly.
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Define ~Yj(t) for the jth asset as

(2.1) ~Yj(t) =


Nj,1(

∫ t

0
λj,1(~θ(s), ~X(s), s)ds)

Nj,2(
∫ t

0
λj,2(~θ(s), ~X(s), s)ds)

...
Nj,nj (

∫ t

0
λj,nj (~θ(s), ~X(s), s)ds)

 ,

Here Yj,k(t) = Nj,k(
∫ t

0
λj,k(~θ(s), ~X(s), s)ds) is the observable counting process

recording the cumulative number of trades for the jth asset that have occurred
at the kth price level (denoted by yj,k) up to time t. For notational convenience we
refer to the collection of the counting processes of m assets as

(2.2) Y(t) = (~Y1(t), ~Y2(t), . . . , ~Ym(t)).

We extend the five assumptions of FM model to multivariate FM ones. These
assumptions are needed not only in the initial development of the models and of
the related filtering equations, but also in showing the consistency of the recursive
algorithms to actually computing the Bayes factors.

Assumption 2.1. Nj,k’s are unit Poisson processes under the physical measure P .

Assumption 2.2. (~θ, ~X), N1,1, N1,2, . . . , N1,n1 , N2,1, . . . , Nm,nm
are independent

under measure P.

Assumption 2.3. Each of the total intensity processes, aj(~θ(t), ~X(t), t), is uni-
formly bounded above, namely, there exist a positive constant, C, such that 0 <
aj(~θ(t), ~X(t), t) ≤ C for each j = 1, 2, . . . ,m and for all t > 0.

Remark 2.1. Assumptions 2.1–2.3 imply the existence of a reference measure Q
such that under Q, ~X, ~Y1, ~Y2, . . . , ~Ym are independent and Y1,1, . . . , Y1,n1 , Y2,1, . . . ,
Ym,nm

are unit Poisson processes. This reference measure is crucial in deriving the
filtering equations and proving the convergence theorem.

Remark 2.2. Assumption 2.1–2.3 also imply that Yj,k(t) is a conditional Poisson
process and Yj,k(t)−

∫ t

0
λj,k(~θ(s), ~X(s), s)ds is a martingale.

Assumption 2.4. The intensity is

λj,k(~θ(t), ~X(t), t) = aj(~θ(t), ~X(t), t)gj,k(yj,k | Xj(t)),

where aj(~θ(t), ~X(t), t) is the total trading intensity for the jth stock and gj,k(yj,k |
Xj(t)) is the transition probability from Xj(t), the intrinsic value of th jth asset,
to yj,k, the kth price level for the jth asset at time t.

Remark 2.3. Assumption 2.4 imposes a desirable structure. Namely, the overall
rate of trade occurrence of asset j at time t is determined by the total trading
intensity aj(~θ(t), ~X(t), t) and the proportion of trading intensity at the kth price
level of asset j is determined by gj,k(yj,k | Xj(t)). The intensity structure plays an
essential role in the equivalence of the two approaches of modeling.

Finally, we impose a general assumption on the intrinsic value vector process
and the parameter vector process.
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Assumption 2.5. (~θ, ~X) is the solution of a martingale problem for a generator
A such that

Mf (t) = f(~θ(t), ~X(t))−
∫ t

0

Af(~θ(s), ~X(s))ds

is a F~θ, ~X
t -martingale, where F~θ, ~X

t is the σ-field generated by (~θ(s), ~X(s))0≤s≤t.

Under this representation, (~θ(t), ~X(t)) becomes a signal process, which cannot be
observed directly, but can be partially observed through the collection of counting
processes, Y(t), corrupted by trading noise, which is modeled by gj,k(yj,k | xj).
Hence, (~θ, ~X,Y) is framed as a multivariate filtering problem with counting process
observations.

2.2. Price Construction from the Value Process

More intuitively, we can construct the model for the price behavior of a set of assets
by explicitly constructing the observed price of each asset from its intrinsic value.
For this method, we assume that the underlying (~θ, ~X) satisfies Assumption 2.5.
Further we assume the prices of asset j are the marks associated with a collection
of trading times t1, t2, . . . described by a conditional Poisson process with intensity
aj(~θ(t), ~X(t), t). Finally, we model the price of asset j at a trading time tj,i as
Zj(ti) = Fj(Xj(ti)), where Fj(·) is a random transformation taking the value of the
asset to the observed price with the transition probability function gj,k(yj,k | xj).

Under this construction, the impact of Fj(Xj(ti)) is transitory at trading times
just as the impact of trading noise. Only the underlying stock value, Xj(ti), is
considered to have permanent influence on the price process. The random trans-
formation, F (x), is flexible. Different examples that accommodate the three well-
documented important types of noise: discrete, clustering and non-clustering, can
be found in [17], [18], and [15].

3. Filtering Equations

This section reviews the foundations of statistical inference for the multivariate FM
models, namely, the likelihoods and posteriors and their related filtering equations.

3.1. Likelihood Functions and Posteriors

Let FY
t = σ{(Y(s)) | 0 ≤ s ≤ t} be the σ-algebra generated by the observed sample

path of the price Y up to time t. Here Y is defined by (2.2)
Now, taken together Assumptions 2.1–2.3, we have the existence of a reference

measure Q such that P is absolutely continuous with respect to Q. We can write
Q as Q = P~θ(t), ~X(t) × QY, where P~θ(t), ~X(t) is the probability measure generated

by ~X(t) and ~θ(t) and QY is the measure under which the counting processes
Y1,1, . . . , Y1,n1 , Y2,1, . . . , Ym,nm

are independent unit Poisson processes. This in turn
implies that Ŷj,k(t) = Yj,k(t) − t is martingale with respect to Q for each (j, k).
Another property under this reference measure is the independence of (~θ, ~X) and
Y.
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We can then define our joint likelihood function, L(t), in terms of The Radon-
Nikodym derivative (see [2], or by Girsanov–Meyer theorem in [12]):

dP

dQ
(t) =

dP~θ(t), ~X(t) × dPY|~θ(t), ~X(t)

dP~θ(t), ~X(t) × dQY
(t) =

dPY|~θ(t), ~X(t)

dQY
(t) = L(t)(3.1)

=
m∏

j=1

n∏
k=1

exp
[ ∫ t

0

log(λj,k(~θ(s−), ~X(s−), s−))dYj,k(s)

−
∫ t

0

[λj,k(~θ(s−), ~X(s−), s−)− 1]ds

]
.

Or, in stochastic differential equation (SDE) form,

(3.2) L(t) = 1 +
m∑

j=1

n∑
k=1

∫ t

0

[λj,k(~θ(s−), ~X(s−), s−)− 1]L(s−)d(Yj,k(s)− s).

We need two definitions for the filtering equations.

Definition 3.1. φ(f, t) = EQ[f(~θ(t), ~X(t))L(t) | FY
t ].

Remark 3.1. If (~θ(0), ~X(0)) is fixed, then the likelihood of Y is EQ[L(t) | FY] =
φ(1, t). If a prior is assumed on (~θ(0), ~X(0)) as in Bayesian paradigm, then the
integrated (or marginal) likelihood of Y is also φ(1, t).

Definition 3.2. Let πt be the conditional distribution of (~θ(t), ~X(t)) given FY
t over

P and π(f, t) = EP [f(~θ(t), ~X(t)) | FY
t ] =

∫
f(~θ, ~X)πt(d~θ, d ~X).

Remark 3.2. If a prior is assumed on (θ(0), X(0)) as in Bayesian inference, then
πt becomes the continuous-time posterior.

3.2. Filtering Equations

The Kallianpur–Striebel formula provides the relationship between φ(f, t) and π(f, t):
π(f, t) = φ(f, t)/φ(1, t). Hence, the equation governing the evolution of φ(f, t) is
called the unnormalized filtering equation, and that of π(f, t) is called the normal-
ized filtering equation.

The filtering equation provides an effective way to characterize πt. The following
theorem proven in [14] presents both filtering equations.

Theorem 3.1. Suppose that Y is the counting process observations as specified in
by (2.2) satisfying Assumptions 2.1 to 2.4 and (~θ, ~X) satisfies Assumption 2.5. Then,
for every t > 0 and every f in the domain of A, φt is the unique measure-valued
solution of the unnormalized filtering equation:

φ(f, t) = φ(f, 0) +
∫ t

0

φ

(
Af −

m∑
j=1

nj∑
k=1

f(λj,k − 1), s
)

ds(3.3)

+
m∑

j=1

nj∑
k=1

∫ t

0

φ((λj,k − 1)f, s−)dYj,k(s)
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and πt is the unique measure-valued solution of the normalized filtering equation:

π(f, t) = π(f, 0) +
∫ t

0

π(Af, s)ds−
m∑

j=1

∫ t

0

(π(faj , s)− π(f, s)π(aj , s))ds

+
m∑

j=1

nj∑
k=1

∫ t

0

[
π(fgj,k, s−)
π(gj,k, s−)

− π(f, s−)
]

dYj,k(s),(3.4)

where aj = aj(~θ(t), ~X(t), t) is the trading intensity, and gj,k = gj,k(yj,k | xj) is the
transition probability from xj = Xj(t) to yj,k, the k-th price level for the jth stock.
In the special case that aj(~θ(t), ~X(t), t) = aj(t), the filtering equation of πt reduces
to

π(f, t) = π(f, 0) +
∫ t

0

π(Af, s)ds(3.5)

+
m∑

j=1

nj∑
k=1

∫ t

0

[
π(fgj,k, s−)
π(gj,k, s−)

− π(f, s−)
]

dYj,k(s).

4. Bayesian Model Selection via Filtering

With the irregular likelihood functions traditional parameter estimation and model
selection techniques can be prohibitively difficult to use. However, as Kass and
Rafferty [8] demonstrated critical evaluation is still possible that through Bayesian
inference, i.e., while the overall “fit” of a model to the data may be difficult to
calculate, it can be determined which of two models is a better “fit.” The calculated
Bayes factors allow the researcher to estimate the pair-wise relative fit of models
for the same data and to select the best of the available models.

Bayes factors are used to select the best of two models using the integrated (or
marginal) likelihood functions of each model given the observed data. The Bayes
factor for model 1 over model 2 is the ratio of the two integrated likelihood functions.
Kass and Rafferty, [8] suggested the following rules for the interpretation of Bayes
factor. A Bayes factor with a value between 1 and 3 is considered insignificant, i.e.,
Model 1 is not clearly “better” than Model 2. A Bayes factor with a value between
3 and 12 indicates Model 1 is a somewhat better fit for the data than Model 2.
From a value between 12 and 150, it indicates that Model 1 is an overall better fit
than Model 2 can be inferred. A Bayes factor with a value greater than 150 implies
that Model 1 is decisively better. Naturally, if the Bayes factor is less than 1 we
simply consider the Bayes factor of Model 2 over Model 1 and interpret the result
accordingly.

4.1. Evolution of the Bayes Factors

In our efforts to develop the Bayes factors for the multivariate FM models, we begin
with notational adjustments for simplicity in working with two models. Since, the
Bayes factors are used to compare the fit of two models given the observed prices, we
will let c = 1, 2 through out this section. Then we denote Model-c as (~θ(c), ~X(c),Y)
and its joint likelihood by L(c)(t) given as before by (3.1) and have the following
definitions.

Definition 4.1. Let φc(fc, t) = EQ(c)
[fc(~θ(c)(t), ~X(c)(t))L(c)(t) | FY

t ].
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Then the integrated likelihood of Y would be φc(1, t) for Model c with proper
priors.

Definition 4.2. Denote π
(c)
t as the conditional distribution of (~θ(c), ~X(c)) given

FY
t . Let πc(fc, t) = EP [fc(~θ(c)(t), ~X(c)(t)) | FY

t ].

Next, we need to define filter ratio processes as

Definition 4.3. Let the filter ratio processes, q1 and q2, be written as

q1(f1, t) =
φ1(f1, t)
φ2(1, t)

, q2(f2, t) =
φ2(f2, t)
φ1(1, t)

.

Remark 4.1. the Bayes factors can then be written as B1,2(t) = q1(1, t) and
B2,1(t) = q2(1, t).

The evolution of the filter ratio processes can be characterized by Theorem 4.1.

Theorem 4.1. Suppose Model-c (c = 1, 2) has generator A(c) for (~θ(c), ~X(c)),
trading intensity for the jth asset a

(c)
j = a

(c)
j (~θ(c)(t), ~X(c)(t), t), and transition

probability g
(c)
j,k = g

(c)
j,k(yj,k | xj) from xj to yj,k for the random transformation

F (c). If Model-c satisfies Assumptions 2.1 to 2.5, then (q(1)
t , q

(2)
t ) are the unique

measure-valued pair solution of the system of SDEs

q1(f1, t) = q1(f1, 0)

+
∫ t

0

[
q1(A(1)f1, s)−

m∑
j=1

(
q1(a

(1)
j f1, s)−

q1(f1, s)q2(a
(2)
j , s)

q2(1, s)

)]
ds(4.1)

+
m∑

j=1

nj∑
k=1

∫ t

0

[
q1(a

(1)
j f1g

(1)
j,k , s−)

q2(a
(2)
j g

(2)
j,k , s−)

q2(1, s−)− q1(f1, s−)
]
dYj,k(s)

for all t > 0 and f1 ∈ D(A(1)), and for all t > 0 and f2 ∈ D(A(2))

q2(f2, t) = q2(f2, 0)

+
∫ t

0

[
q2(A(2)f2, s)−

m∑
j=1

(
q2(a

(2)
j f2, s)−

q2(f2, s)q1(a
(1)
j , s)

q1(1, s)

)]
ds(4.2)

+
m∑

j=1

nj∑
k=1

∫ t

0

[
q2(a

(2)
j f2g

(2)
j,k , s−)

q1(a
(1)
j g

(1)
j,k , s−)

q1(1, s−)− q2(f2, s−)
]
dYj,k(s).

In the special case that the intensity for the trading times of the jth asset depends
only on t, namely, a

(c)
j (~θ(c)(t), ~X(c)(t), t) = a(t), the preceding equations reduce to

q1(f1, t) = q1(f1, 0) +
∫ t

0

q1(A(1)f1, s)ds

+
m∑

j=1

nj∑
k=1

∫ t

0

[
q1(f1g

(1)
j,k , s−)

q2(g
(2)
j,k , s−)

q2(1, s−)− q1(f1, s−)
]
dYj,k(s)(4.3)
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and

q2(f2, t) = q2(f2, 0) +
∫ t

0

q2(A(2)f2, s)ds

+
m∑

j=1

nj∑
k=1

∫ t

0

[
q2(f2g

(2)
j,k , s−)

q1(g
(1)
j,k , s−)

q1(1, s−)− q2(f2, s−)
]
dYj,k(s).(4.4)

Proof. There are two steps.
Step 1: Derivation of the evolution equations for q1(f1, t) and q2(f2, t)
We will show that q1(f1, t) satisfies (4.1), and when a

(c)
j (~θ(c)(t), ~X(c)(t), t) = aj(t)

(4.1) reduces to (4.3). Then, by symmetry, q2(f2, t) satisfies (4.2) and, in the special
case, (4.4). Recall that φc(fs, t) satisfies (3.3). Then applying Ito’s formula for semi-
martingales ([12]) and simplifying gives us

φ1(f1, t)
φ2(1, t)

=
φ1(f1, 0)
φ2(1, 0)

+
∫ t

0

φ1(A(1)f1, s)
φ2(1, t)

ds(4.5)

−
m∑

j=1

∫ t

0

[
φ1(a

(1)
j f1, s)

φ2(1, s)
−

φ1(f1, s)φ2(a
(2)
j , s)

φ2
2(1, s)

]
ds

+
m∑

j=1

nj∑
k=1

∫ t

0

[
φ1(f1, s)
φ2(1, s)

− φ1(f1, s−)
φ2(1, s−)

]
dYj,k(s).

To transform this equation to the desired form, we make two observations. First,

φ1(f1, s)φ2(a
(2)
j , s)

φ2
2(1, s)

=
φ1(f1,s)
φ2(1,s)

φ2(a
(2)
j

,s)

φ1(1,s)

φ2(1,s)
φ1(1,s)

=
q1(f1, s)q2(a

(2)
j , s)

q2(1, s)
.

Next, again using (3.3) and assuming that the kth trade of the jth stock occurs at
time s

φ1(f1, s)
φ2(1, s)

=
φ1(f1, s−) + φ1((a

(1)
j g

(1)
j,k − 1)f1, s−)

φ2(1, s−) + φ2(a
(2)
j g

(2)
j,k − 1, s−)

(4.6)

=
φ1(a

(1)
j g

(1)
j,kf1, s−)

φ2(a
(2)
j g

(2)
j,k , s−)

=
q1(a

(1)
j f1g

(1)
j,k , s−)

q2(a
(2)
j g

(2)
j,k , s−)

q2(1, s−).

Substituting these results into the definition of the filter ratio process gives us (4.1).
If a

(c)
j (~θ(c)(t), ~X(c)(t), t) = aj(t) for c = 1, 2 then

q1(f1, s)q2(aj , s)
q2(1, s)

=
q1(f1, s)ajq2(1, s)

q2(1, s)
= q1(ajf1, s)

and
q1(ajf1g

(1)
j,k , s−)

q2(ajg
(2)
j,k , s−)

q2(1, s−) =
q1(f1g

(1)
j,k , s−)

q2(g
(2)
j,k , s−)

q2(1, s−)

giving us (4.3).
Step 2: Uniqueness of q1(f1, t) and q2(f2, t)
It remains only to show the uniqueness of the filtering ratio processes, which fol-

lows closely from the perturbation arguments of SPDE such as given in Kouritzin
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and Zeng [9]. Towards this end, let T (1), T (2) be the semi-groups with weak gen-
erators A(1),A(2). Define {τi}∞i=1 as the jump times associated with the Y where
τ0 = 0. Here τi represents a trading time for one of the j = 1, . . . m assets. For
c = 1, 2 and l = 3− c, let (q1, q2) be finite measure process satisfying

qc(fc, t) = qc(fc, τi) +
∫ t

τi

qc(A(c)fc, s)ds(4.7)

−
m∑

j=1

∫ t

τi

[
qc(a

(c)
j fc, s)−

qc(fc, s)ql(a
(l)
j , s)

ql(1, s)

]
ds

for all t ∈ [τi, τi + 1) and fc ∈ D(A(c)). Hence, by Assumption 2.3 and using (4.7)
for t ∈ [τi, τi + 1), we have

(4.8) exp(−C(t− τi))qc(1, τi) ≤ qc(1, t) ≤ exp(C(t− τi))qc(1, τi).

Now, we apply a standard technique in SPDE and define a convolution form χc for
c = 1, 2 and l = 3− c by

χc(t, u, fc) = qc(T
(c)
t−ufc, u) +

m∑
j=1

∫ t

u

[
qc(T

(c)
t−sfc, s)ql(a

(l)
j , s)

ql(1, s)
− qc(a

(c)
j T

(c)
t−sfc, s)

]
ds

for all u ≤ t ∈ [τi, τi +1) and fc ∈ D(A(c)). Then, taking the fact that for all s ≥ 0,
T

(c)
s fc ∈ D(A(c)) and applying Leibniz’s rule give us

d

du
χc(t, u, fc) =

d

du
qc(T

(c)
t−ufc, u)−

m∑
j=1

[
qc(T

(c)
t−ufc, u)ql(a

(l)
j , u)

ql(1, u)
−qc(a

(c)
j T

(c)
t−ufc, u)

]
.

Observe that

d

du
qc(T

(c)
t−ufc, u) = −qc(A(c)T

(c)
t−ufc, u) + qc(A(c)T

(c)
t−ufc, u)(4.9)

+
m∑

j=1

[
qc(T

(c)
t−ufc, u)ql(a

(l)
j , u)

ql(1, u)
− qc(a

(c)
j T

(c)
t−ufc, u)

]
.

Therefore, d
duχc(t, u, fc) = 0 for u ∈ [τi, t]. This implies χc(t, t, fc) = χc(t, τi, fc),

which produces
(4.10)

qc(fc, t) = qc(T
(c)
t−τi

fc, τi) +
m∑

j=1

∫ t

τi

[
qc(T

(c)
t−sfc, s)ql(a

(l)
j , s)

ql(1, s)
− qc(a

(c)
j T

(c)
t−sfc, s)

]
ds.

Now suppose that (r1, r2) is a second process satisfying (4.7) such that

(q1(·, τi), q2(·, τi)) = (r1(·, τi), r2(·, τi)),

i.e., that the processes agree at the trading times. Then, using (4.10) for both pairs
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we have that for all t ∈ [τi, τi + 1) and fc ∈ D(A(c)), c = 1, 2

|r1(f1, t)− q1(f1, t)|+ |r2(f2, t)− q2(f2, t)|

≤
m∑

j=1

[ ∫ t

τi

∣∣∣∣r1(T
(1)
t−sf1, s)r2(a

(2)
j , s)

r2(1, s)
−

q1(T
(1)
t−sf1, s)q2(a

(2)
j , s)

q2(1, s)

∣∣∣∣ds

+
∫ t

τi

∣∣∣∣r2(T
(2)
t−sf2, s)r1(a

(1)
j , s)

r1(1, s)
−

q2(T
(2)
t−sf2, s)q2(a

(1)
j , s)

q1(1, s)

∣∣∣∣ds

+
∫ t

τi

|r1(a
(1)
j T

(1)
t−sf1, s)− q1(a

(1)
j T

(1)
t−sf1, s)|ds

+
∫ t

τi

|r2(a
(2)
j T

(2)
t−sf2, s)− q2(a

(2)
j T

(2)
t−sf2, s)|ds

]
.

However, together Assumption 2.3 and equation (4.8) imply∣∣∣∣r1(T
(1)
t−sf1, s)r2(a

(2)
j , s)

r2(1, s)
−

q1(T
(1)
t−sf1, s)q2(a

(2)
j , s)

q2(1, s)

∣∣∣∣(4.11)

+
∣∣∣∣r2(T

(2)
t−sf2, s)r1(a

(1)
j , s)

r1(1, s)
−

q2(T
(2)
t−sf2, s)q1(a

(1)
j , s)

q1(1, s)

∣∣∣∣
+ |r1(a

(1)
j T

(1)
t−sf1, s)− q1(a

(1)
j T

(1)
t−sf1, s)|

+ |r2(a
(2)
j T

(2)
t−sf2, s)− q2(a

(2)
j T

(2)
t−sf2, s)|

≤ 2C sup
f1∈C̄(E),‖f1‖∞≤1

|r1(f1, t)− q1(f1, t)|

+ 2C sup
f2∈C̄(E),‖f2‖∞≤1

|r2(f2, t)− q2(f2, t)|

where s ∈ [τi, τi +1), fc ∈ D(A(c)) with ‖f‖ ≤ 1. Now, using (4.8) and the compact
containment condition, there exist increasing compact sets K

(c)
n for c = 1, 2 such

that rc(K
(c)
n , t) ∧ qc(K

(c)
n , t) ≥ 1 − 1

n for all t ∈ [τi, τi + 1). Then Assumption 2.3,
(4.11) and (4.11), and Stone–Weierstrass imply

sup
f1∈C̄(E),‖f1‖∞≤1

∣∣∣∣ ∫
K

(1)
n

f1[dr
(1)
t − dq

(1)
t ]

∣∣∣∣ + sup
f2∈C̄(E),‖f2‖∞≤1

∣∣∣∣ ∫
K

(2)
n

f2[dr
(2)
t − dq

(2)
t ]

∣∣∣∣
≤ 2

n
+ sup

f1∈D(A(1)),‖f1‖∞≤1

|r1(f1, t)− q1(f1, t)|

+ sup
f2∈D(A(2)),‖f2‖∞≤1

|r2(f2, t)− q2(f2, t)|

≤ 2
n

+
8C

n
(t− τi) + 4C

∫ t

τi

[
sup

f1∈C̄(E),‖f1‖∞≤1

∣∣∣∣ ∫
K

(1)
n

f1[dr
(1)
t − dq

(1)
t ]

∣∣∣∣
+ sup

f2∈C̄(E),‖f2‖∞≤1

∣∣∣∣ ∫
K

(2)
n

f2[dr
(2)
t − dq

(2)
t ]

∣∣∣∣]ds.

Finally, we apply Gronwell’s inequality ([5]) and let n →∞ and obtain

sup
f1∈C̄(E),‖f1‖∞≤1

∣∣∣∣ ∫
E

f1[dr
(1)
t − dq

(1)
t ]

∣∣∣∣ + sup
f2∈C̄(E),‖f2‖∞≤1

∣∣∣∣ ∫
E

f2[dr
(2)
t − dq

(2)
t ]

∣∣∣∣ = 0.
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Hence, we have the uniqueness for t ∈ [τ0, τ1) and the updating equation implies
the same holds for t = τ1. By induction, we have the uniqueness on [0,∞), and the
theorem follows.

5. A Convergence Theorem and a Numerical Scheme

Theorem 4.1 characterizes the evolution of the Bayes factors. To compute the Bayes
factors, one constructs an algorithm to approximate qk(fk, t), where q1(1, t) =
B12(t). The algorithm, based on the evolution of SDEs, is naturally recursive, han-
dling a datum at a time. Thus, the algorithm makes real-time updates and can
handle large data sets.

One basic requirement for the recursive algorithm is consistency: The approxi-
mate qk, computed by the recursive algorithm, must converge to the true one. The
following theorem summarizes the related convergence results and provides the the-
oretical foundation for consistency. Furthermore, the theorem furnishes a recipe for
constructing consistent recursive algorithms.

Let c = 1, 2 throughout this section. First denote (~θ(c)
~ε , ~X

(c)
~εx

) as an approximation

of (~θ(c), ~X(c)). Further, denote (~θ(c)
~ε , ~X

(c)
~εx

) ⇒ (~θ(c), ~X(c)) as the weak convergence
in the Skorohod topology as (~ε,~εx) → 0. Define for each j = 1, 2, . . . ,m

(5.1) ~Y ε,c
j (t) =


N

(c)
j,1 (

∫ t

0
λ

(c)
j,1(~θ

(c)
~ε (s), ~X

(c)
~εx

(s), s)ds)

N
(c)
j,2 (

∫ t

0
λ

(c)
j,2(~θ

(c)
~ε (s), ~X

(c)
~εx

(s), s)ds)
...

N
(c)
j,nj

(
∫ t

0
λ

(c)
j,nj

(~θ~ε(c)(s), ~X
(c)
~εx

(s), s)ds)

 ,

where ε = max(|~εx|, |~ε |) and |~ε | is Euclidean norm of a vector. Analogously to the
continuous case, we define the collection of the counting processes for the approxi-
mate model c as

(5.2) Y(c)
ε (t) = (~Y ε,c

1 (t), ~Y ε,c
2 (t), . . . , ~Y ε,c

m (t)).

Let FY(c)
ε

t = σ(Y(c)
ε (s), 0 ≤ s ≤ t).

Now, let (~θ(c)
~ε , ~X

(c)
~εx

,Y(c)
ε ) be defined on (Ω(c)

ε ,F(c)
ε , P

(c)
ε ) with Assumptions 2.1 to

2.5. Assumptions 2.1 to 2.3 imply the existence of a reference measure Q
(c)
ε having

similar properties. The corresponding Radon–Nikodym derivative is dPε/dQε which
is

Lε(t) =
m∏

j=1

nj∏
k=1

exp
[ ∫ t

0

log(λj,k(~θ~ε(s−), ~X~εx
(s−), s−))dYj,k(s)(5.3)

−
∫ t

0

[λj,k(~θ~ε(s−), ~X~εx
(s−), s−)− 1]ds

]
.

Given this reference measure and the joint likelihood function we can similarly
define for c = 1, 2 and l = 3− c

φε,c(fc, t) = EQ(c)
ε [fc(~θ

(c)
~ε , ~X

(c)
~εx

)L(c)
ε (t) | FY(c)

ε
t ],

πε,c(fc, t) = EP (c)
ε [fc(~θ

(c)
~ε , ~X

(c)
~εx

) | FY(c)
ε

t ],
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and

qε,c(fc, t) =
φε,c(fc, t)
φε,l(1, t)

.

We have the following theorem.

Theorem 5.1. Let c = 1, 2. Suppose that Assumptions 2.1 to 2.5 hold for the
model (~θ(c), ~X(c),Y(c)) and for the approximate model (~θ(c)

~ε , ~X
(c)
~εx

,Y(c)
ε ). Suppose

(~θ(c)
~ε , ~X

(c)
~εx

) ⇒ (~θ(c), ~X(c)) as (~ε,~εx) → 0. Then, as ε → 0, for bounded and continu-
ous f1 and f2,
(i) Yε ⇒ Y, as ε →0
(ii) φε,c(fc, t) ⇒ φc(fc, t)
(iii) πε,c(fc, t) ⇒ πc(fc, t)
(iv) qε,1(f1, t) ⇒ q1(f1, t) and qε,2(f2, t) ⇒ q2(f2, t) simultaneously.

Remark 5.1. Part (i) implies the convergence of the observation in approximate
model to that in the true one. We note that Part (ii) implies the consistency of
the approximate (integrated) likelihood, while Part (iii) shows the consistency of
approximate posterior. Lastly, Part (iv) implies the consistency of the approximate
Bayes factors. Taken as a whole, Theorem 5.1 shows that there are discrete, compu-
tationally feasible, and consistent versions of the likelihoods, posterior, and Bayes
factors for the class of models.

Proof. Parts (i), (ii) and (iii) are proven in [14]. The proof relies on several theorems:
Kurtz and Protter’s theorem on the convergence of stochastic integral (see Theorem
2.2 of [11]), two theorems on the convergence of conditional expectations (see [6] and
[10]) and the continuous mapping theorem (see [5]). Part (iv) follows directly from
Part (ii) since, again by the continuous mapping theorem qε,c(fc, t) is consistent if
φε,c(fc, t) and φε,l(1, t) are for c = 1, 2, l = 3− c.

5.1. Overview of the Recursive Algorithm

The advantage of having a consistent discrete approximation of the model and
Bayes factors is that it makes the model estimation and evaluation computation-
ally feasible. To implement the Bayesian model selection via filtering as described
here, we can construct recursive algorithms to calculate the approximate Bayes
factors qε,c(fc, t), c = 1, 2. For simplicity of this discussion we will assume that
a
(c)
j (~θ(c)(t), ~X(c)(t), t) = aj(t) for the jth asset.

The first step is to construct for c = 1, 2, (~θ(c)
~ε , ~X

(c)
~εx

) as a Markov chain ap-

proximation to (~θ(c), ~X(c)) with generator Aε and obtain gj,k(y(c)
j,ε | X

(c)
j,ε (t)) as an

approximation to gj,k(yj | Xj(t)). We will restrict our space to the lattice points
corresponding to the assumed prior distribution. In the second step, we obtain the
approximate Bayes factors from (4.3) and (4.4) broken down into the propagation
equation:

(5.4) q(c)
ε (fc, ti+1−) = q(c)

ε (fc, 0) +
∫ ti+1

ti

q(c)
ε (Aεfc, s)ds,

and the updating equation:

(5.5) q(c)
ε (fc, ti+1) =

q
(c)
ε (fcg

(c)
j,k, ti+1−)

q
(3−c)
ε (fcg

(c)
j,k, ti+1−)

q(3−c)
ε (1, ti+1−).



Multivariate Micromovement Models and Model Selection via Filtering 135

In the final step, we convert (5.4) and (5.5) into recursive algorithms setting fc as
a lattice-point indicator with two sub-steps: (a) represents qε(·, t) as a finite array
with the components being qε(f, t) and (b) approximates the time integral in (5.4)
with an Euler scheme.

6. Conclusions and Future Works

In this paper, we investigate the model selection problems for a general class of
multivariate FM models of asset price and develop Bayesian model selection via
filtering in two steps. We first derive the evolution system of SPDEs for the Bayes
factors and prove its uniqueness. Then we prove a limit theorem which provide a
recipe to develop consistent recursive algorithms for computing the Bayes factors.

The Bayesian model selection via filtering is computationally intensive and even
so in the multivariate FM models. To improve efficiency, we will extend the recent
developments in particle filtering to the filtering problem with counting process
observations. See [16] for the recent development in this direction for univariate
case.

With efficient algorithms for implementation, the developed Bayesian model se-
lection via filtering offers a powerful tool to test related market microstructure
theories, represented by the micromovement models. For examples, we may test
whether NASDAQ has less trading noise after a market reform as argued in [1],
test whether information affects trading intensity as argued by [3] and tested by
[4], test whether inventory position of a market maker has an impact on price
suggested in [7], test whether there is relationship between transaction times and
limit order arrival times as in [13], and test whether there is a structure break in
transaction periods as in [20].

The multivariate FM models can be further generalized to the filtering models
with marked point process observations and likewise the related Bayesian inference
via filtering. See [19] for further development.
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