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Fractional Stability

of Diffusion Approximation

for Random Differential Equations

Yuriy V. Kolomiets1,∗

Kent State University and Institute for Applied Mathematics and Mechanics NAS of Ukraine

Abstract: We consider the systems of random differential equations. The co-
efficients of the equations depend on a small parameter. The first equation,
“slow” component, Ordinary Differential Equation (ODE), has unbounded
highly oscillating in space variable coefficients and random perturbations,
which are described by the second equation, “fast” component, Stochastic
Differential Equation (SDE) with periodic coefficients. Sufficient conditions
for weak convergence as small parameter goes to zero of the solutions of the
“slow” components to the certain stochastic process are given.

1. Introduction

In the paper, we consider systems of random equations with a small parameter ε.
The first equation, the “slow” component, is an Ordinary Differential Equations
(ODE) with unbounded highly oscillating coefficients which depend on the Markov
diffusion processes with periodic coefficients, which are the “fast” component of the
systems. We will study the weak convergence of probability measures, induced by
the solutions of the “slow” equations to the diffusion process.

It is well known that, in the case of the Diffusion Approximation (DA), a drift
coefficient of the approximating Stochastic Differential Equation (SDE), includes
a derivative with respect to a space variable of the unbounded coefficients of the
approximated random differential equation (see Ch. 2.2). That means, we cannot
apply the DA results because of the highly oscillating character of dependency on
the ε of the unbounded coefficient of the “slow” component. On the other hand,
we cannot apply the limit theorem for SDEs because the “slow” component is an
ODE, and consequently has no nonzero diffusion coefficient (the presence of strongly
positive diffusion coefficient is a necessary condition for such kind of theorems).

The method is a combination of the results of these two directions. We choose
the order of oscillation (parameter δ) in such a way that the conditions, from the
DA‘s theorem ((A) and (AB)), allow us to get the nonnegative “candidate” to be
the diffusion coefficient, and then to use the second part of the conditions (from
the Limit Theorem for SDE: (B) and (C)) to obtain the limit process (see Chapters
2.2, 2.4).

The aim of this paper is to find the answers to the following questions:
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1. Is it possible to extend DAs results to be true in the presence of high oscillation
in space variable of the coefficients of the random processes? If the answer is yes,
what kind of the conditions need to be added to usual conditions of DA?

2. How does the presence of oscillation in the coefficients of the random processes
influence the order of convergence in DA? What is the precise order of convergence
in DA and how does it depend on the order of oscillation? What is the critical case?

For the second question, we get results that depend on an apparently critical
number (order of oscillation), equals to 1/2 (Theorem 3.1.1 below).

Asymptotic behavior of the solutions of the unperturbed stochastic equations
with unbounded drift seems to be considered for the first time in the papers [1],
[10], and [13].

For SDEs, with coefficients depending on a small parameter by irregular way
without random perturbations, necessary and sufficient conditions of the weak con-
vergence of solutions in more general situations are obtained in [11].

A different approach to the investigation of weak convergence of one-dimensional
Markov processes was demonstrated in [3].

The Averaging Principle for SDEs with random perturbations and highly os-
cillating coefficients was considered in [7]. In that paper, the first component of
the system is an SDE with a strongly positive diffusion coefficient. The asymptotic
behavior of the first components, on the time intervals of the order O(ε−1), was
studied. Sufficient conditions for weak convergence of the measures, induced by the
first components, were stated and the apparently critical number (order of oscil-
lation), equals to 1/3, was obtained. In the present work, the first component is
a random ODE and does not contain a nonzero diffusion coefficient. This makes
the investigation of the limit behavior of the first component more difficult but,
instead, we consider the DAs scheme (on the time intervals of the order O(ε−2)).
The result here is Fractional Stability of the DA (note that the DA is a result of
the type of the functional Central Limit Theorem).

The study of the DA was initiated by Khasminskii R. Z. [6], and developed by
many authors (see, e.g. monographs [2],[15] and bibliography, and [12]). We note
that the case, when the coefficients of the first equations have no high oscillations
with respect to space variable, the problems of the weak convergence of solutions
under the various conditions on the coefficients and random perturbations have
been studied.

A generalization of Khasminskii’s result [6], for a mean-zero fluctuation, station-
ary field, was considered in [8].

2. Conditions and preliminary results

Let (Ω, F, P ) denote some probability space with filtration Ft, t ∈ [0, T ]. Let En be a
n-dimensional Euclidean space, E+ = [0,+∞), symbol E denotes the mathematical
expectation, ḟ(x) be a derivative of the function f(x), and ∇y is the symbol of the
gradient with respect to y ∈ En. We denote different positive constants by C, with
indexes if need.

Let us consider a system of random equations, t ∈ [0, T ],

ξε(t) = ξ0 +
1
ε

∫ t

0

g

(
ξε(s)
εδ

, ηε(s)
)
ds+

1
εδ

∫ t

0

c

(
ξε(s)
εδ

, ηε(s)
)
ds(2.1)

+
∫ t

0

m

(
ξε(s)
εδ

, ηε(s)
)
ds,
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ηε(t) = η0 +
1
ε2

∫ t

0

b (ηε(s)) ds+
1
ε

∫ t

0

σ (ηε(s)) dw1(s).(2.2)

Here {w1(t), Ft} is n-dimensional standard Wiener process. The processes ξε(t) ∈
E1,ηε(s) ∈ En, the constants ξ0, η0 are non random; g(x, y), c(x, y), and m(x, y) are
functions from E1×En in E1; b(y), σ(y) are the functions from En in En and L(En),
respectively; ε > 0 is a small parameter, and δ is a fixed number from ]0, 1

2 [. If the
equation (2.2) has a unique (in sense of law) solution, then the distribution ηε(tε2)
coincides with the distribution of process η(t), the solution of the Ito stochastic
equation:

dη(t) = b(η(t))dt+ σ(η(t))dw(t)

and does not depend on ε.
Let us denote, by Ck,lx,y(E1, En), the class of the functions f(x, y) which are k and

l times continuously differentiable with respect to x ∈ E1, and y ∈ En respectively.
The symbol “b” in the notation of this class (Ck,lx,y,b(E1, En)) indicates that these
functions and their derivatives, of the stipulated order with respect to x ∈ E1, are
bounded. Let aij(y) be the components of the n× n matrix a(y) = σ(y)σ′(y), and
let bi(y) be the components of the vector b(y).

2.1. Conditions A and AB

We next introduce condition (A).
Condition (A)

A1. The functions aij(y), bi(y) ∈ C2
y(En), and are periodic of period 1;

A2. There exists a constant λ0 > 0 such that for every y, ζ ∈ En

aij(y)ζiζj ≥ λ0|ζ|2;

A3. The functions, g(x, y), c(x, y), and m(x, y) ∈ C2,2
x,y,b(E1, En) are periodic of

period 1 in y.

Remark 2.1. Under the condition (A) the system (2.1), (2.2) has a unique strong
solution.

Let us denote by L∗ the operator which is formally conjugate to the generating
operator L of ηt:

L =
1
2

n∑
i,j=1

aij(y)
∂ 2

∂yi∂yj
+

n∑
i=1

bi(y)
∂

∂yi
.

We shall denote by Y the unit torus in En. As it is well known (see, for example,
[1]), the next problem

L∗p(y) = 0,
∫
Y

p(y)dy = 1,

has the unique positive periodic, of period 1, solution p(y), and for a periodic of
period 1 function h(y) so that

∫
Y
h(y)p(y)dy = 0 , the next problem

Ld(y) = h(y),
∫
Y

d(y)dy = 0(2.3)

has the unique periodic of period 1 solution d(y) ∈ C2(En). Lemma 4.1. ([14]) gives
the estimation of the solution of the problem (2.3) by the right hand side h(y).
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The estimations of the solution of the problem

Ld(x, y) = h(x, y),
∫
Y

d(x, y)dy = 0(2.4)

and its first two derivatives with respect to the parameter x easily can be derived
form Corollary 4.2.

If
∫
Y
h(x, y)p(y)dy = 0 and if h(x, y) belongs to the class C2,2

x,y,b(E1, En), and is
periodic of period 1 with respect to y ∈ En, then, by Corollary 4.2, the solution of
(2.4), d(x, y), is an element of C2,2

x,y,b(E1, En).
We are going to introduce the “balance condition.”
Condition (AB)
For every x ∈ E1,

ḡ(x) = 〈g(x, · )〉 :=
∫
Y

g(x, y)p(y)dy = 0.

Let us consider the Poisson problem

Lψ (x, y) = −g (x, y) ,
∫
Y

ψ (x, y) dy = 0.(2.5)

Remark 2.2. Under the Conditions (A) and (AB), problem (2.5) has the unique
solution ψ (x, y) ∈ C2,2

x,y,b(E1, En).
Let us set

α (x, y) := (σ (y)∇yψ (x, y))2 ,(2.6)

β (x, y) := c (x, y) + g (x, y)
∂

∂x
ψ (x, y) ,(2.7)

and pε(x, y) := p( x
εδ , y), and lε(x) := l( x

εδ ) .
Let us consider

2.2. Model example

Let us fix n = 1 and consider the system (2.1), (2.2) under previous assumptions,
t ∈ [0, T ].

ξε(t) = ξ0 +
1
ε

∫ t

0

D

(
ξε(s)
εδ

)
cos(2πηε(s))ds,

ηε(t) = η0 +
1
ε
w1(t).

We will investigate the limit behavior of ξε(t) as ε goes to 0.
Let the Condition (A) is satisfied. Then, a(y) = 1, L = 1

2
d2

dy2 , and the problem

L∗p(y) = 0,
∫ 1

0

p(y)dy = 1

has the unique solution p(y) = 1.
Condition (AB) gives

∫ 1

0
cos(2πy)dy = 0.
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In this case ψ(x, y) = D(x)Ψ1(y), where Ψ1(y) = cos(2πy)
2π2 is unique solution

of the problem

LΨ1(y) = − cos(2πy),
∫ 1

0

Ψ1(y)dy = 0.

So, ψ(x, y) = D(x) cos(2πy)
2π2 .

Then for the process

θε(ξε(t), ηε(t)) := ξε(t) + εψ

(
ξε(t)
εδ

, ηε(t)
)
,

using Ito’s formula, we get

θε(ξε(t), ηε(t)) = θε(ξ0, η0) +
1

2π2εδ

∫ t

0

Ḋ

(
ξε(s)
εδ

)
D

(
ξε(s)
εδ

)
cos2(2πηε(s))ds

− 1
π

∫ t

0

D

(
ξε(s)
εδ

)
sin(2πηε(s))dw1(s).

We will use the notation (2.6) and (2.7). Then

αε(x) =
D2
(
x/εδ

)
(2π)3

, and βε(x) =
D
(
x/εδ

)
Ḋ
(
x/εδ

)
4π3

.

The process ξε(t) is asymptotically “close” to the process

θ̂ε(ξε(t), ηε(t)) = θε(ξ0, η0) +
1
εδ

∫ t

0

βε(x) +
∫ t

0

√
αε(x)dw1(s)

(the Lemma 4.6). So, using the conditions of classical DA, we can not pass to the
limit (the coefficients of the process θ̂ε(ξε(t), ηε(t)) still depend on a small parameter
ε by irregular way). It is obviously, to answer the question posed in the beginning
of the example we need some additional conditions.

We will return to this example later on after introducing needed conditions .

2.3. Conditions B and C

We are taking in a mind the process θ̂ε(ξε(t), ηε(t)) from the previous example.
The next conditions are natural for investigation of the limit behavior of the SDE
(compare for example with [11])

Let us introduce the next condition.
Condition (B)

B1. There exists a constant λ1 > 0 such that for every x ∈ E1,

α(x) ≥ λ1;

B2. There exists a constant λ2 > 0 such that for every x ∈ E1,∣∣∣∣∫ x

0

β(z)
α(z)

dz

∣∣∣∣ ≤ λ2.
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Let us set

F (x) := exp
{
−2
∫ x

0

β(z)
α(z)

dz

}
, and h(x) :=

∫ x

0

F (z)dz.

Condition (C)
There exist the constants κ0, κ1, and κ2 such that for z ∈ E1,

C0. lim|z|→∞
1
z

∫ z
0
F (x)dx = κ0;

C1. lim|z|→∞
1
z

∫ z
0

1
α(x)F (x)dx = κ1;

C2. lim|z|→∞
1
z

∫ z
0
m(x)
α(x) dx = κ2.

Remark 2.3. It follows from Lemma 4.3 and our conditions above that there exist
positive constants C1, C2 such that

0 < C1 < κ0 < C2 ; 0 < C1 < κ1 < C2 ; |κ2| < C2.

2.4. Model example (continuation)

The Condition (B) gives:
There exist the constants λ1 > 0 and λ2 > 0 such that for every x ∈ E1

D2(x) ≥ λ1 and D(x) ≤ λ2D(0).

The function F (x) has the form F (x) = D(0)
D(x) . The Condition (C) implies:

There exist the constant κ0 such that for z ∈ E1,

lim
|z|→∞

1
z

∫ z

0

dx

D(x)
=

κ0

D(0)
;

Remark 2.4.1. Under these conditions the constant from the Condition (C2) is
defined by κ1 = κ0

(2π)3

D2(0) .

Using the Theorem 3.1.1., for the process ξε(t) we got the limit process

ξ(t) = ξ0 +
D(0)

κ0(2π)
3
2
w(t).

Let us introduce

f(x) :=
1
κ0
h(x)− x, x ∈ E1,(2.8)

Obviously,

Lxf(x) = β(x)ḟ(x) +
1
2
α(x)f̈(x) = −β(x).(2.9)

Let β0(x, y) denotes the function such that

Lxf(x) = β(x, y)ḟ(x) +
1
2
α(x, y)f̈(x) = β0(x, y).(2.10)

Remark 2.4. From (2.9) and (2.10), we have β0(x) = −β(x).
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3. Main result

In this chapter we formulate and give the proof of our main theorem.

3.1. Fractional stability of diffusion approximation

Let (C[0, T ],C), be a space of all continuous functions on [0, T ] with the family
of σ-algebras C = {Ct}0≤t≤T . The space C∞0 (E1) is the space of all infinitely
differentiable functions with compact support on E1. For a fixed number δ ∈ ]0, 1

2 [,
let us denote by {µεδ, ε > 0} the family of probability measures induced by the
random processes {ξε(·), ε > 0} on C([0, T ]) and by “⇒”, the sign for the weak
convergence of measures. We will prove the weak convergence

µεδ ⇒ µ,

as ε tends to 0 for each δ, where µ is the measure corresponding to the random
process

ξ(t) = ξ0 + β0t + σ0w(t).

Here, ξ0 is the initial condition from (2.1), β0 and σ0 are the certain constant
coefficients, and w(t), t ∈ [0, T ], is the standard one-dimensional Wiener process.

Theorem 3.1.1. Let conditions (A), (AB), (B), and (C) be fulfilled. Then, for
every δ ∈ ]0, 1

2 [ the measures µεδ ⇒ µ as ε tends to 0 . The random process ξ(t),
which corresponds to µ, is defined by

ξ(t) = ξ0 + β0t + σ0w(t),

where
β0 =

κ2

κ0κ1
, σ0 =

1
√
κ0κ1

.

Remark 3.1.1. The case δ = 0 corresponds to the classical DAs scheme. The suffi-
cient conditions of the weak convergence of µε0 as ε tends to 0 can be simplified in
this case.

3.2. Proof of Theorem 3.1.1

First (I), we will prove that, for each δ ∈ ]0, 1
2 [, the family of measures {µεδ, ε > 0},

is weakly compact on C[0, T ], and, second (II), we are going to the limit as ε tends
to 0, giving the possibility to the coefficients of equation (2.1) obtain the averaging
form with respect to random perturbations (at that time for new processes, which
is “close” to initial one we will have the equations with positive diffusion coeffi-
cients: conditions (A), (AB), (B)) and after that we will use the condition (C) for
identification of the limit process.

I. Now we fix arbitrary δ ∈ ]0, 1
2 [. By Ito’s formula applied to εψ

(
ξε(t)
εδ , ηε(t)

)
((2.5) and Remark 2.2.), for

ζε(t) := ζε(ξε(t), ηε(t)) = ξε(t) + εψε (ξε(t), ηε(t)) ,

using the notation (2.6) and (2.7), we obtain

ζε(ξε(t), ηε(t))− ζε(ξ0, η0)
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= ε1−2δ

∫ t

0

∂

∂x
ψε (ξε(s), ηε(s)) cε(ξε(s), ηε(s))ds

+ ε1−δ
∫ t

0

∂

∂x
ψε (ξε(s), ηε(s))mε(ξε(s), ηε(s))ds+

∫ t

0

mε(ξε(s), ηε(s))ds(3.1)

+
1
εδ

∫ t

0

βε (ξε(s), ηε(s)) ds+
∫ t

0

√
αε (ξε(s), ηε(s))dw1(s).

We will use the notations (2.9) and (2.10). By Ito’s formula applied to the process
εδf
(
ζε(t)
εδ

)
((2.8)) and setting B(x, y) := β(x, y) + β0(x, y), for ζε(t) + εδf

(
ζε(t)
εδ

)
we obtain

ζε(ξε(t), η(t)) + εδfε(ζε(t))
= ζε(ξ0, η0) + εδfε(ζε(0))

+
1
κ0

∫ t

0

Fε(ζε(s))mε(ξε(s), ηε(s))ds+
1
εδ

∫ t

0

Bε(ξε(s), ηε(s))ds

+
1
εδ

∫ t

0

(
βε(ξε(s), ηε(s))

(
ḟε(ζε(s))− ḟε(ξε(s))

)
+

1
2
αε(ξε(s), ηε(s))

(
f̈ε(ζε(s))− f̈ε(ξε(s))

))
ds

+
ε1−2δ

κ0

∫ t

0

Fε(ζε(s))
∂

∂x
ψε(ξε(s), ηε(s))cε(ξε(s), ηε(s))ds

+
ε1−δ

κ0

∫ t

0

Fε(ζε(s))
∂

∂x
ψε(ξε(s), ηε(s))mε(ξε(s), ηε(s))ds

+
1
κ 0

∫ t

0

Fε(ζε(s))
√
αε (ξε(s), ηε(s))dw1(s).

Taking into account the equality B̄(x) = 0 (Remark 2.4.), let us consider a
function n(x, y), the periodic function of period 1 with respect to y, the unique
solution of

Ln(x, y) = −B(x, y),
∫
Y

n(x, y)dy = 0,

for every parameter x ∈ E1.
Applying Ito’s formula to the function ε2−δnε(ξε(t), ηε(t)) for

λε(t) := λε(ξε(t), ηε(t)) = ζε(t) + εδfε(ζε(t)) + ε2−δnε(ξε(t), ηε(t))

we get

λε(ξε(t), ηε(t)) = λε(ξ0, η0) +
1
κ0

∫ t

0

Fε(ζε(s))mε(ξε(s), ηε(s))ds

+
1
κ 0

∫ t

0

Fε(ζε(s))σ(ηε(s))∇yψε(ξε(s), ηε(s))dw1(s)(3.2)

+
4∑
i=0

∫ t

0

Aεi (ξε, ηε, s)ds+
∫ t

0

Aε5(ξε, ηε, s)dw1(s),

where

Aε0(ξε, ηε, t) =
1
εδ

(
βε(ξε(t), ηε(t))

(
ḟε(ζε(t))− ḟε(ξε(t))

)
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+
1
2
αε(ξε(t), ηε(t))

(
f̈ε(ζε(t))− f̈ε(ξε(t))

))
;

Aε1(ξε, ηε, t) = ε1−2δ

(
1
κ0
Fε(ζε(t))

∂

∂x
ψε(ξε(t), ηε(t))cε(ξε(t), ηε(t))

+
∂

∂x
nε(ξε(t), ηε(t))gε(ξε(t), ηε(t))

)
;

Aε2(ξε, ηε, t) = ε2(1−δ)
∂

∂x
nε(ξε(t), ηε(t))mε(ξε(t), ηε(t));

Aε3(ξε, ηε, t) =
ε1−δ

κ0
Fε(ζε(t))

∂

∂x
ψε(ξε(t), ηε(t))mε(ξε(t), ηε(t));

Aε4(ξε, ηε, t) = ε2−3δ ∂

∂x
nε(ξε(t), ηε(t))cε(ξε(t), ηε(t));

Aε5(ξε, ηε, t) = ε1−δσ(ηε(t))∇ynε(ξε(t), ηε(t)).

Now, for every t ∈ [0, T ], our conditions and estimations of Lemma 4.3, taking
into account the statement of Lemma 4.5, imply the existence of the constant
C(T ) =: C so that

5∑
i=1

E sup
t∈[0,T ]

|Aεi (ξε, ηε, t)| ≤ ε1−2δC.

Also the integrands of the first two integrals in (3.2) are bounded by the constant
C(T ) := C. Hence, for any fixed ε0 so that 0 < ε ≤ ε0

E sup
s∈[0,T ]

(
1
κ0
|Fε(ζε(s))mε(ξε(s), ηε(s))|

+
1
κ 0
|Fε(ζε(s))

√
αε (ξε(s), ηε(s))|+

5∑
i=0

|Aεi (ξε, ηε, s)|
)
≤ C(1 + Cε),

where limε→0 Cε = 0 . From this, by standard arguments ([9]), we obtain that there
exists a constant Cε0(η0) such that for every 0 < ε < ε0,

E sup
t∈[0,T ]

|λε(t)|2 ≤ Cε0(η0)(1 + |ξ0|2),

and for every s, t : 0 ≤ s ≤ t ≤ T

E|λε(t)− λε(s)|4 ≤ Cε0(η0)|t− s|2.

Using (3.2) and Lemmas 4.6, 4.9, we can check the conditions of weak compactness
([4], Lemma 2, p.355) for the family of measures {µεδ, 0 < ε < ε0}. Thus the set of
measures, corresponding to the processes

ξε(t) = λε(ξε(t), ηε(t))− εψε(ξε(t), ηε(t))− εδfε(ζε(t))− ε2−δnε(ξε(t), ηε(t))

on C[0, T ], is weakly compact.
II. We begin our considerations with the relationship (3.2).
Let φ(x) ∈ C∞0 (E1), Φs(x) be a continuous bounded Cs-measurable functional.

Applying Ito’s formula to φ(λε(t)), we obtain

EΦr(ξε)[φ(λε(t))− φ(λε(r))]
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= EΦr(ξε)
{∫ t

r

φ̇(λε(s))
(

1
κ0
Fε(ζε(s))mε(ξε(s), ηε(s)) +

4∑
i=0

Aεi (ξε, ηε, s)
)
ds

+
1
2

∫ t

r

φ̈(λε(s))
(

1
κ0
Fε(ζε(s))

√
αε

(
ξε(s), ηε(s)

)
+Aε5(ξε, ηε, s)

)2

ds

}
.(3.3)

Now, we denote

Dε(r, t) =
∫ t

r

φ̇(λε(s))
4∑
i=0

Aεi (ξε, ηε, s)ds+
∫ t

r

φ̈(λε(s))

×
(

1
κ0
Fε(ζε(s))

√
αε (ξε(s), ηε(s))Aε5(ξε, ηε, s) +

1
2
(Aε5(ξε, ηε, s))

2

)
ds.

Applying Lemma 4.10 to k(x, y) = m(x, y)− 〈m(x, · )〉, H(x) = F (x), and P (x) =
φ̇(x), we arrive at

EΦr(ξε)
∫ t

r

φ̇(λε(s))Fε(ζε(s))mε(ξε(s), ηε(s))ds

= EΦr(ξε)
(∫ t

r

φ̇(λε(s))Fε(ζε(s))mε(ξε(s))ds+G(ε,mε −mε, r, t)
)
.

In a similar way, applying Lemma 4.10 to

k(x, y) = (σ (y)∇yψ (x, y))2 − 〈(σ ( · )∇·ψ (x, · ))2 ,

Hε(x) = F 2
ε (x), and P (x) = φ̈(x), we obtain

EΦr(ξε)
∫ t

r

φ̈(λε(s))F 2
ε (ζε(s))αε(ξε(s), ηε(s))ds

= EΦr(ξε)
(∫ t

r

φ̈(λε(s))F 2
ε (ζε(s))αε(ξε(s))ds+G(ε, αε − αε, r, t)

)
.

Rewriting (3.3), we arrive at

EΦr(ξε)
[
φ(ξε(t))− φ(ξε(r))−

∫ t

r

{φ̇(ξε(s))β0 +
1
2
φ̈(ξε(s))σ2

0}ds
]

(3.4)

= I0
ε + I1

ε + I2
ε + I3

ε + I4
ε + I5

ε ,

where

I0
ε = EΦr(ξε)

(
1
κ 0
G(ε,mε − 〈mε〉 , r, t) +

1
2α2

0

G(ε, αε − 〈αε〉 , r, t) +Dε(r, t)
)

;

I1
ε = EΦr(ξε)(φ(ξε(t))− φ(λε(t))− φ(ξε(r)) + φ(λε(r)));

I2
ε = EΦr(ξε)

∫ t

r

[(
φ̇(λε(s))− φ̇(ξε(s))

)
β0 +

1
2

(
φ̈(λε(s))− φ̈(ξε(s))

)
σ2

0

]
ds;

I3
ε = EΦr(ξε)

∫ t

r

[
φ̇(λε(s))

1
κ 0
Fε(ζε(s)) (〈mε(ξε(s), ·)〉 − 〈mε(ζε(s), ·)〉)

+
1
2
φ̈(λε(s))κ−2

0 F 2
ε (ζε(s)) (〈αε(ξε(s), ·)〉 − 〈αε(ζε(s), ·)〉)

]
ds;
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I4
ε = EΦr(ξε)

∫ t

r

φ̇(λε(s))
[

1
κ 0
Fε(ζε(s))〈mε(ζε(s), · )〉 − β0

]
ds;

I5
ε =

1
2
EΦr(ξε)

∫ t

r

φ̈(λε(s))[κ−2
0 F 2

ε (ζε(s))〈αε(ζε(s), · )〉 − σ2
0 ]ds.

We shall prove that the limit of the right hand side of (3.4), as ε→ 0, is equal
to zero.

For small ε, we can estimate Dε(r, t), using Condition (A1) and Lemma 4.3, as

E sup
t∈[0,T ]

|Dε(t, r)| ≤ ε1−2δ(1 + Cε)CT ,

where limε→0 Cε = 0. From this inequality and Lemma 4.10 we have

lim
ε→0

I0
ε = 0.

According to Lemma 4.6 and Lemma 4.9, we get

lim
ε→0

I1
ε = lim

ε→0
I2
ε = 0.

Using Lemma 4.3 and Lemma 4.12, we obtain

lim
ε→0

I3
ε = 0.

Lemma 4.15 implies
lim
ε→0

I4
ε = lim

ε→0
I5
ε = 0.

Consequently, limε→0

∑5
i=1 I

i
ε = 0.

Let µδ denotes some limit point of the family {µεδ, 0 < ε < ε0} and Eµδ be an
expectation on this measure. Let us come to the limit in (3.4) by a subsequence
{εk} such that µεk

δ ⇒ µδ as εk → 0. We get

EµδΦr(ξ)
(
φ(ξ(t))− φ(ξ(r))−

∫ t

r

{φ̇(ξ(s))β0 +
1
2
φ̈(ξ(s))σ2

0}ds
)

= 0.

The coefficients do not depend on δ. That means µδ = µ. Consequently, µεδ ⇒ µ
as ε → 0, and the limit measure coincides with the measure corresponding to the
process

ξ(t) = ξ0 +
κ2

κ0κ1
t +

1
√
κ0κ1

w(t).

4. Needed preliminary results

In this section we prove the results used for the proof of the Theorem above.
(Below we denote by ∂Y the boundary of unit cube Y in En)

Lemma 4.1. Let d = d (y) be a periodic function satisfying

Ld (y) = h (y) ,
∫
Y

d (y) dy = 0,

and Condition (A) holds.
Then,

sup
Y
|d| ≤ Cmax

Y
|h| ,

with the constant C depending only on the prescribed quantities, such as dimension
n, ellipticity constant λ0, etc.



52 Yuriy V. Kolomiets

Proof. Let BR denote a set in En which contains a cube Y . By changing d(y) to
d(y)− inf

BR

d , we can suppose that inf
BR

d = 0. The Theorems 9.20, 9.22 ( [5]) imply

sup
En

d = sup
BR

d ≤ C(inf
BR

d+ max
BR

|h|).

That means,
sup
En

d = osc(d) ≤ Cmax
Y

|h|.

Corollary 4.2. Under the previous assumptions, let d(x, y) and h(x, y) depend on
a parameter x. Then the derivatives of d and h with respect to x satisfy

sup
En

∣∣∣∣∂d∂x
∣∣∣∣ ≤ C sup

Y

∣∣∣∣∂h∂x
∣∣∣∣ .

Proof. The proof follows immediately from the linearity of equation (2.4).

The function h(x) is one-to-one function and, consequently, has an inverse func-
tion denoted by h−1(x).

Lemma 4.3. Let the Conditions (A) and (B) be satisfied. Then there exists a
positive constant C such that

1. exp {−2λ2} ≤ F (x) ≤ exp {2λ2}; |Ḟ (x)| ≤ C; |F̈ (x)| ≤ C; |
...

F (x)| ≤ C;
2. |h(x)| ≤ exp {2λ2}|x|; |ḣ(x)| ≤ C;
3. |f(x)| ≤ C(1 + |x|); |ḟ(x)| ≤ C;
4. supz∈E1

∣∣∣β(z)
α(z)

∣∣∣ ≤ C
λ1

= C;
5. supx∈E1,y∈En

|β(x, y)| ≤ C; supx∈E1,y∈En
|α(x, y)| ≤ C;

6. |h−1(x)| ≤ exp {2λ2}|x|; exp {−2λ2} ≤ ḣ−1(x) ≤ exp {2λ2}.

Proof. The assertions 1.–5. of the lemma follow from our assumptions. Next, let us
consider 6. The equality

ḣ−1(x) =
1

ḣ(h−1(x))
=

1
F (h−1(x))

and 1. imply second part 6. Then, using that ḣ−1(0) = 0, from the previous equality,
we have

|h−1(x)| = |h−1(x)− h−1(0)| ≤ exp {2λ2}|x|.

Lemma 4.4. Let the Conditions (A) and (B) be satisfied. The processes ξε(t), ηε(t)
are the solutions of (2.1), (2.2) respectively. For every δ ∈ ]0, 1

2 [

lim
ε→0

E sup
t∈[0,T ]

∣∣∣∣∣ 1
εδ

∫ ξε(t)
εδ +ε1−δψε(ξε(t),ηε(t))

ξε(t)
εδ

β(z)
α(z)

dz

∣∣∣∣∣ = 0.

Proof. By Remark 2.2 and Lemma 4.3 (part 4.), we have

lim
ε→0

E sup
t∈[0,T ]

∣∣∣∣∣ 1
εδ

∫ ξε(t)
εδ +ε1−δψε(ξε(t),ηε(t))

ξε(t)
εδ

β(z)
α(z)

dz

∣∣∣∣∣
≤ C lim

ε→0
ε1−2δE sup

t∈[0,T ]

|ψε(ξε(t), ηε(t))| = 0.
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Lemma 4.5. Let the Conditions (A) and (B) be satisfied. The processes ξε(t), ηε(t)
are the solutions of (2.1), (2.2) respectively, ζε(t) is defined by (3.1). For every
δ∈]0, 1

2 [ and for every t ∈ [0, T ],

lim
ε→0

E sup
t∈[0,T ]

|Aε0(ξε, ηε, t)| = 0.

Proof. Part A. From the definition of function f(x) ((2.8)) and, using Lemma 4.3
(part 2.), we have

|Aε01(ξε(t), ζε(t))| :=
∣∣∣ḟε(ζε(t))− ḟε(ξε(t))

∣∣∣
≤ C

κ0

∣∣∣∣∣
(

exp

{
−2
∫ ξε(t)

εδ +ε1−δψε(ξε(t),ηε(t))

ξε(s)
εδ

β(z)
α(z)

dz

}
− 1

)∣∣∣∣∣ .
Now, using the Lemma 4.4, we get

lim
ε→0

E sup
s∈[0,t]

1
εδ
|Aε01(ξε(s), ζε(s))| ≤ C lim

ε→0
ε1−2δ = 0.

Part B. Similarly, by the Lemma 4.3 and Lemma 4.4, using technique of part A
and the condition B2, we can derive

lim
ε→0

E sup
s∈[0,t]

1
εδ
|Aε02(ξε(s), ζε(s))| ≤ C lim

ε→0
ε1−2δ = 0,

where |Aε02(ξε(t), ζε(t))| :=
∣∣∣f̈ε(ζε(t))− f̈ε(ξε(t))

∣∣∣.
Part C. From parts A and B and by the estimations of Lemma 4.3, we arrive at

lim
ε→0

E sup
t∈[0,T ]

|Aε0(ξε, ηε, t)|

≤ C lim
ε→0

1
εδ
E sup
t∈[0,T ]

|Aε01(ξε(s), ζε(s)) +Aε02(ξε(s), ζε(s))| ≤ C lim
ε→0

ε1−2δ = 0.

Lemma 4.6. Let the Conditions (A), (B), and (C0) hold. The processes ξε(t), ηε(t)
are the solutions of (2.1), (2.2) respectively. Then, for every δ ∈ ]0; 1

2 [,

lim
ε→0

E sup
t∈[0,T ]

|εψε(ξε(t), ηε(t)) + ε2−δnε(ξε(t), ηε(t))|2 = 0.

Proof. From the definitions and the properties of the functions ψ(x, y), (2.5), and
n(x, y),

E sup
t∈[0,T ]

|εψε(ξε(t), ηε(t)) + ε2−δnε(ξε(t), ηε(t))|2 ≤ lim
ε→0

ε2(1−δ)C = 0.

follows.

Lemma 4.7. Let the Conditions (A) and (B) be satisfied. The processes ξε(t), ηε(t)
are the solutions of (2.1), (2.2) respectively, ζε(t) is defined by (3.1). For every
integer positive m and δ ∈ ]0, 1

2 [ and ε0 > 0, there exist constants Cm(ε0), such
that for every ε < ε0,

E sup
t∈[0,T ]

|ξε(t)|m ≤ Cm(ε0, λ2)(1 + Cm(ε0, λ2, ξ0, η0)).
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Proof. We fix arbitrary ε0 > 0 and, for ε < ε0, apply Ito’s formula to the function
εδhε(ζε(t)) + κ0ε

2−δnε(ξε(t), ηε(t)). Using Lemma 4.3 and Lemma 4.5, under Con-
dition (B), in a standard way, as in ([9], Ch.II, Sec. 5, Corollary 12, p. 86), we can
get the estimates

E sup
t∈[0,T ]

|εδhε(ζε(t)) + κ0ε
2−δnε(ξε(t), ηε(t))|m

≤ Cm(1 + Cε)(1 + |εδhε(ζ0) + κ0ε
2−δnε(ξ0, η0)|m)

≤ Cm(ε0)(1 + |εδhε(ζ0) + κ0ε
2−δnε(ξ0, η0)|m);

here limε→0 Cε = 0, ζ0 = ξ0 + ε(ψε(ξ0, η0)).
It follows from part 6. of Lemma 4.3., that

εδ|h−1
ε (x)| ≤ exp {2λ2}|x|.

Let us estimate E supt∈[0,T ] |ξε(t)|m. We obtain

E sup
t∈[0,T ]

|ξε(t)|m = E sup
t∈[0,T ]

|ξε(t) + εψε(ξε(t), ηε(t))− εψε(ξε(t), ηε(t))|m

= E sup
t∈[0,T ]

|εδh−1
ε (εδhε(ζε(t))) + κ0ε

2−δnε(ξε(t), ηε(t))

− εψε(ξε(t), ηε(t))− κ0ε
2−δnε(ξε(t), ηε(t))|.

Combining the results of Lemma 4.3 (part 6.), and Lemma 4.6, there is ε0 such
that, for every ε ≤ ε0, we can find constants C(ε0,m) and
C(ε0,m, ξ0, η0) so that

E sup
t∈[0,T ]

|ξε(t)|m ≤ exp {−2λ2}(Cm(ε0) + Cm(ε0, ξ0, η0)).

From last inequality, the statement of the lemma follows.

Corollary 4.8. Under the assumptions of the previous Lemma, there exist con-
stants C ′m(ε0, λ2) and C ′m(ε0, ξ0, η0) such that for every ε < ε0,

E sup
t∈[0,T ]

|ζε(t)|m ≤ C ′m(ε0, λ2)(1 + C ′m(ε0, λ2, ξ0, η0)).

Proof. The proof follows immediately from the proof of the previous Lemma.

Lemma 4.9. Let the Conditions (A), (B), and (C0) be hold. The process ζε(t) is
defined by (3.1). Then for every δ ∈ ]0; 1

2 [

lim
ε→0

E sup
t∈[0,T ]

|εδfε(ζε(t))|2 = 0.

Proof. For every ε > 0 and N such that ε
δ
2 < N <∞,

E sup
t∈[0,T ]

|εδfε(ζε(t))|2 = E sup
t∈[0,T ]

|εδfε(ζε(t))|2χ{|ζε(t)| < ε
δ
2 }

+ E sup
t∈[0,T ]

|εδfε(ζε(t))|2χ{ε
δ
2 ≤ |ζε(t)| ≤ N}

+ E sup
t∈[0,T ]

|εδfε(ζε(t))|2χ{|ζε(t)| > N}

= Dε
11 +Dε

12 +Dε
13
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respectively. By part 3. of Lemma 4.3 we obtain

lim
ε→0

Dε
11 = 0.

Using the definition of the function f(x) and the condition (C0), we have

lim
ε→0

Dε
12 = lim

ε→0
E sup
t∈[0,T ]

∣∣∣∣ εδκ0

∫ ζε(t)
εδ

0

F (z)dz − ζε(t)
∣∣∣∣2χ{ε δ

2 ≤ |ζε(t)| ≤ N} = 0.

Now,

Dε
13 ≤ ε2δC

(
1 +

E supt∈[0,T ] |ζε(t)|4

ε4δ

) 1
2 E supt∈[0,T ] |ζε(t)|2

N2
.

At first approaching the limit as ε→ 0, then letting N →∞ and using the estima-
tion of Corollary 4.8, the statement of lemma follows.

Lemma 4.10. Let the functions H(x) ∈ C2
x,b(E1) and the function k(x, y) ∈

C2,2
x,y,b(E1, En) satisfied the condition k̄(x) = 0. The processes ξε(t), ηε(t) are the

solutions of (2.1), (2.2) respectively, ζε(t) is defined by (3.1), λε(t) is defined by
(3.2). Then, for a function P (x) ∈ C∞0 (E1) and a continuous bounded Cs — mea-
surable functional Φs(x), we have

lim
ε→0

EΦr(ξε)
(∫ t

r

P (λε(s))Hε(ζε(s))kε(ξε(s), ηε(s))ds
)

= 0.

Proof. Let the function l(x, y) be the unique solution of the problem

Ll(x, y) = k(x, y),
∫
Y

l(x, y)dy = 0

for any x ∈ E1 (x play the role of parameter). Then l(x, y) ∈ C2,2
x,y,b(E1, En).

Applying Ito’s formula to the function

ε2P (λε(s))Hε(ζε(s))l
(
ξε(s)
εδ

, ηε(s)
)
,

we get ∫ t

r

P (λε(s))Hε(ζε(s))kε(ξε(s), ηε(s))ds = G(ε, k, r, t),

where the function G(ε, k, r, t) depends on the processes ξε(t), ζε(t), λε(t) and ηε(t)
Using the estimates of Lemma 4.7, under our conditions, by the standard argu-

ments we arrive at

lim
ε→0

EΦr(ξε)G(ε, k, r, t) = 0 ≤ C lim
ε→0

√
εEΦr(ξε)

(
1 + sup

t∈[0;T ]

3∑
k=1

|ξε(t)|k
)

= 0.

Corollary 4.11. The statement of the previous Lemma is also true for H(x) ∈
C2
x(E1) such that |H(x)|+ |Ḣ(x)|+ |Ḧ(x)| ≤ C(1 + |x|).
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Proof. The proof follows immediately from the Corollary 4.8 and the proof of the
previous Lemma 4.10.

Lemma 4.12. Let the Conditions (A) and (B) be satisfied. The processes ξε(t), ηε(t)
are the solutions of (2.1), (2.2) respectively. Then, for every δ∈]0, 1

2 [,

lim
ε→0

E sup
t∈[0,T ]

| 〈mε(ξε(t), ·)〉 − 〈mε(ζε(t), ·)〉 |2 = 0.

and

lim
ε→0

E sup
t∈[0,T ]

| 〈αε(ξε(t), ·)〉 − 〈αε(ζε(t), ·)〉 |2 = 0.(4.1)

Proof. According to the conditions, we have

lim
ε→0

E sup
t∈[0,T ]

| 〈mε (ξε(t), ·)〉 − 〈mε (ζε(t), ·)〉 |2

≤ lim
ε→0

ε2(1−2δ)E sup
t∈[0,T ]

sup
E1

∣∣∣∣ ∂∂x
〈
m

(
ξε(t)
εδ

, ·
)〉∣∣∣∣2 |ψε(ξε(t), ηε(t))|2 = 0.

Similarly, we can prove (4.1).

Lemma 4.13. Let the Conditions (A) and (B) hold. The processes ζε(t) is defined
by (3.1), λε(t) is defined by (3.2), and let lε(x) be such a function that

E sup
t∈[0,T ]

|lε(ζε(t))|2 ≤ C,(4.2)

and for every r, t : 0 ≤ r ≤ t ≤ T

lim
ε→0

E

∣∣∣∣∫ t

r

lε(ζε(s))ds
∣∣∣∣ = 0.(4.3)

Then, for every φ(x) ∈ C∞0 (E1) and 0 ≤ r ≤ t ≤ T ,

lim
ε→0

E

∣∣∣∣∫ t

r

φ(λε(s))lε(ζε(s))ds
∣∣∣∣ = 0.

Proof. Let {ti} be some partition of interval [r, t] : r ≤ t1 ≤ t2 ≤ ... ≤ tn = t such
that |ti+1 − ti| ≤ ηi. Then

E

∣∣∣∣∫ t

r

φ(λε(s))lε(ζε(s))ds
∣∣∣∣ ≤ E

n−1∑
i=1

∣∣∣∣∫ ti+1

ti

(
φ(λε(s))− φ(λε(ti))

)
lε(ζε(s))ds

∣∣∣∣
+
n−1∑
i=1

E
∣∣φ(λε(ti))

∣∣∣∣∣∣∫ ti+1

ti

lε(ζε(s))ds
∣∣∣∣.(4.4)

Let us denote first term in the right hand side (4.4) by L(ε, n), then, using (4.2)
and the estimation of E|λε(t) − λε(s)|4, there exist a constant C0 such that for
every 0 < ε < ε0

L(ε, n) ≤
n−1∑
i=1

(∫ ti+1

ti

E
∣∣φ(λε(s))− φ(λε(ti))

∣∣4ds) 1
4
(∫ ti+1

ti

E
∣∣lε(ζε(s))∣∣ 43 ds) 3

4
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≤ C0

n−1∑
i=1

{(∫ ti+1

ti

(s− ti)2ds
) 1

4

(ti+1 − ti)
3
4

}
≤ C0(t− r) max

i

√
ηi.

Consequently, L(ε, n) can be made arbitrarily small by making the partition of the
interval [r, t] fine enough. By (4.3), the second term in the right hand side of (4.4)
tends to 0 as ε→ 0 . The lemma is proved.

Lemma 4.14. Let us define two functions

γ(x) = 2
∫ x

0

F (z)
∫ z

0

κ−1
0 F (y)m(y)− β0

F (y)α(y)
dydz,

γ1(x) = 2
∫ x

0

F (z)
∫ z

0

κ−2
0 F 2(y)α(y)− σ2

0

F (y)α(y)
dydz.

Let the conditions (A), (B), and (C) be fulfilled. The process ζε(t) is defined by
(3.1). Then, for every δ ∈ ]0; 1

2 [,

lim
ε→0

E sup
t∈[0,T ]

|ε2δγε(ζε(t))| = lim
ε→0

E sup
t∈[0,T ]

|εδγ̇ε(ζε(t))|2 = 0,

lim
ε→0

E sup
t∈[0,T ]

|ε2δγ1
ε (ζε(t))| = lim

ε→0
E sup
t∈[0,T ]

|εδγ̇1
ε (ζε(t))|2 = 0.(4.5)

Proof. For every N : ε
δ
2 ≤ N <∞,

E sup
t∈[0,T ]

|ε2δγε(ζε(t))| = E sup
t∈[0,T ]

|ε2δγε(ζε(t))|
(
χ{|ζε(t)| < ε

δ
2 }

+ χ{ε δ
2 ≤ |ζε(t)| ≤ N}+ χ{|ζε(t)| > N}

)
= γ(1)

ε + γ(2)
ε + γ(3)

ε

respectively.
According to Lemma 4.3, under the Conditions (A), (B), we have

|γ(x)| ≤ C(1 + |x|2),
4∑
i=1

∣∣∣∣ didxi γ(x)
∣∣∣∣≤ C(1 + |x|).

Under the Condition (C) and by part 1. of Lemma 4.3, we obtain

lim
ε→0

sup
0<|x|≤N

|ε2δγε(x)| = lim
ε→0

sup
0<|x|≤N

|εδγ̇ε(x)|2 = 0.

Now, we have
lim
ε→0

(γ(1)
ε + γ(2)

ε ) = 0.

Similarly, using Corollary 4.8, we get

γ(3)
ε ≤ ε2δC(1 + ε−4δE sup

t∈[0,T ]

|ζε(t)|4)
1
2
E supt∈[0,T ] |ζε(t)|2

N2
≤ C

N2
.

Approaching the limit as ε→ 0 and then as N →∞,

lim
ε→0

E sup
t∈[0,T ]

|ε2δγε(ζε(t))| = 0

follows. Obviously,
lim
ε→0

E sup
t∈[0,T ]

|εδγ̇ε(ζε(t))|2 = 0.

In a similar way, we can prove (4.5).
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Lemma 4.15. Let the conditions (A), (B), and (C2) be fulfilled. The process ζε(t)
is defined by (3.1) and λε(t) is defined by (3.2). Then for every δ ∈ ]0; 1

2 [

lim
ε→0

EΦr(ξε)
∫ t

r

φ̇(λε(s))
(

1
κ 0
Fε(ζε(s))〈mε(ζε(s), · )〉 − β0

)
ds = 0,(4.6)

lim
ε→0

EΦr(ξε)
∫ t

r

φ̈(λε(s))
(
κ−2

0 F 2
ε (ζε(s))〈αε(ζε(s), · )〉 − σ2

0 ]
)
ds = 0.(4.7)

Proof. Firstly, we will prove (4.6). According to Lemma 4.13, it is sufficient to show,
for every r, t : 0 ≤ r < t ≤ T , that

lim
ε→0

E

∣∣∣∣∫ t

r

[
κ−1

0 Fε(ζε(s))〈mε(ζε(s), · )〉 − β0

]
ds

∣∣∣∣= 0.(4.8)

We note that, using the estimations for γ(x), by virtue of Corollary 4.11 for
P (x) = 1, H(x) = γ̇(x) ((4.16)), and k(x, y) = β(x, y)− β(x), we obtain∫ t

r

γ̇ε(ζε(s))βε(ξε(s), ηε(s))ds =
∫ t

r

γ̇ε(ζε(s))βε(ξε(s))ds+G(ε, βε − βε, r, t).

In a similar way for k(x, y) = α(x, y)− α(x) and H(x) = γ̈(x), we arrive at∫ t

r

γ̈ε(ζε(s))αε(ξε(s), ηε(s))ds =
∫ t

r

γ̈ε(ζε(s))αε(ξε(s))ds+G(ε, αε − αε, r, t).

Applying Ito’s formula to the function ε2δγε(ζε(t)) and taking into account the
equality Lxγ(x) = 1

κ0
F (x)m(x) − β0, ((2.9)), and two previous relationships, we

have ∫ t

0

{
1
κ0
Fε(ζε(s))mε(ζε(s))− β0

}
ds

= ε2δ (γε(ζε(t))− γε(ζε(0)))− εδ
∫ t

0

γ̇ε(ζε(s))mε(ξε(s), ηε(s))ds

− ε

∫ t

0

γ̇ε(ζε(s))
∂

∂x
ψε(ξε(s), ηε(s))mε(ξε(s), ηε(s))ds

− ε1−δ
∫ t

0

γ̇ε(ζε(s))
∂

∂x
ψε(ξε(s), ηε(s))cε(ξε(s), ηε(s))ds

− εδ
∫ t

0

γ̇ε(ζε(s))α
1
2
ε (ξε(s), ηε(s))dw1(s)

−G(ε, βε − βε, 0, t)−
1
2
G(ε, αε − αε, 0, t).

Using this, Lemma 4.14 and Corollary 4.8, we obtain (4.8) and, consequently, (4.6).
In a similar way, we can prove (4.7) This result can be obtained by an application

Ito’s formula to εδγ1
ε (ζε(t)). After that, we use Lemma 4.14 and Corollary 4.8.

5. Examples

In this section the result of the theorem is applied to classes of random processes.
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5.1. Example 1

Let ηε(t) be a one-dimensional process (the solution of (2.2), n = 1) and the
Condition (A) is satisfied.

Then, L = 1
2a(y)

d2

dy2 + b(y) ddy , with a(y) = σ2(y) and

p(y) =
1

C0a(y)R(y)
,

where R(y) = exp
(
−
∫ y
0

2b(z)
a(z) dz

)
, and C0 =

∫ 1

0
1

a(z)R(z)dz. Condition (AB)

gives
∫ 1

0
g(x, y)p(y)dy = 0. Let us define M(x, y) =

∫ y
0
R(z)

∫ z
0

g(x,k)
a(k)R(k)dkdz

The problem (2.5) has unique solution

ψ(x, y) = −M(x, y) + C1(x)
∫ y

0

R(z)dz + C2(x),

where the functions C1(x), C2(x) can be defined by the periodicity condition ψ(x, 0) =
ψ(x, 1), C1(x) = M(x,1)∫ 1

0
R(z)dz

, and from the condition in (2.5), C2(x) =
∫ 1

0
M(x, y)dy−

M(x,1)∫ 1

0
R(z)dz

∫ 1

0

∫ y
0
R(z)dzdy.

Then

α(x) =
∫ 1

0

(
σ (y)

∂

∂y
ψ (x, y)

)2

p(y)dy,

β(x) =
∫ 1

0

(
c (x, y) + g (x, y)

∂

∂x
ψ (x, y)

)
p(y)dy, m(x) =

∫ 1

0

m(x, y)p(y)dy.

Let Condition (B) be satisfied. Then F (x) = exp
{
−2
∫ x
0
β(z)
α(z)dz

}
. If Condition

(C) is satisfied, then the limit process is

ξ(t) = ξ0 +
κ2

κ0κ1
t+

1
κ0κ1

w(t).

In this case, all auxiliary functions have the explicit form.

5.2. Example 2

We again consider the case n = 1, under previous assumptions.
Let us simplify the problem in such a way, that we can check the result by applying
the Diffusion Approximation Theorem.

The system has the form, t ∈ [0, T ],

ξε(t) = ξ0 +
1
ε

∫ t

0

g1(ηε(s))ds+
∫ t

0

m1(ηε(s))ds,

ηε(t) = η0 +
1
ε2

∫ t

0

b (ηε(s)) ds+
1
ε

∫ t

0

σ (ηε(s)) dw1(s).

We have ψ(x, y) = ψ1(y). In this case β (x, y) = g1 (y) ∂
∂xψ (y) = 0, and

α =
∫ 1

0

(
σ (y)

d

dy
ψ1 (y)

)2

p(y)dy, m1 =
∫ 1

0

m1(y)p(y)dy.
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Then F (x) = 1. Under Condition (C) the limit process for ξε(t), as ε tends to 0, is

ξ(t) = ξ0 +m1t+
√
αw(t).

To get this result, we can reduce the conditions of the theorem. For example, we
do not need the conditions (B) and (C).

5.3. Example 3

Let us again consider the case n = 1 under previous assumptions. The system has
the form, t ∈ [0, T ],

ξε(t) = ξ0 +
1
ε

∫ t

0

(Gε(ξε(s)) sin(2πηε(s)) +Dε(ξε(s)) cos(2πηε(s))) ds,

ηε(t) = η0 +
1
ε
w1(t).

Under our conditions, p(y) = 1, andψ(x, y) = 1
2π2 (G(x) sin(2πy)+D(x) cos(2πy)).

Then

α(x) =
G2(x) +D2(x)

(2π)3
, β(x) =

G(x)Ġ(x) +D(x)Ḋ(x)
4π3

.

We can write the Conditions (B) and (C) precisely and note these conditions by
(B′) and C ′.

Condition (B′)

B′1. There exists a constant λ1 > 0 such that for every x ∈ E1,

G2(x) +D2(x) ≥ λ1.

B′2. There exists a constant λ2 > 0 such that for every x ∈ E1,

G2(x) +D2(x) ≤ λ2(G2(0) +D2(0)).

Condition (C ′)
There exist the constant κ0 such that for z ∈ E1,

C ′0. lim|z|→∞
1
z

∫ z
0

dx√
G2(x)+D2(x)

= κ0√
G2(0)+D2(0)

;

Remark 5.3.1. Under these conditions the constant from the Condition (C ′1) is
defined by κ1 = κ0

(2π)3

(G2(0)+D2(0)) .

For asymptotic behavior of ξε(t)we get the statement:

Theorem 5.3.1. Let conditions (A), (AB), (B′), and (C ′) be fulfilled. Then for
every δ ∈ ]0, 1

2 [ the measures µεδ ⇒ µ as ε tends to 0 . The random process ξ(t),
which corresponds to µ, is defined by

ξ(t) = ξ0 +

√
G2(0) +D2(0)

κ0(2π)
3
2

w(t).
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