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Abstract: We propose a hierarchical Bayesian model to estimate the propor-
tional contribution of source populations to a newly founded colony. Samples
are derived from the first generation offspring in the colony, but mating may
occur preferentially among migrants from the same source population. Geno-
types of the newly founded colony and source populations are used to estimate
the mixture proportions, and the mixture proportions are related to environ-
mental and demographic factors that might affect the colonizing process. We
estimate an assortative mating coefficient, mixture proportions, and regression
relationships between environmental factors and the mixture proportions in a
single hierarchical model. The first-stage likelihood for genotypes in the newly
founded colony is a mixture multinomial distribution reflecting the colonizing
process. The environmental and demographic data are incorporated into the
model through a hierarchical prior structure. A simulation study is conducted
to investigate the performance of the model by using different levels of popu-
lation divergence and number of genetic markers included in the analysis. We
use Markov chain Monte Carlo (MCMC) simulation to conduct inference for
the posterior distributions of model parameters. We apply the model to a data
set derived from grey seals in the Orkney Islands, Scotland. We compare our
model with a similar model previously used to analyze these data. The results
from both the simulation and application to real data indicate that our model
provides better estimates for the covariate effects.
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1. Introduction

Fisheries scientists and marine biologists are often faced with the problem of iden-
tifying proportions of individuals in a single catch that come from different stocks.
Estimating these proportions is necessary for evaluating the effect of commercial
fisheries on individual fisheries stocks and for understanding the ecological factors
that influence the relative contributions of different stocks. Similarly, those who
study marine mammals are often interested in identifying the source populations
for newly founded colonies as well as environmental or demographic factors that
influence the relative contributions of different sources. The increasing ease with
which genetic data are collected and the tendency for populations of species to
become genetically differentiated over time has led to the increase in using ge-
netic markers to estimate the proportional contribution of source populations to
mixed stocks. The rationale is simple: allele frequencies are likely to differ among
source populations, and genotype frequencies in the harvest site/new habitat are
determined by the proportional contributions of the source populations. Both the
differences among source populations and the mixture proportions can be detected
by appropriate statistical models.

Several methods have been developed for the inference of the proportional con-
tribution, m, where mi is the percentage of individuals in the mixed population
originating from source i. Conditional Maximum Likelihood Estimates (MLEs) have
been widely used [8, 9]. The conditional MLE assumes the sampled source popu-
lations are exhaustive lists of all possible sources and the allele frequency of the
sources are known without error. Neither assumption is satisfied for real samples.
Smouse et al. [12] extended conditional MLEs to unconditional MLEs in which the
source allele frequencies are treated as estimated parameters and unknown sources
are allowed to be presented in the model.

In recent years, several authors have applied Bayesian methods to the stock mix-
ture problem [2–4, 9, 11]. One advantage of a Bayesian model is that the influence
of the genotype data from the mixture population on the estimation of source allele
frequency is fully incorporated through the joint likelihood and is reflected in the
posterior distribution of allele frequencies. Another advantage is that we can in-
clude non-genetic information in the model through appropriate priors. We can, for
example, set the prior distribution of mixture proportions as a function of ecological
or demographic parameters.

Until recently interest has largely focused on inference of the proportional stock
contributions, but there is increasing interest in understanding the ecological fac-
tors that influence those proportions, e.g., source population size and the distance
between the source and mixture habitat [3, 9]. While including these relationships is
difficult to implement in classical models, a hierarchical Bayesian model can easily
incorporate these relationships into the prior for the vector of proportional contri-
butions, m. Existing approaches for inference on m either use an additive logistic
transformation with parameters assumed to have normal priors on the logistic scale
[9] or model m directly on the simplex using a Dirichlet with parameters assumed
to be lognormal [3]. In this paper, we propose an alternative formulation of Dirichlet
prior structure that is both more efficient in separating mean and variance effects
and also directly interpretable. We conduct a simulation study to demonstrate our
approach and investigate its performance by varying the level of differentiation
among source populations and number of genetic markers. We apply our model to
the data derived from grey seals in the Orkney Islands and compare our results
with those obtained with a Dirichlet–lognormal prior [3] and with a model using a
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uniform prior for m.

2. Models

We conduct our analysis in a Bayesian framework. The parameters, such as (rela-
tive) allele frequency, P, and proportional contribution, m, are considered as ran-
dom variables and the statistical inference is based on the posterior distributions of
parameters. In this analysis, the genetic data from source and mixture populations
are included in the likelihood function and the covariate information is included
through a hierarchical prior structure.

The likelihood of the data is derived from genetic theory. The genetic data consist
of two parts: the allele counts from source populations and genotype counts from
the mixed population. Gaggiotti’s model [3] deals with the situation where there
is one new colony and several source populations that might contribute to the
founding group of the new colony. The data are collected from the first generation
descendants of migrants, but the model allows for non-random, assortative mating,
i.e., individuals from the same source population are more likely to mate with one
another than those from different source populations.

Consider a first generation descent individual k in the new colony whose mother
is from population i and father is from population j. Denote P (yk|ij) as the proba-
bility that this individual has genotype yk, which includes L loci. Denote (a1lk, a2lk)
as the genotype of individual k at locus l. First consider individuals with both par-
ents from the same population, i.e., i = j. Assume mating is random among those
individuals and Hardy–Weinberg Equilibrium (HWE), which states that the fre-
quency of the heterozygous genotype is twice that of the homozygous genotype,
holds. The probability of genotype yk is,

(2.1) P (yk|ii) =
L∏

l=1

δlkpa1lk;lipa2lk;li ,

where pa1lk;li is the allele frequency of a1lk at locus l in population i, and δlk is an
indicator variable defined as

δlk =

{
1, if a1lk = a2lk,

2, if a1lk �= a2lk.

When the parents are from different populations, i.e., i �= j, P (yk|ij) is given by

(2.2) P (yk|ij) =
L∏

l=1

(pa1lk;lipa2lk;lj + γlkpa2lk;lipa1lk;lj ),

where

γlk =
{

0, if a1lk = a2lk,
1, if a1lk �= a2lk.

Parameter γlk indicates that when alleles at a locus are different, there are two
different ways of assigning them to parents in different source populations.

When mating happens assortatively, i.e., individuals tend to mate with those
from the same source population, HWE is not valid. The assortative mating can be
modeled by an assortative mating coefficient ω ∈ (0, 1). Specifically, a proportion
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ω of first generation descendants arise from assortative mating among individuals
from the same source and a proportion 1− ω arise from random mating among all
migrants. Consequently, the likelihood of finding the genotype yk in a sample from
the new colony is as follows:

P (yk|ω,P,m) =ω
I∑

i=1

miP (yk|ii)+

(1 − ω)

⎡
⎣ I∑

i=1

m2
i P (yk|ii) +

I∑
i=1

∑
j �=i

mimjP (yk|ij)

⎤
⎦ ,(2.3)

where P (yk|ii) and P (yk|ij) is as in (2.1) and (2.2).
Since HWE is assumed for source populations, the genotype frequency is de-

termined by the allele frequency. It is easy to show that the likelihood associated
with the genotype frequencies is equivalent to a multinomial with parameters cor-
responding to the allele frequencies and response variables as allele counts from
source populations. If we assume independence among the genotype counts across
loci and populations, the likelihood function for source allele counts is a product
multinomial:

P (N|P) ∼
I∏

i=1

L∏
l=1

Al∏
j=1

p
Njli

jli ,

where Njli is the allele count for source population i at locus l for allele aj and Al

is the number of alleles at locus l.
The prior distributions for ω and P reflect prior beliefs about plausible values for

these parameters. We choose vague/noninformative priors to reflect the fact that
we have no reason to expect particular values for these parameters. In particular,
we assume an uniform prior on (0, 1) for the assortative mating coefficient ω. For
allele frequencies in the source populations, P, we assume a Dirichlet prior

π(p|α) ∝
I∏

i=1

L∏
l=1

Al∏
j=1

p
αjl−1
jli .

As there is no previous data or preference for P, it is reasonable to take α’s all
equal to 1, leading to a symmetric Dirichlet prior with parameter 1.

The key to this analysis is how to incorporate the demographic/environmental
factors into the estimation of the proportional contribution m. Information on m is
obtained only indirectly through its influence on genotype frequencies in the mixed
population. Thus, there is no simple data likelihood connecting m and the covari-
ates. In a Bayesian framework, however, we can assign an informative prior for m
containing the information from the covariates. The challenge in doing a regression
type analysis is that the sum of the components of m must be equal to 1. Since
covariates have to be considered for every source, an ordinary linear model or logit
transformation does not fit here. Okuyama and Bolker [9] overcome this problem
by using an additive log ratio transformation based on an additive logistic normal
distribution. However, a baseline population has to be selected and the covariates
need to be adjusted according to the baseline population, which makes it hard to
accommodate multiple covariates and the interpretation of the coefficients is not
straightforward. Gaggiotti et al. [3] use a hierarchical Dirichlet prior to address this
problem. In Gaggiotti’s setup, the first level prior distribution for m is a Dirichlet
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distribution in which the individual parameters follow a lognormal distribution, i.e.,

m ∼ D(ψ),

(2.4) log(ψi) ∼ N (μi, σ
2),

μi = α0 +
p∑

r=1

αrGri,

where Gri is the value of the rth factor for source population i and α = (α0, . . . , αp)
is the vector of regression coefficients. The value of the covariates are standardized
and the prior for αr is N (0, σ2

p). The covariates affect the prior through the para-
meter ψ.

We introduce a new hierarchical prior structure for the mixture proportions
m. The first level prior for m is a Dirichlet distribution with parameters ((1 −
ρ)/ρ)ϕ, where ρ ∈ (0, 1) and ϕ are the hyperparameters of the prior subject to the
constraint

∑I
i=1 ϕi = 1. This form of prior is widely used in population genetics for

its relationship with the measure of population differentiation, e.g., Wright’s FST

[1, 5, 6]. Due to the fact that the covariates are also observed, another hierarchical
level is added to incorporate the randomness. A Dirichlet prior with parameter η
is assigned to ϕ. The covariates are included in the model by setting the logarithm
of η to be a function of a linear combination of the covariates, i.e.,

m ∼ D(
1 − ρ

ρ
ϕ),

ϕ ∼ D(η),(2.5)

log(ηi) = α0 +
p∑

r=1

αrGri.

Since the covariates are normalized, the regression coefficients αr’s are assumed
to be independent of each other. Normal priors with mean zero and a large variance,
σ2

p = 10, are assigned to parameter α. The full model is:

π(P, ω,m, ρ,ϕ,α|Y,N)
∝ p(Y|P, ω,m)π(m|ρ,ϕ)π(ϕ|α)π(α)π(ω)p(N|P)π(P),(2.6)

where Y is the genotype data of the new colony, N is the allele count in source
populations, and P is the allele frequency. The Directed Acyclic Graphs (DAGs) of
the Dirichlet–Dirichlet and Dirichlet–Lognormal models are presented in Figure 1
and Figure 2.

The prior structure of our model puts the support of ρ between (0, 1) and the
value of ((1 − ρ)/ρ)ϕi on the entire positive line. This setup brings several advan-
tages. First, a natural vague prior for ρ is simply a uniform distribution between
0 and 1, U(0, 1). Second, when we use U(0, 1) as a prior, the posterior mean of
ρ can be used as an indicator of the dispersion of the regression of m on de-
mograpic/environmental factors. The variance associated with component mi is
ϕi(1 − ϕi)ρ, and 1 − ρ is roughly the proportion of variance in m explained by
the regression (cf. [6]). Third, an informative prior on ρ can be used to influence
the variance of the prior and the relative weight of environmental covariates and
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Fig 1. Dirichlet–Dirichlet model.

Fig 2. Dirichlet–Lognormal model.

genetic data on the posterior of m. To see this, observe that (1 − ρ)/ρ increases
when ρ decreases and the variance of D(((1 − ρ)/ρ)ϕ) is decided by the absolute
value of ((1 − ρ)/ρ)ϕ. Thus a small value of ρ corresponds to a small variance. As
the variance of the prior usually decides the relative weight of the prior information
on the posterior distribution, ρ indicates the relative weight of the covariates in the
posterior distribution of m.

In the models of [3], [9], and the model proposed in this paper, the effect of
the covariates is incorporated through the prior for m. The parameter of interest,
m, is determined by both genetic information through the likelihood and demo-
graphic/environmental information through the prior. An important question is,
what is the relative influence of these two sources of information on posterior in-
ference? The influence of the prior is usually directly related to its variance: with
a large variance the posterior is dominated by the likelihood while with a small
variance the posterior is dominated by the prior. For the Dirichlet–lognormal prior
in (2.4), the mean of m is controlled by the value of ψ. At the same time the vari-
ance of m is affected by both the magnitude of ψ and the distribution of σ2. The
interaction among these two parameters tends to increase the uncertainty in the
posterior distribution. In contrast, the prior proposed in (2.5) clearly separates the
roles of the parameters: the mean of m is determined by ϕ and the variance of m
is controlled by ρ. This separation is due to the constraint that ϕ is on the simplex.
In the simulation study and the application to a real life dataset, we illustrate that
the Dirichlet–Dirichlet prior shows less variation in estimating the covariate effects
while providing comparable coverage of interval estimates.
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3. Simulation study

We conduct a simulation study to investigate the performance of our proposed
model by simulating data from populations with different levels of genetic dif-
ferentiation as well as different numbers of genetic markers. As discussed above,
the estimation of the mixture proportions relies on the divergence among source
populations. We are interested in how different level of divergence among source
populations would affect the posterior distributions of the parameters of interest.
From a practical point of view, population divergence level cannot be controlled by
researchers. Instead, researchers can determine how many genetic markers are to be
assigned and included in the analysis. Hence, we are also interested in the relation-
ship between the number of loci and the posterior distribution of the parameters.

We consider three simulation scenarios. Under the first scenario, the level of
population differentiation is moderate and there are a relatively small number of
genetic markers, e.g., 8 loci are available. Under the second scenario, the number of
loci is the same as the first scenario but the level of genetic differentiation among
source populations is higher. Under the last scenario, the genetic variation is the
same as that of the first scenario but the number of genetic markers is doubled,
i.e., 16 genetic markers are available. The number of source populations, number
of individuals in the mixed population, and allele counts in the source populations
are comparable with those in the grey seal data we analyze later.

In the first part of the simulation we generate allele counts in the source popu-
lations, which should reflect the level of genetic differentiation among them. This
is realized through a hierarchical population structure. We assume that the al-
lele frequencies of the source populations are from a common hyper-population,
which has fixed allele frequencies ψ, a L × A matrix with L being the number of
loci and A being the number of alleles at each locus. (Without loss of generality,
we assume all loci have the same number of alleles.) The allele frequencies pli, a
1 × A vector, for source i and locus l are random samples from a Dirichlet distrib-
ution, D(((1 − θ)/θ)ψl), where ψl, a 1 × A vector, is the allele frequency of locus
l for the hyper-population, and θ is a population divergence measure used widely
in population genetic studies, namely Wright’s Fst. Note that E[pjli] = ψjl and
V ar[pjli] = θψjl(1−ψjl), where ψjl is the allele frequency of locus l, allele j for the
hyper-population. We choose θ = 0.05 and θ = 0.2 for small and large divergence
scenarios, respectively.

The detailed simulation is described as follows. Step 1: generate allele frequencies
of the hyper population, ψ, by generating a random sample L times from an A di-
mensional symmetric Dirichlet distribution with parameter 1. Step 2: generate allele
frequencies, pli, from the Dirichlet distribution D(((1 − θ)/θ)ψl) with predefined
θ. Step 3: generate allele counts, Nli, for source i and locus l, from a multinomial
distribution with total allele counts N = 400, and probability pli (from step 2).

In the second part of the simulation we generate genotypes of individuals from
the mixed population, which requires the proportional contributions m and the
probability of each genotype. We adopt fixed proportional contributions, which are
a function of the two covariates. Note that in both the Dirichlet–Dirichlet (2.5) and
the Dirichlet–lognormal (2.4) models, the conditional expectations of the prior for
m are the same, namely,

E[mi|α] =
eα·Gi∑I
i=1 eα·Gi

,

where α is the vector of regression coefficients and Gi is the vector of covariates for
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Table 1

Normalized covariates

Source Distance Productivity
1 −0.295 1.298
2 −0.849 1.285
3 −0.822 −0.238
4 −0.562 −1.256
5 −0.326 −0.729
6 1.533 0.286
7 1.320 −0.646

source i. We use two covariates with the values shown in Table 1 and the coefficients
are set to α1 = −0.5 and α2 = 0.5.

The genotype of an individual k is generated by the following steps. First, we
decide whether its parents are from the same source by comparing a uniform random
number on [0,1] with a preset assortative coefficient w = 0.05. The second step
is to generate the genotype frequency at each locus. If the parents are from the
same source population, the probability of genotype yk is

∑I
i=1 miP (yk|ii), where

P (yk|ii) is as in (2.1). If the parents come randomly from the source populations
then the probability of genotype yk is

∑I
i=1 m2

i P (yk|ii)+
∑I

i=1

∑
j �=i mimjP (yk|ij),

where P (yk|ij) is the probability of parents from different source populations as in
(2.2). Once we have the probability of each genotype for individual k at locus l, we
can easily generate the genotype from this probability. Step 2 is repeated for each
locus of the individual to get the complete genotype of individual k. The above
steps are repeated 160 times to get the genotypes of 160 individuals in the mixed
population.

We generate 50 data sets for each of the three scenarios, and we fit both the
Dirichlet–Dirichlet prior (2.5) proposed in this paper and the Dirichlet–lognormal
prior (2.4) to each data set using a MCMC method. Since most of the parameters
are vectors on a simplex, we use a multi-dimensional logit transformation to put the
support of the transformed parameters on the real line and remove the simplex con-
straint. A normal proposal density is then used to conduct a Metropolis–Hastings
update nested in the Gibbs sampling. Details of the MCMC update procedure are
presented in the Appendix. For most of the data set, we conduct 30,000 iterations
in the simulation with 5,000 burn-in and thin the MCMC output by 5. For chains
showing suspicious convergence behavior, longer iterations and fine tuning are used
to ensure convergence.

Table 2 presents a summary of the posterior analysis, including the average of the
posterior means, posterior standard deviations, root mean square error (RMSEs),
and the lengths of the 95% highest probability density (HPD) intervals. In general,
the posterior means of m are reasonably close to the true values in all scenarios.
The effects of population divergence and number of loci are reflected mainly in the
posterior dispersion of m. As shown in the Table, the lengths of the 95% HPD
intervals, the posterior standard deviations, and the RMSEs, all indicate that the
posterior dispersion of m decreases with the increase of population differentiation.
Given the same level of population differentiation, increasing the number of genetic
markers also significantly improves the precision of posterior estimation for m.
These results suggest that although in practice the population divergence is always
fixed, collecting and including more genetic markers in the analysis can significantly
improve the estimation of the proportional contribution parameters m.

For the regression coefficient α, both models provide reasonable estimates for
the posterior means. However, the posterior variation is large and the 95% HPD
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Table 2

Posterior summary of simulation study

Dirichlet–Dirichlet Dirichlet–lognormal
TRUE θ = 0.05 θ = 0.20 θ = 0.05 θ = 0.05 θ = 0.2 θ = 0.05

L=8 L=8 L=16 L=8 L=8 L=16
m1 0.249 ∗0.256 0.254 0.239 0.258 0.255 0.239

∗∗0.044 0.033 0.036 0.045 0.032 0.036
∗∗∗0.063 0.052 0.053 0.065 0.052 0.054

∗∗∗∗0.170 0.127 0.138 0.173 0.126 0.139

m2 0.327 0.326 0.377 0.350 0.328 0.379 0.351
0.045 0.036 0.039 0.046 0.036 0.039
0.068 0.076 0.058 0.069 0.079 0.059
0.175 0.140 0.150 0.178 0.141 0.151

m3 0.151 0.134 0.125 0.137 0.135 0.125 0.138
0.038 0.026 0.031 0.038 0.026 0.031
0.052 0.053 0.048 0.052 0.053 0.049
0.145 0.099 0.121 0.149 0.100 0.121

m4 0.079 0.073 0.065 0.077 0.072 0.064 0.075
0.033 0.020 0.027 0.033 0.020 0.026
0.042 0.038 0.039 0.044 0.038 0.039
0.119 0.075 0.103 0.121 0.074 0.100

m5 0.092 0.094 0.078 0.090 0.094 0.077 0.090
0.033 0.022 0.027 0.034 0.021 0.028
0.051 0.036 0.044 0.051 0.037 0.044
0.1259 0.082 0.103 0.126 0.082 0.105

m6 0.060 0.069 0.060 0.060 0.066 0.059 0.059
0.033 0.020 0.025 0.033 0.020 0.024
0.045 0.032 0.038 0.046 0.033 0.038
0.115 0.074 0.090 0.114 0.074 0.089

m7 0.042 0.047 0.041 0.048 0.047 0.040 0.048
0.025 0.015 0.022 0.026 0.016 0.0232
0.038 0.029 0.037 0.039 0.029 0.036
0.088 0.057 0.078 0.089 0.056 0.079

α1 −0.500 −0.398 −0.429 −0.430 −0.485 −0.493 −0.493
0.477 0.469 0.479 0.613 0.578 0.587
0.516 0.496 0.503 0.659 0.615 0.625
1.849 1.815 1.849 2.383 2.268 2.305

α2 0.500 0.449 0.520 0.433 0.538 0.618 0.515
0.416 0.407 0.408 0.535 0.519 0.523
0.437 0.425 0.422 0.555 0.551 0.535
1.637 1.600 1.602 2.097 2.041 2.056

ω 0.050 0.037 0.014 0.014 0.037 0.014 0.014
0.035 0.013 0.014 0.035 0.013 0.014
0.040 0.039 0.038 0.040 0.039 0.038
0.106 0.040 0.042 0.106 0.040 0.042

*: average of posterior means;

**: average of posterior standard deviations;

***: average of RMSEs;

****: average length of 95% HPD intervals.

intervals all contain zero. Results from the simulation study indicate that neither
level of population differentiation nor number of loci has significant effects on the
precision of α estimates. We consider this as a reasonable result since the covariate
coefficients are essentially a regression over 7 data points, i.e., the 7 source popu-
lations. The level of divergence and number of loci improve the precisions of the
posterior variance sfor m, which only affect α indirectly. With only 7 data points,
few simulated data sets will be able to provide strong support for a regression re-
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lationship. Thus, increasing the number of loci or studying highly differentiated
populations will do little to improve posterior estimates of α. A larger number of
populations would be required to provide statistically supportable evidence of the
effects.

The advantages of the Dirichlet–Dirichlet prior proposed in this paper are seen
primarily in the reduced posterior variation of the regression coefficients, α1 and α2.
Under the Dirichlet–Dirichlet prior, the posterior standard deviations and RMSEs
are uniformly smaller than that of the Dirichlet–lognormal model even though the
prior variances for α are all set to the same value, i.e., σ2

p = 10. We consider this
as mainly due to the confounding of the effects that both ψ and σ2 have on the
variances of m. Another possible reason is the effects of the prior for τ = 1/σ2. In
any case, the Dirichlet–Dirichlet prior has the advantage of leading to more precise
estimation of regression coefficients and ease in picking a non-informative prior
without sacrificing nominal coverage of credible intervals.

4. Application to the grey seal data set

To illustrate the usefulness of our approach, we apply it to data from grey seal,
Helicoerus grypus, populations in the Orkney Islands, which were also analyzed by
[3] and [4]. The data consist of allele frequencies of 8 loci for seven source colonies
and the genotype frequencies for a newly established colony on Stronsay island.
There are two explanatory variables associated with each source population: dis-
tance between the source island and Stronsay island (α1), and the ’productivity’
index, which is related to the population density and size of the source popula-
tion, (α2). The genetic data were collected from the first generation descendants
of migrants to Stronsay. We use the likelihood in equation (2.3) to allow for the
possibility that migrants are more likely to mate with other individuals from the
island from which they migrated. Since there is no closed form for the posterior
distribution, we use MCMC methods for posterior inference.

We compare results from three models with different priors: the Dirichlet–
Dirichlet prior, the Dirichlet–Lognormal prior, and a model with the symmetric
Dirichlet prior with parameter 1 for m, which corresponds to a model in which
covariate effects are not incorporated. Our results reveal that differences among
the models rarely lead to substantial differences in the mean posterior likelihood,
which is intuitively reasonable. The part of the likelihood function concerned with
source population allele frequencies is identical across all models, and the part of
the likelihood concerned with colony allele frequencies is tightly tied to the observed
genotypes. The three models differ only through the prior for the proportional con-
tributions m, which has limited impact on the likelihood unless the source popula-
tion differs substantially. A direct consequence of these properties is the similarity
among metrics for model evaluation measures that use only the likelihood, e.g., DIC
[13] and the logarithm of the pseudomarginal likelihood (LPML) [7]. As shown in
Table 3, neither DIC nor LPML provides strong support for any of the models
relative to the others.

The posterior densities of the model parameters are given in Figure 3. Table 4
gives the posterior means and 95% HPD intervals of the parameters of interest:
m,τ ,α and ρ. It can be seen that the posterior means of m are quite different for
the model with symmetric Dirichlet prior (with no covariates) and the models us-
ing covariate information. Specifically, models using covariate information suggest
a larger proportion from sources 2 and 3 than the uniform model, which is a rea-
sonable result since sources 2 and 3 are the closest source islands to the new colony
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Table 3

Model evaluation

Models Dbar pD DIC LPML
Dirichlet–Dirichlet 8044 336 8380 −3023
Dirichlet–lognormal 8042 337 8379 −3023
Uniform 8045 336 8381 −3023

Fig 3. The posterior densities of parameters in the Dirichlet–Dirichlet model.

Table 4

Posterior means and 95% HPD intervals

Dirichlet–Dirichlet Dirichlet–lognormal Uniform
Mean 95% HPD Mean 95%HPD Mean 95% HPD

m1 0.097 (0,0.280) 0.101 (0,0.282) 0.099 (0,0.250)
m2 0.297 (0.086,0.526) 0.305 (0.085,0.542) 0.243 (0.046,0.436)
m3 0.3 (0,0.514) 0.324 (0.045,0.586) 0.258 (0.035,0.475)
m4 0.113 (0,0.300) 0.11 (0,0.305) 0.104 (0,0.256)
m5 0.061 (0,0.196) 0.07 (0,0.195) 0.081 (0,0.198)
m6 0.052 (0,0.214) 0.037 (0,0.179) 0.092 (0,0.234)
m7 0.079 (0,0.270) 0.053 (0,0.230) 0.123 (0,0.289)
α1 −0.494 (−1.808,0.668) −1.03 (−3.005,0.961) 0 (0,0)
α2 0.113 (−0.864,1.084) 0.182 (−1.191,1.680) 0 (0,0)
ω 0.609 (0.105,1.000) 0.613 (0.110,1.000) 0.616 (0.056,0.986)
ρ 0.118 (0,0.343)
τ 1.453 (0.183,4.377)

and posterior analysis indicates distance has a moderate effect on the proportion
contribution.

The 95% HPD intervals of all regression coefficients in all models include zero,
which is not surprising from the analysis of the simulation results. The large varia-
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tion in α is presumably due to the small number of source populations. Nonetheless,
there is some support for the notion that the coefficient associated with distance,
α1, is negative. The posterior probability that α1 is negative is more than 0.785
for the Dirichlet–Dirichlet model and 0.850 for the Dirichlet–lognormal model. The
posterior probability that α2 is positive in our model is 0.593 and 0.596 in the
Dirichlet–lognormal model. The Dirichlet–Dirichlet model shows a shorter HPD
interval compared to the Dirichlet–lognormal model, which is also consistent with
the simulation results. In short, distance has a negative effect on the proportional
contributions and population sizes have minor positive effects on the proportional
contributions.

As discussed above, the parameter ρ in our hierarchical model is analogous to
a ‘goodness of fit’ measure for the relationship between the covariates and m.
Specifically, 1 − ρ is roughly the proportion of variance in m explained by the
regression. As the results in Table 4 show, the posterior mean for 1 − ρ is near
0.9, which indicates a fairly tight regression in spite of the uncertainties associated
with α. In summary, we conclude that there is moderate support for the hypothesis
that increasing distances between the source and colony populations decrease the
proportional contributions of the sources to the colony.

5. Conclusions

The primary goal of this analysis is to incorporate environmental/demographic
information into the estimation of the proportional contributions of source popula-
tions to a new colony through appropriate informative priors. Two other models are
available which satisfy the constraint that the sum of the proportional contributions
must equal one, i.e., additive logistic transformation [9] and Dirichlet–lognormal
model [3]. We introduce a parametrization for the Dirichlet prior derived from pop-
ulation genetics in which we specify the mean, ϕi, and variance, ρ(1−ϕi)ϕi, of the
mixture parameters and a linear model for the parameters of a second Dirichlet
that determines ϕi. The Dirichlet–Dirichlet prior has several advantages over the
alternatives. First, the parameter ρ has a natural vague prior distribution, a uni-
form distribution [0,1]. Second, ρ controls the variance of the Dirichlet prior and
1 − ρ has a natural interpretation as the proportion of variance explained by re-
gression. Finally, the mean of the proportional contributions is not affected by the
parameter ρ and the regression coefficients have a direct interpretation as regression
effects on proportional representation. The separation of mean effect and variance
effect is a major advantage of the proposed formulation compared to alternative
models where the proportional contribution for any given population depends on
the relative magnitude of coefficients associated with other regression components
and their random effects.

The simulation study indicates that larger population divergence would lead to
more precise estimation of the proportional contributions m. Given a particular
level of population divergence, better estimates of m can also be achieved by in-
cluding more loci in the analysis. The simulations show that the Dirichlet–Dirichlet
prior has better performance in estimating the regression coefficients in term of
posterior variation than a Dirichlet–lognormal prior.

When we apply our model to the grey seal data we find that the distance be-
tween a source island and the new colony play a moderate role in its proportional
contribution but that the effect of source population productivity is weak. These
results are consistent with those presented in [3], but the posterior variability of the
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regression coefficients is smaller, as in the simulation study. The advantages of the
formulation presented here seem likely to be generally available in the analysis of
compositional data. In particular, a formulation similar to the one used here may
be generally useful in modeling situations where additive logistic transformations
have been the norm, both because of direct interpretability of regression coefficients
and the natural interpretation of 1 − ρ as a goodness of fit measure.

Appendix: A general approach for updating a proportional vector

The conditional distributions of model parameters are non-standard distributions;
hence, we use a Metropolis–Hastings algorithm nested within Gibbs sampling to
conduct each MCMC update. Several vector parameters, P, m,and ϕ, are subject
to the constraint that the support of their components is on [0,1] and the summation
equals to one. We use a multidimensional logit transformation to ‘de-constrain’ the
parameters and perform Metropolis–Hastings updating using a Normal proposal
density. Let θ be a vector of dimension p+1 with constraints θi > 0 and

∑p+1
i=1 θi = 1.

Let

θi =
exp(ξi)

1 +
∑p

j=1 exp(ξj)
.

The Jacobian matrix ∂f(θ)/∂ξ is the matrix with entries

xij =

⎧⎪⎨
⎪⎩

eξi+eξi (
∑p

j=1
eξj )−e2ξi

(1+
∑p

j=1
eξj )2

, for i = j,

−eξi+ξj

(1+
∑p

j=1
eξj )2

, for i �= j.

It can be shown that the determinant of the Jacobian matrix is

e

∑p

j=1
ξj

(1 +
∑p

j=1 eξj )p+1
.

The full conditional distribution of ξ is

f(ξ|D) = f(θ|D)
e

∑p

j=1
ξj

(1 +
∑p

j=1 eξj )p+1
.

Instead of sampling θ, we conduct a Metropolis-Hastings update for ξ using a
normal proposal density N(ξ̂, σ̂2

ξ̂
), where ξ̂ is the maximizer of π(ξ|D) and σ̂2

ξ̂
is the

estimated variance, which could be a fixed value based on a pilot run or the inverse
of the score matrix. Alternatively, we can use a Normal proposal density centered
at the current value. The algorithm operates as follows:
Step 1. Let ξ be the current value. Find the maximum likelihood estimate of ξ, ξ̂.
Step 2. Generate a proposal value ξ∗ from N(ξ̂, σ̂2

ˆξ
).

Step 3. A move from ξ to ξ∗ is made with probability

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(ξ∗|D)Φ(ξ−ˆξ
σ̂ξ̂

)

f(ξ|D)Φ(ξ∗−ˆξ
σ̂ξ̂

)
, 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where Φ is the standard normal probability density function. The ξ is then converted
back to its expression in terms of θ.
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