
IMS Collections
Pushing the Limits of Contemporary Statistics: Contributions in Honor of
Jayanta K. Ghosh
Vol. 3 (2008) 122–137
c© Institute of Mathematical Statistics, 2008
DOI: 10.1214/074921708000000101

Consistent selection via the Lasso for high

dimensional approximating regression
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Abstract: In this article we investigate consistency of selection in regression
models via the popular Lasso method. Here we depart from the traditional
linear regression assumption and consider approximations of the regression
function f with elements of a given dictionary of M functions. The target for
consistency is the index set of those functions from this dictionary that realize
the most parsimonious approximation to f among all linear combinations be-
longing to an L2 ball centered at f and of radius r2

n,M . In this framework we

show that a consistent estimate of this index set can be derived via �1 penal-
ized least squares, with a data dependent penalty and with tuning sequence

rn,M >
√

log(Mn)/n, where n is the sample size. Our results hold for any
1 ≤ M ≤ nγ , for any γ > 0.
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1. Introduction

In this paper we show that the popular Lasso technique can be used for consistent
feature selection in high dimensional approximating regression models. We consider
the following framework. Given a random pair (X, Y ), we let f(x) = E(Y |X = x)
be the conditional mean function, henceforth called the regression function. We aim
to reconstruct consistently a sparse approximation of f via linear combinations of
elements of a given dictionary of functions F = {f1, . . . , fM}. This reconstruction
will be based on (X1, Y1), . . . , (Xn, Yn), a sample of independent random pairs dis-
tributed as (X, Y ) ∈ (X ,�), where X is a Borel subset of �d; all functions fj are
defined on X . Our aim expresses the belief that, in many instances, even if M is
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large, only a subset of F may be needed to approximate f well. If that is the case, it
may be of interest to determine whether this set can be estimated consistently via a
computationally efficient method. The focus of this work is on consistent selection
via the Lasso when the size of F grows polynomially with the sample size n, that
is M = nγ , for any γ > 0.

We begin by giving a number of examples of dictionaries F and associated con-
sistency issues.

1. If d = M and fj(X) = Xj for all j, one may be interested in identifying the
subset of variables with linear combinations close to f . A familiar particular case
is linear regression, where one assumes that f(X) = λ′X, with λ ∈ �M having
non-zero components in positions corresponding to a set J∗ ⊆ {1, . . . ,M}. Here
we depart from this traditional equality assumption and consider the more re-
alistic case where f is not equal to, but can be well approximated by a linear
combination of the given variables. We discuss this in detail in the next section.

2. Another problem of interest is that of finding consistently a sparse linear approx-
imation of f realized with elements from a large list of M possibly competing
estimators. These estimates may correspond to M different methods of estima-
tion, may be computed from M different samples with the same mean function,
or may correspond to M different values of a tuning parameter of the same
method. Instances of the latter arise in kernel based methods that require the
choice of a grid of values for the bandwidth parameter or in Bayesian methods,
where the specification of a grid of values for hyper-parameters is needed. A
consistent identification of a subset of the estimates in these examples would
validate the use of a particular restriction on an initially large grid. In such sit-
uations, when the elements of F are estimators, we will assume that they have
been computed on samples independent of the one used for subset selection and
treat them here as fixed functions.

3. A last example is the nonparametric estimation of f from a collection of M given
basis functions, where only a subset may realize a good approximation of f , as
described in the following subsection.

There exist a number of model selection methods that yield consistent subset
selection in regression models. In discussing them a number of distinctions are
needed.

The first one pertains to the evolution of the literature on model selection tech-
niques in regression. One important cut-off point in this evolution seems to be the
computational complexity of a particular method and, within this, the size of M
relative to n plays a crucial role. If M ≤ n, procedures based on various information
criteria occupy an important place. They are referred to now as the BIC/AIC-type
methods; we mention here the seminal works of ([1], [15]), the unifying theory of
[2], and, various generalizations of these methods ([4], [7]). Such procedures can
be easily implemented for small to moderate M . For larger values of M multiple
testing procedures, in particular of the FDR type (e.g., [3], [9]), or cross-validation
with all its variants (holdout validation, K-fold) [21], are popular, but become
more computationally complex as M increases. If M > n these techniques may be-
come computationally intractable, unless they are used as part of a multiple-stage
scheme. For a further overview on computational aspects in model selection, from
a Bayesian perspective, see [11].

Whereas the above mentioned methods can still be used in very particular re-
gression models when M > n, for instance, for sequence-space models, where model
selection via BIC is equivalent to hard thresholding, they typically fail, computa-
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tionally, when M is large. A standard solution in this case is to seek estimates that
solve a certain class of convex optimization problems. Among the most popular
estimates of this type in regression is the penalized least squares estimate with
an �1-type penalty (Lasso), which we describe in detail in the next section. In a
Bayesian framework it can be derived from a Gaussian likelihood with a Laplace
prior. Two important aspects set the �1 regularized (Lasso) type estimators apart:
they are easy and fast to compute; see [8], [13], [14], [18], among others, for efficient
algorithms; and, if M > n, some components of the estimate will be set to zero,
in finite samples, see, e.g., [13]. Therefore, via a one-step easily implementable pro-
cedure, one obtains subset selection even if M > n. To date, this method (or its
variants) is the most widely used in regression problems of very high dimension,
especially when dimension reduction is of interest.

The second distinction in discussing consistency of selection in regression is re-
lated to the target for consistency. Consistency of selection has been studied for all
aforementioned techniques only in the following context, which we term parametric:
the target for selection is typically an index set J∗ corresponding to the non-zero
true regression coefficients, whereas the remaining coefficients are assumed to be
exactly zero. An estimation method that uses the data and all M elements fj to
yield a subset Î of indices such that P (Î = J∗) → 1 for large n is called a consistent
method of selection.

In light of these two distinctions we give below a summary of the existing re-
sults on consistency of selection. They have all been established for the traditional
parametric target J∗.

If M ≤ n and under appropriate assumptions all the above methods, or close
variants, yield consistent subset selection for the parametric target J∗. References
include those for AIC/BIC-type methods ([4], [10], and [22], among others), multiple
testing procedures [5], cross-validation procedures [16], and Lasso-type procedures
[24].

If M > n consistency of selection has only been studied for Lasso-type estimators.
Again, in the existing literature, the target is the standard target J∗. The results are
limited. Meinshausen and Buhlmann [12] showed that P (Î = J∗) → 1 in Gaussian
graphical models, under assumptions that are tailored to models for which, in our
notations, (Y, X1, . . . , XM ) ∼ N(0, Σ). Consistency of selection has been established
when M > n, for fixed design linear regression models and a target set J∗ that
corresponds to coefficients λ∗

j that are assumed to be lower bounded by a sequence
of order O(n−δ/2), for 0 < δ < 1 [23]. Similar results, under slightly different
assumptions, have also been obtained for a three stage procedure [20]: in the first
stage Lasso estimates are computed for a number of values of the tuning parameter,
in the second step cross-validation is performed to select one Lasso estimate, and
in the third one the model is refitted on the variables present in the selected Lasso
estimate. We also refer to a related notion of consistency, in fixed design regression
with Gaussian errors [19].

If M > n consistent subset selection via the Lasso has not been investigated, to
the best of our knowledge, in the general framework we describe in detail below.
Within this framework, we extend the existing results to more general regression
models on a random design and a more general target index set.
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1.1. Beyond linear regression

Despite its practical appeal, the study of selection procedures that are consistent
for target sets other than the classical one has received very little attention. Our
target set will be defined relative to linear approximations of f with elements of F
with respect to the L2(ν) norm ‖ · ‖, where we denote the probability measure of
X by ν.

Formally, define

(1.1) Λ =

⎧⎨⎩λ ∈ �M : ‖
M∑

j=1

λjfj − f‖2 ≤ Cfr2
n,M

⎫⎬⎭ ,

where Cf > 0 is a constant depending only on f and rn,M is a positive sequence
that converges to zero and which will be specified in the next section. In what
follows we assume that Λ is not void. For any λ ∈ �M we let J(λ) denote the
index set corresponding to the non-zero components of λ and denote by M(λ) its
cardinality. Let k∗ = min{M(λ) : λ ∈ Λ}. We define our target vector

(1.2) λ∗ = argmin

⎧⎨⎩‖
M∑

j=1

λjfj − f‖2 : λ ∈ R
M , M(λ) = k∗

⎫⎬⎭ .

Let I∗ = J(λ∗) denote the index set corresponding to the non-zero elements of λ∗

and note that I∗ has cardinality k∗. Thus f∗ =
∑

j∈I∗ λ∗
jfj provides the sparsest

approximation to f that can be realized with λ ∈ Λ and, in particular,

(1.3) ‖f∗ − f‖2 ≤ Cfr2
n,M .

This motivates our treating I∗ as the target index set.
We note that if one assumes, as in standard linear regression models, that f(x) =∑M
j=1 λjxj =

∑
j∈I∗ λ∗

jxj = f∗(x), where λ∗
j denotes the non-zero components of

λ, then (1.3) is trivially satisfied for any positive sequence rn,M . Therefore, the
classical target J∗ is a particular case of ours.

In order to ensure that λ∗ captures the essential features of f in a parsimonious
way we require that its components not be unnecessarily small, otherwise we can
place their indices outside I∗. Formally, we will require that the following condition
holds.

Condition (C). There exists B > 0, independent of n or M , such that

min
j∈I∗

|λ∗
j | > Brn,M .

We show below that �1 penalized least squares can be used to estimate consis-
tently the new target I∗, even if M is larger than n, in particular if it grows as nγ ,
for any γ > 0, under minimal assumptions on the dictionary F and appropriate
choices for rn,M . In Section 2 below we introduce the estimate and discuss these
choices. Section 2.1 contains our main result, Theorem 2.1, together with a discus-
sion of the assumptions under which it holds. The proof of the main result is given
in Section 2.2 and intermediate results are proved in the Appendix.
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2. Consistent selection via �1 penalized least squares

We estimate the set I∗ of the previous section via �1 penalized least squares. We
first compute

λ̂ = arg min
λ∈�M

⎧⎨⎩ 1
n

n∑
i=1

{Yi −
M∑

j=1

λjfj(Xi)}2 + pen(λ)

⎫⎬⎭ ,(2.4)

where

pen(λ) = 2
M∑

j=1

ωn,j |λj | with ωn,j = rn,M‖fj‖n,(2.5)

for a sequence rn,M given below, where we write ‖g‖2
n = n−1

∑n
i=1 g2(Xi) for any

function g : X → �. We note that each λj in the penalty term has a different, data-
dependent, weight. The estimate λ̂ thus obtained is in one-to-one correspondence
with the following estimate. For each 1 ≤ j ≤ M define θj = 2ωn,jλj and let
A be the M × M diagonal matrix with diagonal entries 2ωn,j . Next observe that
Fλ = F1θ, where F is the n × M matrix with entries fj(Xi), F1 = FA−1 and
θ = Aλ. Thus, denoting by Y the n dimensional vector with entries Yi, the problem
reduces to calculating

θ̂ = arg min
θ∈�M

1
n

(Y − F1θ)′(Y − F1θ) +
M∑

j=1

|θj |,

for which the aforementioned fast algorithms can be used. Then, we compute our
sought solution λ̂ = A−1θ̂.

We let Î denote the index set corresponding to the non-zero components of λ̂.
We show in the next subsection that P (Î = I∗) → 1 when n → ∞. We begin by
noticing that we always have

P (Î = I∗) ≥ 1 − P (I∗ �⊆ Î) − P (Î �⊆ I∗).

Therefore, proving that Î is consistent reduces to showing that each of the prob-
abilities in the right-hand side of the inequality above converge to zero. In what
follows we motivate choices for the sequence rn,M that stem from sufficient con-
ditions under which this convergence is achieved. The proofs are presented in the
next section.

We begin by noticing that if λ̂ → λ∗, with probability converging to one,
then I∗ �⊆ Î with probability converging to zero. To see this, further note that
if component-wise consistency of λ̂ holds, we will estimate all non-zero elements of
λ∗ by non-zero sequences, but we may also estimate some of its zero components
by some small, but non-zero sequences. In light of this fact, a first set of restrictions
on rn,M will be such that λ̂ is close to λ∗, in the sense below. It follows immediately
(by [5], Theorem 2.3; see the Appendix below for a full formulation) that, with high
probability

rn,M |λ̂ − λ∗|1 ≤ D{‖f − f∗‖2 + k∗r2
n,M},

for some positive constant D, and where |a|1 =
∑M

j=1 |aj | denotes the �1 norm of
any vector in �M . Next, notice that the optimal parametric rate of convergence
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for a component λ̂j of λ̂ is of order 1/
√

n, and it can be achieved if we knew I∗ of
cardinality k∗ < M in advance. However, this is not known, so the best we can do is
mimic this behavior in our context. We can do this by choosing rn,M of order 1/

√
n,

where we recall that we have assumed that ‖f − f∗‖2 ≤ r2
n,M . Notice further that

this choice is optimal for the rate of convergence of λ̂, which is not the focus here.
Indeed, more modest rates of convergence of λ̂ can be considered when consistency
of selection is of main importance. We discuss in detail two concrete choices, and
defer a complete analysis for future work.

One can consider rn,M = A
√

log(Mn)/n, for an appropriately large constant
A > 0. Notice that this choice differs from the one that yields the optimal rate
only by logarithmic factors, which are needed to accommodate dictionaries with
M > n. With this choice, the target set I∗ corresponds to linear combinations of
the elements of F that belong to, up to logarithmic factors, a 1/

√
n neighborhood

of f , with respect to the L2(ν) norm. This provides only a slight departure from the
standard linear model assumption and standard target index set J∗. It is therefore
not surprising that, in this case, our tuning sequence rn,M is also comparable to
the one considered in parametric models ([12], [23]), where a sequence of the order
of 1/n1/2−θ, θ ∈ (0, 1/2), is employed. We note that this choice is slightly conserv-
ative, and can be relaxed to O(

√
log(Mn)/n) in our framework, and therefore, as

a particular case, in theirs.
In order to accommodate consistent selection in a purely nonparametric frame-

work we need to increase the size of rn,M . For instance, if all fj are estimates of f ,
and rn,M is as before, the set Λ defined in (1.1) may be empty, as non-parametric
estimates of f have typically slower rates than 1/

√
n. We therefore consider target

sets I∗ corresponding to L2(ν) neighborhoods around f of radius r2
n,M , now with

rn,M = O
(
(log(Mn)/n)1/4

)
. In this case, the set Λ given in (1.1) above is not

empty if at least one of the estimators fj has, up to logarithmic factors, a rate
of the order n−1/4, which is a modest rate to require. Of course, if fj(X) = Xj ,
as in linear regression, this choice means that we may be content with a coarser
approximation than before. However, note that this approximation has the benefit
of being realized with a smaller number of variables and that this may increase the
interpretability of that particular model and be a desirable property in practical
situations.

The results presented below hold for either of these choice, in particular for any
rn,M ≥ A

√
log(Mn)/n, and we will therefore not distinguish between them.

2.1. Main result: consistent subset selection

We begin by listing and commenting on the assumptions under which our result
holds. The first assumption refers to the error terms Wi = Yi − f(Xi). We recall
that f(X) = E(Y |X).

Assumption (A1). The random variables X1, . . . , Xn are independent, identically
distributed random variables with probability measure μ. The random variables Wi

are independently distributed with

E{Wi |X1, . . . , Xn} = 0

and

E {exp(|Wi|) |X1, . . . , Xn} ≤ b for some finite b > 0 and i = 1, . . . , n.
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We also impose mild conditions on f and on the functions fj . Let ‖g‖∞ =
supx∈X |g(x)| for any function g on X .

Assumption (A2).

(a) There exists 0 < L < ∞ such that ‖fj‖∞ ≤ L for all 1 ≤ j ≤ M .
(b) There exists c0 > 0 such that ‖fj‖ ≥ c0 for all 1 ≤ j ≤ M .
(c) There exists L0 < ∞ such that E[f2

i (X)f2
j (X)] ≤ L0 for all 1 ≤ i, j ≤ M .

(d) There exists L1 < ∞ such that ‖f‖∞ ≤ L1 < ∞.
(e) There exists L∗ < ∞ such that ‖f − f∗‖∞ ≤ L∗.

Remark 2.1. We note that (a) trivially implies (c). However, as the implied bound
may be too large, we opted for stating (c) separately. Note also that (a) and (d)
imply the following: for any fixed λ ∈ �M , there exists a positive constant L(λ),
depending on λ, such that ‖f −

∑M
j=1 λjfj‖∞ = L(λ). Inspection of the proof of

Theorem 2.1 below shows that we can allow L∗ to grow very slowly with n. However,
for sake of clarity in presentation we opted for treating it as fixed.

Assumption (A3). Let

ρM (i, j) =
< fi, fj >

‖fi‖‖fj‖
,

where < fi, fj >= Efi(X)fj(X) and ‖fi‖ = E1/2f2
i (X). Assume that

max
i∈I∗

max
j �=i

|ρM (i, j)| ≤ C

k∗ ,

for some constant C > 0.

Remark 2.2. Following [6], C = 1/45 is an allowable choice. Other choices are
possible, but improvement of constants is beyond the scope of this paper.

Remark 2.3. Assumption (A3) reflects the belief that the correlations between
functions fj with j ∈ I∗ and functions fj with j /∈ I∗ should be small. However,
we allow the correlations outside I∗ to be arbitrary. We note that this assumption
replaces the standard orthonormality assumption on the design matrix: it is given
in terms of theoretical quantities and it can hold even if M > n. It can be checked
in practice by replacing the theoretical correlations by sample correlations.

We denote by G the event that the n×M matrix F with entries fj(Xi) has full
rank. To avoid additional technicalities, the results of this paper can be regarded
as conditional on G. Otherwise, all the results can be re-derived by intersecting all
the relevant events with G and Gc, under the additional assumption that P (Gc) is
appropriately small.

We can now state our main result which we prove in the next subsection.

Theorem 2.1. If assumptions (A1)–(A3) and condition (C) hold, and k∗rn,M → 0
then P (Î = I∗) → 0.

Remark 2.4. The convergence above holds either if M is fixed and n → ∞ or if
both M, n → ∞, if rn,M ≥ A

√
log(Mn)/n for an appropriately large constant A.

Therefore we obtain consistency for both choices of rn,M discussed above. In our
derivations we require that M does not grow faster than a power of n.

Remark 2.5. The condition rn,Mk∗ → 0 imposes restrictions on the size of k∗.
If rn,M = O(

√
log(Mn)/n) the theorem above shows that we can recover consis-

tently subsets of size k∗ = O(
√

n/ log n), up to other logarithmic factors. The
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choice rn,M = O(log(Mn)/n)1/4 corresponds to a coarser approximation of f
than before, and the restriction on the number of approximating functions is now
k∗ = O(n1/4/ log n).

2.2. Proof of Theorem 2.1

Recall that
P (Î = I∗) ≥ 1 − P (I∗ �⊆ Î) − P (Î �⊆ I∗).

Therefore, proving that Î is consistent reduces to showing that each of the proba-
bilities in the right hand side of the inequality above converge to zero. We present
this in the following two propositions. We defer the proof of the intermediate results
to the Appendix.

Proposition 2.2. If assumptions (A1)–(A3) and condition (C) hold, and
rn,Mk∗ → 0, then P (I∗ �⊆ Î) → 0 as n → ∞, for any rn,M ≥ A

√
log(Mn)/n,

with A > 0 large enough.

Proof. We follow the same reasoning as [4]. Let cn = mink∈I∗ |λ∗
k| and recall that

cn > Brn,M , by condition (C). Therefore

P (I∗ �⊆ Î) ≤ P (j /∈ Î for some j ∈ I∗)

≤ P (|λ̂j − λ∗
j | = |λ∗

j |)
≤ P (|λ̂j − λ∗

j | > cn) → 0, as n → ∞

where, in the second inequality, we used that λ̂j = 0 for j /∈ Î, by the definition of Î.
The last inequality follows from Corollary 1 presented in the Appendix below.

Proposition 2.3. If assumptions (A1)–(A3) hold and rn,Mk∗ → 0, then P (Î �⊆
I∗) → 0, as n → ∞, for any rn,M ≥ A

√
log(Mn)/n, with A > 0 large enough.

Proof. Let

h(μ) =
1
n

n∑
i=1

{Yi −
∑
j∈I∗

μjfj(Xi)}2 + 2rn,M

∑
j∈I∗

||fj ||n|μj |,

and define

μ̃ = arg min
μ∈�k∗

h(μ).(2.6)

Let

B =
⋂

k/∈I∗

⎧⎨⎩| 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)| < 2rn,M ||fk||n

⎫⎬⎭ .

Let λ̃ ∈ �M be the vector that has the components of μ̃ in positions corresponding
to the index set I∗ and components equal to zero otherwise. Thus, by abuse of
notation, λ̃ = (μ̃, 0). From Lemma 3.4 in the Appendix it follows that, on the set
B, λ̃ is a solution of (2.4). Recall that λ̂ is a solution of (2.4) by construction. Then,
by arguments similar to those used in ([13], Theorems 3.1 and 3.2) regarding the
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closeness of two solutions it follows that, on the set B, λ̂k = 0 for k ∈ I∗c. Therefore
Î ⊆ I∗ on the set B. Hence

P (Î �⊆ I∗) ≤ P (Bc)

= P

⎛⎝ ⋃
k∈{1,...,M}\I∗

⎧⎨⎩| 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)| ≥ 2rn,M ||fk||n

⎫⎬⎭
⎞⎠

≤
∑

k∈{1,...,M}\I∗

P

⎛⎝⎧⎨⎩| 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)| ≥ 2rn,M ||fk||n

⎫⎬⎭
⎞⎠ .

Let k ∈ {1, . . . , M} \ I∗ be fixed. Define the sets

E1(k) =

{
1
n
|

n∑
i=1

Wifk(Xi)| < rn,M‖fk‖n/2

}
,

E2(k) =
{
‖fk‖2

n ≥ 1
4
‖f‖2

}
,

E3(k) =

{
| 1
n

n∑
i=1

fj(Xi)fk(Xi)| ≤ 2|〈fj , fk〉| + δn,M , j ∈ I∗

}
,

where δn,M = 2CL2rn,M will be specified below. The choice of δn,M is purely
technical and does not affect the overall results.

Let f̃ =
∑

j∈I∗ μ̃jfj . Recall that λ∗ ∈ RM given by (1.2) has zero components in
positions corresponding to indices in I∗c, by definition. Let μ∗ be the vector in �k∗

obtained from λ∗ by deleting these zeros. Therefore f∗ =
∑M

j=1 λ∗
jfj =

∑
j∈I∗ μ∗

jfj .
By successive applications of the triangle inequality and since ‖fk‖n ≤ L, for all
k ∈ I∗c, by assumption (A2) (a), we obtain:

P

⎛⎝ 1
n
|

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)| ≥ rn,M‖fk‖n

⎞⎠(2.7)

≤ P

(
1
n
|

n∑
i=1

Wifk(Xi)| ≥ rn,M‖fk‖n/2

)

+ P

(
1
n
|

n∑
i=1

(f(Xi) − f̃(Xi))fk(Xi)| ≥ rn,M‖fk‖n/2

)

≤ P (Ec
1(k)) + P

(
1
n
|

n∑
i=1

(f∗(Xi) − f̃(Xi))fk(Xi)| ≥ rn,M‖fk‖n/4

)

+ P

(
1
n

n∑
i=1

|(f(Xi) − f∗(Xi))| ≥ rn,M‖fk‖n/4L

)
≤ P (Ec

1(k))

+P

⎛⎝|(
∑
j∈I∗

(μ̃j − μ∗
j )

1
n

n∑
i=1

fj(Xi))fk(Xi)| ≥ rn,M‖fk‖n/4

⎞⎠
+ P

(
1
n

n∑
i=1

|(f(Xi) − f∗(Xi))| ≥ rn,M‖fk‖n/4L

)
.
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To bound the second term in the last inequality above we first notice that on the
set E3(k) and under assumptions (A2) (a) and (A3) we have

|
∑
j∈I∗

(μ̃j − μ∗
j )

1
n

n∑
i=1

fj(Xi))fk(Xi)|

≤ 2
∑
j∈I∗

|μ̃j − μ∗
j ||〈fj , fk〉| + δn,M

∑
j∈I∗

|μ̃j − μ∗
j |

≤ 2CL2

k∗ |μ̃ − μ∗|1 + δn,M |μ̃ − μ∗|1.

Therefore, on E2(k) ∩ E3(k), and under assumptions (A2), (a) and (b), and (A3)
we have

P (|(
∑
j∈I∗

(μ̃j − μ∗
j )

1
n

n∑
i=1

fj(Xi))fk(Xi)| ≥ rn,M‖fk‖n/4)

≤ P (|μ̃ − μ∗|1 ≥ c0

32CL2
k∗rn,M ) + P (|μ̃ − μ∗|1 ≥ c0

16
rn,Mδ−1

n,M )

≤ 2P (|μ̃ − μ∗|1 ≥ c0

32CL2
k∗rn,M ),(2.8)

for n large enough, since the assumption k∗rn,M → 0 implies that k∗rn,M ≤ 1 for
large n, and we recall that we defined δn,M = 2CL2rn,M .

Lastly, notice that on the set E2(k) and under assumption (A2) (b) and (e) the
third term of the last inequality in display (2.7) can be bounded by

(2.9) P (
1
n

n∑
i=1

|(f(Xi) − f∗(Xi))| ≥
c0

8L
rn,M ).

To complete the proof we need to show that P (Ec
1(k)), P (Ec

2(k)) and P (Ec
3(k))

and the probabilities in (2.8) and (2.9), when summed over k ∈ {1., . . . ,M} \ I∗,
converge to zero as n → ∞. We show this in Lemma 3.5, Corollary 2 and Lemma
3.6, respectively, in the Appendix below. This completes the proof of this result.

Appendix

In order to show Proposition 2.2 and to bound (2.8) above we will use twice ([6],
Theorem 2.3 page 177) and we begin by stating it here, for completeness. For any
λ ∈ �M we let J(λ) denote the index set corresponding to the non-zero components
of λ and denote by M(λ) its cardinality. Let ρ(λ) = maxi∈J(λ) maxj �=i |ρM (i, j)|.
With Λ given by (1.1) in Section 1.1, let Λ1 = {λ ∈ Λ : ρ(λ) ≤ C/M(λ)} .

Theorem 2.3 ([6]). Assume that (A1) and (A2) hold. Then the �1 penalized least
squares estimator λ̂ given by (2.4) satisfies, for any λ ∈ Λ1

(3.10) P
{
|λ̂ − λ|1 ≤ B1rn,MM(λ)

}
≥ 1 − πn,M (λ),

where

πn,M (λ) ≤ 14M2 exp

(
−c1n min

{
r2
n,M

L0
,
rn,M

L2
,

1
L0M2(λ)

,
1

L2M(λ)

})

exp
(
−c2

M(λ)
L2(λ)

nr2
n,M

)
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for some positive constants c1, c2 depending on c0, Cf and b only, and a constant
B1 depending on c0 and Cf .

Notice now that by (1.3) and under assumption (A3), λ∗ ∈ Λ1. We therefore
have the following corollary.

Corollary 1. Assume that (A1)–(A3) hold. Then

P
{
|λ̂j − λ∗

j | > B1rn,M

}
≤ π∗,

for all 1 ≤ j ≤ M , where π∗ = πn,M (λ∗).

Proof. From ([6], Theorem 2.3) we obtain

1 − π∗ ≤ P
{
|λ̂ − λ∗|1 ≤ B1k

∗rn,M

}
≤ P

{
min

1≤j≤M
|λ̂j − λ∗

j | ≤ B1rn,M

}
.

This immediately implies the result.

Remark 3.1. Notice that π∗ → 0 as n → 0 for any rn,M ≥ A
√

log(Mn)/n, and
for B = B1, as needed in Proposition 2.2 in Section 2.2 above.

In order to control the probability (2.8) we first define U and U1, the analogues
of the sets Λ and Λ1 defined above.

U =

⎧⎨⎩μ ∈ �k∗
: ‖f −

∑
j∈I∗

μjfj‖2 ≤ Cfr2
n,M

⎫⎬⎭ , U1 = {μ ∈ U : ρ(μ)M(μ) ≤ C} .

Recall that μ∗ is the vector in �k∗
obtained from λ∗ by deleting the zero entries.

Then, since assumption (A3) implies maxi∈I∗ maxj∈I∗,j �=i |ρM (i, j)| ≤ C/k∗ and
‖f −

∑M
j=1 λ∗

jfj‖ = ‖f −
∑

j∈I∗ μjfj‖ we deduce that μ∗ ∈ U1. Therefore, using
again ([6], Theorem 2.3) applied now to the dictionary {fj}j∈I∗ and quantity μ̃
defined in (2.6) above, we obtain the following corollary:

Corollary 2. Assume that (A1)–(A3) hold. Then

(3.11) P {|μ̃ − μ∗|1 ≤ B2k
∗rn,M} ≥ 1 − p∗,

where

p∗ ≤ 14k∗2 exp

(
−c1n min

{
r2
n,M

L0
,
rn,M

L2
,

1
L0k∗2 ,

1
k∗L2

})

+exp
(
−c2

k∗

L2(λ∗)
nr2

n,M

)
,

for some positive constants c1, c2 as above and a constant B2 > 0 that only depends
on Cf and c0.

Remark 3.2. If rn,M ≥ A
√

log(Mn)/n, then Mp∗ → 0 as n → ∞, for A > 0
large enough. Hence, the probability given by (2.8), summed over k, converges to
zero for both choices of rn,M introduced in Section 2, adjusting the value of B2 if
needed.

The following lemma is needed in the beginning of the proof of Proposition 2.3.
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Lemma 3.4. λ̃ = (μ̃, 0) is a solution of (2.4) on the set

B =
⋂

k/∈I∗

⎧⎨⎩
∣∣∣∣∣∣ 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ < 2rn,M ||fk||n

⎫⎬⎭ .

Proof. We recall that for any convex function g : �M → � the subdifferential
of g at a point λ is the set Dλ = {w ∈ �M : g(u) − g(λ) ≥ 〈w, u − λ〉}. Let
g(λ) = 1

n

∑n
i=1{Yi −

∑M
j=1 λjf(Xi)}2 + pen(λ), where we recall that our penalty

term is pen(λ) = 2rn,M

∑M
j=1 ‖fj‖n|λj |. Then (e.g., [13]) we have

Dλ = {w ∈ �M : w = − 2
n

F ′(Y − Fλ) + 2rn,Mv},

where v ∈ �M is such that

vk = ||fk||n, if λk > 0
vk = −||fk||n, if λk < 0
vk ∈ [−||fk||n, ||fk||n], if λk = 0,

and where we recall that Y = (Y1, . . . , Yn) and F is the n×M matrix with elements
fj(Xi). By standard results in convex analysis, λ̄ ∈ �M is a point of local minimum
for a convex function g if and only if 0 ∈ Dλ̄, where 0 ∈ �M . Therefore, λ̄ minimizes
our g(λ) if and only if 0 ∈ Dλ̄ if and only if∣∣∣∣( 2

n
F ′(Y − Fλ̄)

)
k

∣∣∣∣ = 2rn,M |vk| for all k ∈ {1, . . . ,M},

where (·)k above denotes the k-th component of the vector in paranthesis. Equiva-
lently, λ̄ minimizes g(λ) if and only if, for all 1 ≤ k ≤ M

∣∣∣∣∣∣ 2
n

n∑
i=1

[Yi −
M∑

j=1

λ̄jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ = 2rn,M ||fk||n, if λ̄k �= 0,(3.12)

∣∣∣∣∣∣ 2
n

n∑
i=1

[Yi −
M∑

j=1

λ̄jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ ≤ 2rn,M ||fk||n, if λ̄k = 0.

In what follows we find conditions under which λ̃ = (μ̃, 0), with μ̃ given in (2.6)
above, satisfies (3.12). First notice that, by definition,

∑n
i=1[Yi−

∑M
j=1 λ̃jfj(Xi)] =∑n

i=1[Yi−
∑

j∈I∗ μ̃jfj(Xi)]. Since μ̃ is a solution of (2.6) then, by the above standard
results in convex analysis, applied now to the function h(λ) defined in the proof of
Proposition 2.3, the following hold∣∣∣∣∣∣ 2

n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ = 2rn,M ||fk||n, if λ̃k = μ̃k �= 0, k ∈ I∗,

∣∣∣∣∣∣ 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ ≤ 2rn,M ||fk||n, if λ̃k = μ̃k = 0, k ∈ I∗.
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Notice now that on the set B we also have∣∣∣∣∣∣ 2
n

n∑
i=1

[Yi −
∑
j∈I∗

μ̃jfj(Xi)]fk(Xi)

∣∣∣∣∣∣ ≤ 2rn,M ||fk||n, if k /∈ I∗ (for which μ̃k = 0).

The above displays show that λ̃ satisfies condition (3.12) and is therefore a
solution of (2.4) on B.

Remark 3.3. The observation that constitutes the statement of the above lemma
has also been made elsewhere [12] for a slightly different penalty term. We have
included here a full derivation of it for completeness and clarity.

To complete the proof of Proposition 2.3 we will make repeated use of Bernstein’s
inequality, which we state here for completeness.

Bernstein’s inequality. Let ζ1, . . . , ζn be independent random variables such that

1
n

n∑
i=1

E|ζi|m ≤ m!
2

w2dm−2

for some positive constants w and d and for all integers m ≥ 2. Then, for any ε > 0
we have

(3.13) P

{
n∑

i=1

(ζi − Eζi) ≥ nε

}
≤ exp

(
− nε2

2(w2 + dε)

)
.

Lemma 3.5. Let assumptions (A1) and (A2) hold. Then∑
k∈{1,...,M}\I∗

P (Ec
1(k)) → 0,

∑
k∈{1,...,M}\I∗

P (Ec
2(k)) → 0, and

∑
k∈{1,...,M}\I∗

P (Ec
3(k)) → 0, as n → ∞.

Proof. To show
∑

k∈{1,...,M}\I∗ P (Ec
1(k)) → 0 it is enough to show that (I) =∑

k∈{1,...,M}\I∗ P (Ec
1(k)∩E2(k)) → 0 and that (II) =

∑
k∈{1,...,M}\I∗ P (Ec

2(k)) →
0. The proofs follow immediately from Bernstein’s inequality and the union bound.
They are the same as ([6], proofs of Lemmas 4 and 5, page 186). We include here
the derived probability bounds, for completeness.

(I) ≤ 2M2 exp

(
−

nr2
n,M

16b

)
+ 2M2 exp

(
−nrn,Mc0

8
√

2L

)
+ 2M2 exp

(
− nc2

0

12L2

)
,

and

(II) ≤ M2 exp
(
− nc2

0

12L2

)
.
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To bound the last quantity in the statement of the Lemma notice first that

P (Ec
3(k)) ≤ 2

∑
j∈I∗

P

(
1
n

n∑
i=1

fj(Xi)fk(Xi) > 2|〈fj , fk〉| + δn,M

)

≤ 2
∑
j∈I∗

exp
{
− n

4L0
(|〈fj , fk〉| + δn,M )2

}
+ 2

∑
j∈I∗

exp
{
− n

4L
(|〈fj , fk〉| + δn,M )

}

≤ 2M exp

{
−

nδ2
n,M

4L0

}
+ 2M exp

{
−nδn,M

4L

}
.

The second inequality of the display above follows from Bernstein’s inequality with
ζi = fj(Xi)fk(Xi), for every fixed j, and k and with w2 = L0, d = L2, for ε =
|〈fj , fk〉|+δn,m, used together with the inequality ex/a+b ≤ ex/2a +ex/2b for all x, a
and b. Therefore, for δn,M = 2CL2rn,M we obtain

(III) =
∑

k∈{1,...,M}\I∗

P (E3
2(k))

≤ 2M2 exp

{
−

C2L4nr2
n,M

L0

}
+ 2M2 exp

{
−CLnrn,M

2

}
.

Thus, the quantities (I), (II) and (III) converge to zero for any
rn,M ≥ A

√
log(M)n/n.

Lemma 3.6. Let assumptions (A1) and (A2) hold. Then

(IV ) =
∑

k∈{1,...,M}\I∗

P

(
1
n

n∑
i=1

|(f(Xi) − f∗(Xi))| ≥
c0

8L
rn,M

)
→ 0.

Proof. By the Cauchy-Schwartz inequality we have

P

(
1
n

n∑
i=1

|(f(Xi) − f∗(Xi))| ≥
c0

8L
rn,M

)
(3.14)

≤ P

(
1
n

n∑
i=1

(f(Xi) − f∗(Xi))2 ≥ c2
0

64L2
r2
n,M

)

≤ P

(
n∑

i=1

{(f(Xi) − f∗(Xi))2 − ‖f − f∗‖2}(3.15)

≥ n(
c2
0

64L2
r2
n,M − ‖f − f∗‖2)

)
≤ P

(
n∑

i=1

{(f(Xi) − f∗(Xi))2 − ‖f − f∗‖2} ≥ C1nr2
n,M

)
,

where we recall that ‖f − f∗‖2 ≤ Cfr2
n,M , by definition and C1 = c2

0/64L2 − Cf ,
where we assume that we have already adjusted Cf to have C1 > 0, by taking
an appropriate constant A in the definition of rn,M , if needed. The proof follows
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immediately from Bernstein’s inequality applied to ζi = (f(Xi) − f∗(Xi))2, with
w =

√
Cfrn,M and d = L∗, and for ε = C1r

2
n,M . Therefore

(IV ) ≤ M exp{−CfC2
1

4
nr2

n,M} + M exp{− C1

4L∗nr2
n,M},

and both terms converge to zero for either choice of rn,M .
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