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A growth model in multiple dimensions

and the height of a random partial order

Timo Seppäläinen1,∗

University of Wisconsin-Madison

Abstract: We introduce a model of a randomly growing interface in multi-
dimensional Euclidean space. The growth model incorporates a random or-
der model as an ingredient of its graphical construction, in a way that repli-
cates the connection between the planar increasing sequences model and the
one-dimensional Hammersley process. We prove a hydrodynamic limit for the
height process, and a limit which says that certain perturbations of the ran-
dom surface follow the characteristics of the macroscopic equation. By virtue
of the space-time Poissonian construction, we know the macroscopic velocity
function explicitly up to a constant factor.

1. Introduction

We introduce a model of a randomly growing interface, whose construction in-
volves the height of a random partial order. The interface is defined by a height
function on d-dimensional Euclidean space, and the related model of random order
is in d + 1 dimensional space-time. Our goal is to emulate in higher dimensions
the fruitful relationship between the one-dimensional Hammersley process and the
model of increasing sequences among planar Poisson points. The connection be-
tween Hammersley’s process and increasing sequences was suggested in Hammers-
ley’s paper [15], first utilized by Aldous and Diaconis [1], and subsequently in papers
[21, 22, 25, 27]. A review of the use of Hammersley’s process to study increasing
sequences appeared in [14], and of the wider mathematical context in [2]. The study
of higher dimensional random orders was started by Winkler [30].

The interface process we introduce is defined through a graphical representation
which utilizes a homogeneous space-time Poisson point process, and in particular
the heights of the partial orders among the Poisson points in space-time rectangles.
This definition suggests a natural infinitesimal description, which we verify in a
sense. After defining the process, we prove a hydrodynamic limit for the height
function. This proceeds in a familiar way, by the path level variational formulation.
The deterministic limiting height is the solution of a Hamilton-Jacobi equation
given by a Hopf-Lax formula.

Next we use this process to prove a limit that in a way generalizes the law of
large numbers of a second class particle in one-dimensional systems. In interacting
particle systems, a second class particle is the location X(t) of the unique discrep-
ancy between two coupled systems that initially differ by exactly one particle (see
[16], part III). This makes sense for example for Hammersley’s process and exclu-
sion type processes. If the particle system lives in one-dimensional space, we can
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also look at the system as the height function of an interface, so that the occupa-
tion variables of the particle system define the increments of the height function.
In terms of the height functions, we start by coupling two systems σ and ζ so that
initially ζ = σ to the left of X(0), and ζ = σ + 1 to the right of X(0). Then at all
times the point X(t) is the boundary of the set {x : ζ(x, t) = σ(x, t) + 1}.

This last idea generalizes naturally to the multidimensional interface model. We
couple two height processes σ and ζ that satisfy σ ≤ ζ ≤ σ + 1 at all times, and
prove that the boundary of the random set {x : ζ(x, t) = σ(x, t) + 1} follows the
characteristics of the macroscopic equation.

Laws of large numbers for height functions of asymmetric interface models of
the general type considered here have been earlier studied in a handful of papers.
A hydrodynamic limit for ballistic deposition was proved in [24], and for models
that generalize the exclusion process in [19, 20]. Articles [19, 24] deal with totally
asymmetric models, and utilize the path-level variational formulation that general-
izes from one-dimensional systems [23]. Article [20] introduces a different approach
for partially asymmetric systems. These results are existence results only. In other
words convergence to a limiting evolution is shown but nothing explicit about the
limit is known, except that it is defined by a Hamilton-Jacobi equation. For partially
asymmetric systems in more than one dimension it is presently not even known if
the limit is deterministic.

Our motivation for introducing a new model is to have a system for which better
results could be proved. An advantage over earlier results is that here we can write
down explicitly the macroscopic velocity function up to a constant factor. This
is because the process is constructed through a homogeneous space-time Poisson
process, so we can simultaneously scale space and time. This is not possible for
a lattice model. With an (almost) explicit velocity we can calculate macroscopic
profiles, for example see what profiles with shocks and rarefaction fans look like. In
the earlier cases at best we know that the velocity function is convex (or concave),
but whether the velocity is C1 or strictly convex is a hard open question. Here this
question is resolved immediately.

Hammersley’s process has been a fruitful model for studying large scale behav-
ior of one-dimensional asymmetric systems, by virtue of its connection with the
increasing sequence model. For example, by a combination of the path-level varia-
tional construction and the Baik-Deift-Johansson estimates [3], one can presently
prove the sharpest out-of-equilibrium fluctuation results for this process [25, 27].
The model introduced in the present paper has a similar connection with a simple
combinatorial model, so it may not be too unrealistic to expect some benefit from
this in the future.

Before the arrival of the powerful combinatorial and analytic approach pioneered
in [3], Hammersley’s process was used as a tool for investigating the increasing se-
quences model. This approach was successful in finding the value of the limiting
constant [1, 21] and in large deviations [22]. The proofs relied on explicit knowledge
of invariant distributions of Hammersley’s process. A similar motivation is possible
for us too, and this time the object of interest would be the height of the ran-
dom partial order. But currently we have no explicit knowledge of steady states of
the process introduced here, so we cannot use the process to identify the limiting
constant for the random order model.

Recently Cator and Groeneboom [8] developed an approach to the one-dimensio-
nal Hammersley process that captures the correct order t1/3 of the current fluctua-
tions across a characteristic. The argument utilizes precise equilibrium calculations
and a time reversal that connects maximizing increasing paths with trajectories
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of second class particles. In [4] this method is adapted to the totally asymmetric
exclusion process. Whether the idea can be applied in multidimensional settings
remains to be seen.

Organization of the paper. We begin by reminding the reader of the random
partial order model, and then proceed to define the process and state the limit
theorems. Proofs follow. A technical appendix at the end of the paper shows that
the process has a natural state space that is a complete, separable metric space.

2. The height of a random partial order

Fix an integer ν ≥ 2. Coordinatewise partial orders on Rν are defined for points
x = (x1, . . . , xν) and y = (y1, . . . , yν) by

(1) x ≤ y iff xi ≤ yi for 1 ≤ j ≤ ν, and x < y iff xi < yi for 1 ≤ j ≤ ν.

We use interval notation to denote rectangles: (a, b] = {x ∈ Rν : a < x ≤ b} for
a < b in Rν , and similarly for [a, b] and the other types of intervals.

Consider a homogeneous rate 1 Poisson point process in Rν . A sequence of Pois-
son points pk, 1 ≤ k ≤ m, is increasing if p1 < p2 < · · · < pm in the coordinatewise
sense. For a < b in Rν , let H(a, b) denote the maximal number of Poisson points on
an increasing sequence contained in the set (a, b]. Let 1 = (1, 1, . . . , 1) ∈ Rν . (This
is the only vector we will denote by a boldface.) Kingman’s subadditive ergodic
theorem and simple moment bounds imply the existence of constants cν such that

(2) lim
n→∞

1
n
H(0, n1) = cν a.s.

Presently the only known value is c2 = 2, first proved by Vershik and Kerov [29]
and Logan and Shepp [17]. The case ν = 2 is the same as the problem of the longest
increasing subsequence of a random permutation, see [2] for a review. Bollobás and
Winkler [7] proved that cν → e as ν → ∞.

The general case is called the ν-dimensional random partial order, and H(0, n1)
is the height of the random partial order. The study of random partial orders was
initiated by Winkler [30]. Here is an alternative construction of the random partial
order on a fixed (rather than Poisson) number of elements. From the k! linear orders
on a set of k elements, choose ν orders ≺1, ≺2, . . . , ≺ν uniformly at random with
replacement. Define the random order ≺ as the intersection, namely x ≺ y iff x ≺j y
for j = 1, . . . , ν. The height of the random order is the maximal size of a linearly
ordered subset. Conditioned on the number k of Poisson points in the cube (0, n1],
H(0, n1) has the same distribution as the height of the random order ≺.

Let us also point out that by the spatial scaling of the Poisson point process, for
any b = (b1, . . . , bν) > 0 in Rd,

(3) lim
n→∞

1
n
H(0, nb) = cν(b1b2b3 · · · bν)1/ν a.s.

3. The interface process

Fix a spatial dimension d ≥ 2. Appropriately interpreted, everything we say is
true in d = 1 also, but does not offer anything significantly new. We describe
the evolution of a random, integer-valued height function σ = (σ(x))x∈Rd . Height
values ±∞ are permitted, so the range of the height function is Z∗ = Z ∪ {±∞}.
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The state space of the process is the space Σ of functions σ : Rd → Z∗ that satisfy
conditions (i)–(iii):

(4) (i) Monotonicity: x ≤ y in Rd implies σ(x) ≤ σ(y).

The partial order x ≤ y on Rd is the coordinatewise one defined in Section 2.
(ii) Discontinuities restricted to a locally finite, countable collection of coordinate

hyperplanes: for each bounded cube [−q1, q1] ⊆ Rd, there are finite partitions

−q = s0
i < s1

i < · · · < smi
i = q

along each coordinate direction (1 ≤ i ≤ d), such that any discontinuity point of σ
in [−q1, q1] lies on one of the hyperplanes {x ∈ [−q1, q1] : xi = sk

i }, 1 ≤ i ≤ d and
0 ≤ k ≤ mi.

At discontinuities σ is continuous from above: σ(y) → σ(x) as y → x so that
y ≥ x in Rd. Since σ is Z∗-valued, this is the same as saying that σ is constant on
the left closed, right open rectangles

(5) [sk, sk+1) ≡
d∏

i=1

[ski

i , ski+1
i ) , k = (k1, k2, . . . , kd) ∈

d∏
i=1

{0, 1, 2, . . . ,mi − 1},

determined by the partitions {sk
i : 0 ≤ k ≤ mi}, 1 ≤ i ≤ d.

(iii) A decay condition “at −∞”:

(6) for every b ∈ Rd, lim
M→∞

sup
{
|y|−d/(d+1)

∞ σ(y) : y ≤ b, |y|∞ ≥ M
}

= −∞.

The role of the (arbitrary) point b in condition (6) is to confine y so that as the
limit is taken, all coordinates of y remain bounded above and at least one of them
diverges to −∞. Hence we can think of this as “y → −∞” in Rd. The �∞ norm on
Rd is |y|∞ = max1≤i≤d |yi|.

We can give Σ a complete, separable metric. Start with a natural Skorohod
metric suggested by condition (ii). On bounded rectangles, this has been considered
earlier by Bickel and Wichura [5], among others. This metric is then augmented with
sufficient control of the left tail so that convergence in this metric preserves (6). The
Borel σ-field under this metric is generated by the coordinate projections σ 
→ σ(x).
These matters are discussed in a technical appendix at the end of the paper.

Assume given an initial height function σ ∈ Σ. To construct the dynamics,
assume also given a space-time Poisson point process on Rd × (0,∞). We define
the process σ(t) = {σ(x, t) : x ∈ Rd} for times t ∈ [0,∞) by

(7) σ(x, t) = sup
y:y≤x

{σ(y) + H((y, 0), (x, t))}.

The random variable H((y, 0), (x, t)) is the maximal number of Poisson points on
an increasing sequence in the space-time rectangle

((y, 0), (x, t)] = {(η, s) ∈ Rd × (0, t] : yi < ηi ≤ xi (1 ≤ i ≤ d)},

as defined in Section 2. One can prove that, for almost every realization of the
Poisson point process, the supremum in (7) is achieved at some y, and σ(t) ∈ Σ for
all t > 0. In particular, if initially σ(x) is finite then σ(x, t) remains finite for all
0 ≤ t < ∞. And if σ(x) = ±∞, then σ(x, t) = σ(x) for all 0 ≤ t < ∞. This defines
a Markov process on the path space D([0,∞), Σ).
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The local effect of the dynamical rule (7) is the following. Suppose (y, t) ∈
Rd × (0,∞) is a Poisson point, and the state at time t− is σ. Then at time t the
state changes to σy defined by

(8) σy(x) =
{

σ(x) + 1, if x ≥ y and σ(x) = σ(y),
σ(x), for all other x ∈ Rd.

We can express the dynamics succinctly like this: Independently at all x ∈ Rd,
σ(x) jumps to σ(x) + 1 at rate dx (d-dimensional volume element). When a jump
at x happens, the height function σ is updated to σ + 1 on the set {w ∈ Rd : w ≥
x, σ(w) = σ(x)} to preserve the monotonicity property (4). It also follows that if
σ(y) = ±∞ then σy = σ.

We express this in generator language as follows. Suppose φ is a bounded mea-
surable function on Σ, and supported on a compact cube K ⊆ Rd. By this we mean
that φ is a measurable function of the coordinates (σ(x))x∈K . Define the generator
L by

(9) Lφ(σ) =
∫
Rd

[φ(σy) − φ(σ)]dy.

The next theorem verifies that L gives the infinitesimal description of the process
in one basic sense.

Theorem 3.1. For bounded measurable functions φ on Σ, σ ∈ Σ, and t > 0,

(10) Eσ[φ(σ(t))] − φ(σ) =
∫ t

0

Eσ[Lφ(σ(s))]ds.

Eσ denotes expectation under the path measure Pσ of the process defined by (7) and
started from state σ.

4. Hydrodynamic limit for the height process

Let u0 : Rd → R be a nondecreasing locally Lipschitz continuous function, such
that for any b ∈ Rd,

(11) lim
M→∞

sup
{
|y|−d/(d+1)

∞ u0(y) : y ≤ b, |y|∞ ≥ M
}

= −∞.

The function u0 represents the initial macroscopic height function. Assume that
on some probability space we have a sequence of random initial height functions
{σn(y, 0) : y ∈ Rd}, indexed by n. Each σn(· , 0) is a.s. an element of the state space
Σ. The sequence satisfies a law of large numbers:

(12) for every y ∈ Rd, n−1σn(ny, 0) → u0(y) as n → ∞, a.s.

Additionally there is the following uniform bound on the decay at −∞:

(13)
for every fixed b ∈ Rd and C > 0, with probability 1 there exist finite,
possibly random, M, N > 0 such that, if n ≥ N , y ≤ b and |y|∞ ≥ M ,
then σn(ny, 0) ≤ −Cn|y|d/(d+1)

∞ .

Augment the probability space of the initial σn(·, 0) by a space-time Poisson
point process, and define the processes σn(x, t) by (7). For x = (x1, . . . , xd) ≥ 0 in
Rd, define

g(x) = cd+1(x1x2x3 · · ·xd)1/(d+1).
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The constant cd+1 is the one from (2), and it comes from the partial order among
Poisson points in d + 1 dimensional space-time rectangles.

Define a function u(x, t) on Rd × [0,∞) by u(x, 0) = u0(x) and for t > 0,

(14) u(x, t) = sup
y:y≤x

{u0(y) + tg((x − y)/t)}.

The function u is nondecreasing in x, increasing in t, and locally Lipschitz in Rd ×
(0,∞).

Theorem 4.1. Suppose u0 is a locally Lipschitz function on Rd that satisfies (11).
Define u(x, t) through (14). Assume that the initial random interfaces {σn(y, 0)}
satisfy (12) and (13). Then for all (x, t) ∈ Rd × [0,∞),

(15) lim
n→∞

n−1σn(nx, nt) = u(x, t) a.s.

By the monotonicity of the random height and the continuity of the limiting
function, the limit (15) holds simultaneously for all (x, t) outside a single exceptional
null event.

Extend g to an u.s.c. concave function on all of Rd by setting g ≡ −∞ outside
[0,∞)d. Define the constant

(16) κd =
(

cd+1

d + 1

)d+1

.

The concave conjugate of g is g∗(ρ) = infx{x · ρ − g(x)}, ρ ∈ Rd. Let f = −g∗.
Then f(ρ) = ∞ for ρ /∈ (0,∞)d, and

(17) f(ρ) = κd(ρ1ρ2 · · · ρd)−1 for ρ > 0 in Rd.

The Hopf-Lax formula (14) implies that u solves the Hamilton-Jacobi equation (see
[10])

(18) ∂tu − f(∇u) = 0 , u|t=0 = u0.

In other words, f(∇u) is the upward velocity of the interface, determined by the
local slope.

The most basic case of the hydrodynamic limit starts with σ(y, 0) = 0 for y ≥ 0
and σ(y, 0) = −∞ otherwise. Then σ(x, t) = H((0, 0), (x, t)) for x ≥ 0 and −∞
otherwise. The limit is u(x, t) = tg(x/t).

5. The defect boundary limit

Our objective is to generalize the notion of a second class particle from the one-
dimensional context. The particle interpretation does not make sense now. But a
second class particle also represents a defect in an interface, and is sometimes called
a ‘defect tracer.’ This point of view we adopt. Given an initial height function
σ(y, 0), perturb it by increasing the height to σ(y, 0) + 1 for points y in some set
A(0). The boundary of the set A(0) corresponds to a second class particle, so we
call it the defect boundary. How does the perturbation set A(·) evolve in time? To
describe the behavior of this set under hydrodynamic scaling, we need to look at
how the Hamilton-Jacobi equation (18) carries information in time.
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For (x, t) ∈ Rd × (0,∞), let I(x, t) be the set of maximizers in (14):

(19) I(x, t) = {y ∈ Rd : y ≤ x, u(x, t) = u0(y) + tg((x − y)/t)}.

Continuity and hypothesis (11) guarantee that I(x, t) is a nonempty compact set.
It turns out that these three statements (i)–(iii) are equivalent for a point (x, t):
(i) the gradient ∇u in the x-variable exists at (x, t), (ii) u is differentiable at (x, t),
and (iii) I(x, t) is a singleton. We call a point (x, t) with t > 0 a shock if I(x, t) has
more than one point.

For y ∈ Rd let W (y, t) be the set of points x ∈ Rd for which y is a maximizer in
the Hopf-Lax formula (14) at time t:

(20) W (y, t) = {x ∈ Rd : x ≥ y, u(x, t) = u0(y) + tg((x − y)/t)},

and for any subset B ⊆ Rd,

(21) W (B, t) =
⋃

y∈B

W (y, t).

Given a closed set B ⊆ Rd, let

(22) X(B, t) = W (B, t) ∩ W (Bc, t).

W (B, t) and W (Bc, t) are both closed sets. We can characterize x ∈ X(B, t) as
follows: if (x, t) is not a shock then the unique maximizer {y} = I(x, t) in (14) lies
on the boundary of B, while if (x, t) is a shock then I(x, t) intersects both B and
Bc.

If dimension d = 1 and B = [a,∞) ⊆ R, an infinite interval, then X(B, t) is
precisely the set of points x for which there exists a forward characteristic x(·)
such that x(0) = a and x(t) = x. By a forward characteristic we mean a Filippov
solution of dx/dt = f ′(∇u(x, t)) [9, 18]. A corresponding characterization of X(B, t)
in multiple dimensions does not seem to exist at the moment.

The open ε-neighborhood of a set B ⊆ Rd is denoted by

(23) B(ε) = {x : d(x, y) < ε for some y ∈ B}.

The distance d(x, y) can be the standard Euclidean distance or another equivalent
metric, it makes no difference. Let us write B(−ε) for the set of x ∈ B that are at
least distance ε > 0 away from the boundary:

(24) B(−ε) = {x ∈ B : d(x, y) ≥ ε for all y /∈ B} =
[
(Bc)(ε)

]c
.

The topological boundary of a closed set B is bdB = B ∩ Bc.
Suppose two height processes σ(t) and ζ(t) are coupled through the space-time

Poisson point process. This means that on some probability space are defined the
initial height functions σ(y, 0) and ζ(y, 0), and a space-time Poisson point process
which defines all the random variables H((y, 0), (x, t)). Process σ(x, t) is defined
by (7), and process ζ(x, t) by the same formula with σ replaced by ζ, but with
the same realization of the variables H((y, 0), (x, t)). If initially σ ≤ ζ ≤ σ + h for
some constant h, then the evolution preserves these inequalities. We can follow the
evolution of the “defect set” A(t), defined as A(t) = {x : ζ(x, t) = σ(x, t) + h} for
t ≥ 0. This type of a setting we now study in the hydrodynamic context. In the
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introduction we only discussed the case h = 1, but the proof works for general finite
h.

Now precise assumptions. On some probability space are defined two sequences of
initial height functions σn(y, 0) and ζn(y, 0). The {σn(y, 0)} satisfy the hypotheses
(12) and (13) of Theorem 4.1. For some fixed positive integer h,

(25) σn(y, 0) ≤ ζn(y, 0) ≤ σn(y, 0) + h for all n and y ∈ Rd.

Construct the processes σn(t) and ζn(t) with the same realizations of the space-time
Poisson point process. Then

(26) σn(x, t) ≤ ζn(x, t) ≤ σn(x, t) + h for all n and (x, t).

In particular, ζn and σn satisfy the same hydrodynamic limit.
Let

(27) An(t) = {x ∈ Rd : ζn(x, t) = σn(x, t) + h}.

Our objective is to follow the evolution of the set An(t) and its boundary bd{An(t)}.
We need an initial assumption at time t = 0. Fix a deterministic closed set B ⊆ Rd.
We assume that for large n, n−1An(0) approximates B locally, in the following sense:
almost surely, for every compact K ⊆ Rd and ε > 0,

(28) B(−ε) ∩ K ⊆
{
n−1An(0)

}
∩ K ⊆ B(ε) ∩ K for all large enough n.

Theorem 5.1. Let again u0 satisfy (11) and the processes σn satisfy (12) and (13)
at time zero. Fix a positive integer h and a closed set B ⊆ Rd. Assume that the
processes σn are coupled with processes ζn through a common space-time Poisson
point process so that (26) holds. Define An(t) by (27) and assume An(0) satisfies
(28).

If W (B, t) = ∅, then almost surely, for every compact K ⊆ Rd, An(nt)∩nK = ∅
for all large enough n.

Suppose W (B, t) �= ∅. Then almost surely, for every compact K ⊆ Rd and ε > 0,

(29) bd {n−1An(nt)} ∩ K ⊆ X(B, t)(ε) ∩ K for all large enough n.

In addition, suppose no point of W (Bc, t) is an interior point of W (B, t). Then
almost surely, for every compact K ⊆ Rd and ε > 0,

W (B, t)(−ε) ∩ K ⊆
{
n−1An(nt)

}
∩ K

(30) ⊆ W (B, t)(ε) ∩ K for all large enough n.

The additional hypothesis for (30), that no point of W (Bc, t) is an interior point
of W (B, t), prevents B and Bc from becoming too entangled at later times. For
example, it prohibits the existence of a point y ∈ bd B such that W (y, t) has
nonempty interior (“a rarefaction fan with interior”).
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6. Examples and technical comments

6.1. Second class particle analogy

Consider a one-dimensional Hammersley process z(t) = (zi(t))i∈Z with labeled
particle locations · · · ≤ z−1(t) ≤ z0(t) ≤ z1(t) ≤ · · · on R. In terms of labeled
particles, the infinitesimal jump rule is this: zi jumps to the left at exponential rate
zi−zi−1, and when it jumps, its new position z′i is chosen uniformly at random from
the interval (zi−1, zi). The height function is defined by σ(x, t) = sup{i : zi(t) ≤ x}
for x ∈ R.

Now consider another Hammersley process z̃(t) constructed with the same re-
alization of the space-time Poisson point process as z(t). Assume that at time 0,
z̃(0) has exactly the same particle locations as z(0), plus h additional particles.
Then at all later times z̃(t) will have h particles more than z(t), and relative to the
z(t)-process, these extra particles behave like second class particles.

Suppose the labeling of the particles is such that z̃i(t) = zi(t) to the left of all
the second class particles. Let X1(t) ≤ · · · ≤ Xh(t) be the locations of the second
class particles. Then the height functions satisfy σ̃(x, t) = σ(x, t) for x < X1(t), and
σ̃(x, t) = σ(x, t) + h for x ≥ Xh(t). So in this one-dimensional second class particle
picture, the set A(t) is the interval [Xh(t),∞). It has been proved, in the context of
one-dimensional asymmetric exclusion, K-exclusion and zero-range processes, that
in the hydrodynamic limit a second-class particle converges to a characteristic or
shock of the macroscopic p.d.e. [12, 18, 26].

Despite this analogy, good properties of the one-dimensional situation are readily
lost as we move to higher dimensions. For example, we can begin with a set A(0)
that is monotone in the sense that x ∈ A(0) implies y ∈ A(0) for all y ≥ x.
But this property can be immediately lost: Suppose a jump happens at w such
that ζ(w, 0) = σ(w, 0) but the set V = {x ≥ w : σ(x, 0) = σ(w, 0)} intersects
A(0) = {x : ζ(x, 0) = σ(x, 0) + 1}. Then after this event ζ = σ on V , and cutting
V away from A(0) may have broken its monotonicity.

6.2. Examples of the limit in Theorem 5.1

We consider here the simplest macroscopic profiles for which we can explicitly calcu-
late the evolution W (B, t) of a set B, and thereby we know the limit of n−1An(nt) in
Theorem 5.1. These are the flat profile with constant slope, and the cases of shocks
and rarefaction fans that have two different slopes. Recall the slope-dependent
velocity f(ρ) = κd(ρ1ρ2ρ3 · · · ρd)−1 for ρ ∈ (0,∞)d, where κd is the (unknown)
constant defined by (2) and (16).

For the second class particle in one-dimensional asymmetric exclusion, these
cases were studied in [12, 13].

Flat profile. Fix a vector ρ ∈ (0,∞)d, and consider the initial profile u0(x) =
ρ · x. Then u(x, t) = ρ · x + tf(ρ), for each (x, t) there is a unique maximizer
y(x, t) = x + t∇f(ρ) in the Hopf-Lax formula, and consequently for any set B,
W (B, t) = −t∇f(ρ) + B.

Shock profile. Fix two vectors λ, ρ ∈ (0,∞)d, and let

(31) u0(x) =
{

ρ · x, (ρ − λ) · x ≥ 0,
λ · x, (ρ − λ) · x ≤ 0.
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Then at later times we have

u(x, t) =
{

ρ · x + tf(ρ), (ρ − λ) · x ≥ t(f(λ) − f(ρ)),
λ · x + tf(λ), (ρ − λ) · x ≤ t(f(λ) − f(ρ)).

The Hopf-Lax formula is maximized by

y =
{

x + t∇f(ρ), if (ρ − λ) · x ≥ t(f(λ) − f(ρ)),
x + t∇f(λ), if (ρ − λ) · x ≤ t(f(λ) − f(ρ)).

In particular, points (x, t) on the hyperplane (ρ−λ) ·x = t(f(λ)−f(ρ)) are shocks,
and for them both alternatives above are maximizers. In the forward evolution,
W (y, t) is either a singleton or empty:

W (y, t) =



y − t∇f(ρ),

if (ρ − λ) · y ≥ t(f(λ) − f(ρ)) + t(ρ − λ) · ∇f(ρ),

∅, if t(f(λ) − f(ρ)) + t(ρ − λ) · ∇f(λ) < (ρ − λ) · y
< t(f(λ) − f(ρ)) + t(ρ − λ) · ∇f(ρ),

y − t∇f(λ),

if (ρ − λ) · y ≤ t(f(λ) − f(ρ)) + t(ρ − λ) · ∇f(λ).

In this situation Theorem 5.1 is valid for all sets B.
Rarefaction fan profile. Fix two vectors λ, ρ ∈ (0,∞)d, and let

u0(x) =
{

λ · x, (ρ − λ) · x ≥ 0,
ρ · x, (ρ − λ) · x ≤ 0.

For (x, t) such that

−t(ρ − λ) · ∇f(ρ) < (ρ − λ) · x < −t(ρ − λ) · ∇f(λ)

there exists a unique s = s(x, t) ∈ (0, 1) such that

(ρ − λ) · x = −t(ρ − λ) · ∇f(sλ + (1 − s)ρ).

Then at later times the profile can be expressed as

u(x, t) =


ρ · x + tf(ρ), if (ρ − λ) · x ≤ −t(ρ − λ) · ∇f(ρ),
(sλ + (1 − s)ρ) · x + tf(sλ + (1 − s)ρ), if

−t(ρ − λ) · ∇f(ρ) < (ρ − λ) · x < −t(ρ − λ) · ∇f(λ),
λ · x + tf(λ), if (ρ − λ) · x ≥ −t(ρ − λ) · ∇f(λ).

The forward evolution manifests the rarefaction fan: points y on the hyperplane
(ρ − λ) · y = 0 have W (y, t) given by a curve, while for other points y W (y, t) is a
singleton:

W (y, t) =


y − t∇f(ρ), if (ρ − λ) · y < 0,

{y − t∇f(sλ + (1 − s)ρ) : 0 ≤ s ≤ 1}, if (ρ − λ) · y = 0,
y − t∇f(λ), if (ρ − λ) · y > 0.

In Theorem 5.1, consider the half-space B = {x : (ρ − λ) · x ≥ 0}. Then

X(B, t) = {x : −t(ρ − λ) · ∇f(ρ) ≤ (ρ − λ) · x ≤ −t(ρ − λ) · ∇f(λ)},
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the “rarefaction strip” in space. Statement (30) is not valid for B, because the
interior of X(B, t) lies in the interiors of both W (B, t) and W (Bc, t). Statement
(29) is valid, and says that the boundary of n−1An(nt) is locally contained in any
neighborhood of X(B, t).

In the corresponding one-dimensional setting, Ferrari and Kipnis [13] proved that
on the macroscopic scale, the second class particle is uniformly distributed in the
rarefaction fan. Their proof depended on explicit calculations with Bernoulli distrib-
utions, so presently we cannot approach such precise knowledge of bd{n−1An(nt)}.

6.3. Some random initial conditions

We give here some natural examples of random initial conditions for Theorems 4.1
and 5.1 for the case d = 2. We construct these examples from space-time evolutions
of one-dimensional Hammersley’s process. The space-time coordinates (y, t) of the
1-dimensional process will equal the 2-dimensional spatial coordinates x = (x1, x2)
of a height function.

Flat profiles. In one dimension, Aldous and Diaconis [1] denoted the Hammersley
process by N(y, t). The function y 
→ N(y, t) (y ∈ R) can be regarded as the
counting function of a point process on R. Homogeneous Poisson point processes
are invariant for this process.

To construct all flat initial profiles u0(x) = ρ · x on R2, we need two parameters
that can be adjusted. The rate µ of the spatial equilibrium of N(y, t) gives one
parameter. Another parameter τ is the jump rate, in other words the rate of the
space-time Poisson point process in the graphical construction of N(y, t). Let now
N(y, t) be a process in equilibrium, defined for −∞ < t < ∞, normalized so that
N(0, 0) = 0, with jump rate τ , and so that the spatial distribution at each fixed time
is a homogeneous Poisson process at rate µ. Then the process of particles jumping
past a fixed point in space is Poisson at rate τ/µ [1], Lemma 8. Consequently
EN(y, t) = µy + (τ/µ)t.

This way we can construct a random initial profile whose mean is a given flat
initial profile: given ρ = (ρ1, ρ2) ∈ (0,∞)2, take an equilibrium process {N(y, t) :
y ∈ R, t ∈ R} with µ = ρ1 and τ = ρ1ρ2, and define the initial height function for
x = (x1, x2) ∈ R2 by σ((x1, x2), 0) = N(x1, x2).

Shock profiles. Next we construct a class of initial shock profiles. Suppose ρ =
(ρ1, ρ2) and λ = (λ1, λ2) satisfy ρ > λ and ρ1/ρ2 < λ1/λ2. Start by constructing the
equilibrium Hammersley system {N(y, t) : y ∈ R, t ∈ R} with spatial density µ =
λ1 and jump rate τ = λ1λ2. Set a = (ρ1−λ1)/(ρ2−λ2) > 0. Stop each Hammersley
particle the first time it hits the space-time line t = −ay, and “erase” the entire
evolution of N(y, t) above this line. The assumption ρ1/ρ2 < λ1/λ2 guarantees that
each particle eventually hits this line. Now we have constructed the slope-λ height
function σ((x1, x2), 0) = N(x1, x2) below the line (ρ − λ) · x = 0 ⇐⇒ x2 = −ax1.
(Slope-λ in the sense that Eσ(x, 0) = λ · x.)

To continue the construction, put a rate τ ′ = ρ1ρ2 space-time Poisson point
process above the line t = −ay in the space-time picture of the 1-dim Hammersley
process. Let the Hammersley particles evolve from their stopped locations on the
line t = −ay, according to the usual graphical construction [1] of the process, using
the rate τ ′ space-time Poisson points. The construction is well defined, because
given any finite time T , N(y, T ) is already constructed for y ≤ −T/a, and for
y > −T/a the particle trajectories can be constructed one at a time from left to
right, starting with the leftmost particle stopped at a point (y,−ay) for y > −T/a.
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One can check that defining σ((x1, x2), 0) = N(x1, x2) for x2 > −ax1 gives the
slope-ρ height function above the line (ρ−λ) ·x = 0. Now we have a random initial
height function σ(x, 0) with mean Eσ(x, 0) = u0(x) as in (31).

Finally, we describe a way to define initial configurations for the coupled processes
ζ and σ in the context of this shock example. We shall do it so that the set
{x : ζ(x, 0) = σ(x, 0) + 1} lies inside B = {x : x2 ≥ −ax1}, and approximates
it closely. Let ζ(x, 0) be the height function defined above in terms of the N(y, t)
constructed in two steps, first below and then above the line t = −ay. Let zk(t)
be the trajectories of the labeled Hammersley particles. These trajectories are the
level curves of ζ(x, 0), namely ζ((x1, x2), 0) ≥ k iff zk(x2) ≤ x1. The construction
performed above has the property that each zk(t) crosses the line t = −ay exactly
once (the particles were stopped upon first hitting this line, and then continued
entirely above the line).

Define new trajectories z′k(t) as follows: z′k(t) = zk(t) below the line t = −ay.
From the line t = −ay the trajectory z′k(t) proceeds vertically upward (in the t-
direction) until it hits the trajectory of zk+1(t). From that point onwards z′k(t)
follows the trajectory of zk+1(t). This is done for all k. Let N ′(y, t) be the counting
function defined by N ′(y, t) = sup{k : z′k(t) ≤ y}. And then set σ((x1, x2), 0) =
N ′(x1, x2)

The initial height functions σ(x, 0) and ζ(x, 0) thus defined have these properties:
σ(x, 0) = ζ(x, 0) for x2 ≤ −ax1. For any point (x1, x2) such that x2 > −ax1 and
some particle trajectory zk(t) passes between (x1,−ax1) and (x1, x2), ζ(x, 0) =
σ(x, 0) + 1. This construction satisfies the hypotheses of Theorem 5.1.

6.4. Some properties of the multidimensional Hamilton-Jacobi
equation

Let u(x, t) be the viscosity solution of the equation ut = f(∇u), defined by the
Hopf-Lax formula (14). By assumption, the initial profile u0 is locally Lipschitz
and satisfies the decay estimate (11). Hypothesis (11) is tailored to this particular
velocity function, and needs to be changed if f is changed.

Part (b) of this lemma will be needed in the proof of Thm. 5.1.

Lemma 6.1. (a) For any compact K ⊆ Rd,
⋃

x∈K I(x, t) is compact.
(b) W (B, t) is closed for any closed set B ⊆ Rd.

Proof. (a) By (11), as y → −∞ for y ≤ x, u0(y) + tg((x − y)/t) tends to −∞
uniformly over x in a bounded set. Also, the condition inside (19) is preserved by
limits because all the functions are continuous. (b) If W (B, t) � xj → x, then by
(a) any sequence of maximizers yj ∈ I(xj , t)∩B has a convergent subsequence.

The association of I(x, t) to x is not as well-behaved as in one dimension. For
example, not only is there no monotonicity, but a simple example can have x1 < x2

with maximizers yi ∈ I(xi, t) such that y2 < y1. The local Lipschitz condition on
u0 guarantees that each y ∈ I(x, t) satisfies y < x (i.e. strict inequality for all
coordinates).

Properties that are not hard to check include the following. Part (a) of the lemma
implies that u(x, t) is locally Lipschitz on Rd×(0,∞). Lipschitz continuity does not
necessarily hold down to t = 0, but continuity does. u is differentiable at (x, t) iff
I(x, t) is a singleton {y}, and then ∇u(x, t) = ∇g((x−y)/t). Also, ∇u is continuous
on the set where it is defined because whenever (xn, tn) → (x, t) and yn ∈ I(xn, tn),
the sequence {yn} is bounded and all limit points lie in I(x, t).
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A converse question is when W (y, t) has more than one point. As in one dimen-
sion, one can give a criterion based on the regularity of u0 at y. The subdifferential
D−u0(x) and superdifferential D+u0(x) of u0 at x are defined by

D−u0(x) =
{

q ∈ Rd : lim inf
y→x

u0(y) − u0(x) − q · (y − x)
‖y − x‖ ≥ 0

}
and

D+u0(x) =
{

p ∈ Rd : lim sup
y→x

u0(y) − u0(x) − p · (y − x)
‖y − x‖ ≤ 0

}
.

It is a fact that both D±u0(x) are nonempty iff u0 is differentiable at x, and then
D±u0(x) = {∇u0(x)}.

One can check that W (y, t) ⊆ y − t∇f
(
D+u0(y)

)
. Consequently if D−u0(y)

is nonempty, W (y, t) cannot have more than 1 point. Another fact from one-
dimensional systems that also holds in multiple dimensions is that if we restart
the evolution at time s > 0, then all forward sets W (y, t) are empty or singletons.
In other words, if ũ is a solution with initial profile ũ0, and we define u0(x) = ũ(x, s)
and u(x, t) = ũ(x, s+t), then D−u0(y) is never empty. This is because ∇g((x−y)/s)
lies in D−{ũ(·, s)}(x) for every y that maximizes the Hopf-Lax formula for ũ(x, s).

7. Proof of the generator relation

In this section we prove Theorem 3.1. Throughout the proofs we use the abbrevia-
tion

x! = x1x2x3 · · ·xd

for a point x = (x1, . . . , xd) ∈ Rd. We make the following definition related to the
dynamics of the process. For a height function σ ∈ Σ and a point x ∈ Rd, let

(32) Sx(σ) =

{
{y ∈ Rd : y ≤ x, σ(y) = σ(x)}, if σ(x) is finite,
∅, if σ(x) = ±∞.

Sx(σ) is the set in space where a Poisson point must arrive in the next instant
in order to increase the height value at x. Consequently the Lebesgue measure
(volume) |Sx(σ)| is the instantaneous rate at which the height σ(x) jumps up by
1. Since values σ(x) = ±∞ are not changed by the dynamics, it is sensible to set
Sx(σ) empty in this case. For a set K in Rd we define

(33) SK(σ) =
⋃

x∈K

Sx(σ),

the set in space where an instantaneous Poisson arrival would change the function
σ in the set K.

We begin with a simple estimate.

Lemma 7.1. Let x > 0 in Rd, t > 0, and k a positive integer. Then

P{H((0, 0), (x, t)) ≥ k} ≤ (x!t)k

(k!)(d+1)
≤ e−k(d+1)

where the second inequality is valid if k ≥ e2(x!t)1/(d+1). Note that above (0, 0)
means the space-time point (0, 0) ∈ Rd × [0,∞).
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Proof. Let γ = x!t = x1x2x3 · · ·xd · t > 0 be the volume of the space-time rectangle
(0, x]×(0, t]. k uniform points in this (d+1)-dimensional rectangle form an increasing
chain with probability (k!)−d. Thus

P{H((0, 0), (x, t)) ≥ k} ≤
∑

j:j≥k

e−γγj

j!

(
j

k

)
(k!)−d = γk(k!)−(d+1)

≤ γk(k/e)−k(d+1) ≤ e−k(d+1)

if k ≥ e2γ1/(d+1).

We need to make a number of definitions that enable us to control the height
functions σ ∈ Σ. For b ∈ Rd and h ∈ Z, let yb,h(σ) be the maximal point y ≤ b such
that the rectangle [y, b] contains the set {x ≤ b : σ(x) ≥ h}, with yb,h(σ) = b if this
set is empty. Note that if yb,h(σ) �= b then there exists x ≤ b such that σ(x) ≥ h
and |b − x|∞ = |b − yb,h(σ)|∞.

Throughout this section we consider compact cubes of the type

K = [−q1, q1] ⊆ Rd

for a fixed number q > 0. When the context is clear we may abbreviate yh =
yq1,h(σ). Define

λk(σ) = sup
−∞<h≤k−2

(q1 − yh)! · (k − h)−(d+1).

Property (6) of the state space guarantees that λk(σ) < ∞.
The minimal and maximal finite height values in K are defined by

I(K, σ) = min{σ(x) : x ∈ K, −∞ < σ(x) < ∞}
and

J(K, σ) = max{σ(x) : x ∈ K, −∞ < σ(x) < ∞}.
If σ = ±∞ on all of K we interpret I(K, σ) = ∞ = −J(K, σ). Otherwise these
quantities are finite because σ can take only finitely many values in K. If σ is finite
on all of K then by monotonicity I(K, σ) = σ(−q1) and J(K, σ) = σ(q1). Set

(34) ψK(σ) =

 J(K,σ)+1∑
k=I(K,σ)+1

λ2
k(σ)

1/2

.

If σ = ±∞ on all of K then ψK(σ) = 0.
The next two lemmas are preliminary and illustrate how ψK(σ) appears as a

bound.

Lemma 7.2. For a cube K = [−q1, q1] and σ ∈ Σ,

(35) |SK(σ)| ≤ 2d+1ψK(σ).

Proof. If σ = ±∞ on all of K then both sides of (35) are zero by the definitions.
Suppose I(K, σ) is finite (this is the complementary case). If x ∈ K and y ∈ Sx(σ),
then y ≤ x ≤ q1 and σ(y) = σ(x) ≥ I(K, σ), and consequently y ∈ [yI(K,σ), q1].
This is true for an arbitrary point y ∈ SK(σ). Since yI(K,σ)−1 ≤ yI(K,σ), we can
weaken the conclusion to SK(σ) ⊆ [yI(K,σ)−1, q1] to get

|SK(σ)| ≤ (q1 − yI(K,σ)−1)! =
2d+1(q1 − yI(K,σ)−1)!

(I(K, σ) + 1 − (I(K, σ) − 1))d+1

≤ 2d+1λI(K,σ)+1(σ) ≤ 2d+1ψK(σ).
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Lemma 7.3. Define the event

G = {there exist x ∈ K and y ∈ Rd such that y < x,
−∞ < σ(y) ≤ σ(x) − 1 < ∞,
and H((y, 0), (x, t)) ≥ σ(x) + 1 − σ(y)}.

(36)

Then for 0 < t < 1/(2ed+1ψK(σ)),

Pσ(G) ≤ 2e2(d+1)ψ2
K(σ)t2.

Proof. Let the index k run through the finite values of σ(x)+1 in K, and h represent
σ(y). Then

Pσ(G) ≤
J(K,σ)+1∑

k=I(K,σ)+1

∑
h≤k−2

P{H((yh, 0), (q1, t)) ≥ k − h}.

By Lemma 7.1 and the inequality j! ≥ (j/e)j , for a fixed k the inner sum becomes∑
h≤k−2

((q1 − yh)!t)k−h

((k − h)!)d+1
≤
∑
j≥2

(λk(σ)t)jj(d+1)j

(j!)d+1
≤ 2(ed+1λk(σ)t)2.

The assumption on t was used to sum the geometric series. Now sum over k.

We get the first bound on the evolution.

Lemma 7.4. Let φ be a bounded measurable function on Σ, supported on a com-
pact cube K = [−q1, q1] ⊆ Rd. This means that φ(σ) depends on σ only through
(σ(x))x∈K . Then there is a finite constant C = C( ‖φ‖∞) such that, for all σ ∈ Σ
and t > 0, the quantity

∆t(σ) = Eσ[φ(σ(t))] − φ(σ) − tLφ(σ)

satisfies the bound |∆t(σ)| ≤ Ct2ψ2
K(σ), provided 0 ≤ t < 1/(2ed+1ψK(σ)).

Proof. We may assume that σ is not ±∞ on all of K. For otherwise from the
definitions

Eσ[φ(σ(t))] = φ(σ) and Lφ(σ) = 0,

and the lemma is trivially satisfied.
Observe that on the complement Gc of the event defined in (36),

σ(x, t) = sup
y∈Sx(σ)∪{x}

{σ(y) + H((y, 0), (x, t))}

for all x ∈ K. (The singleton {x} is added to Sx(σ) only to accommodate those
x for which σ(x) = ±∞ and Sx(σ) was defined to be empty.) Consequently on
the event Gc the value φ(σ(t)) is determined by σ and the Poisson points in the
space-time region SK(σ) × (0, t]. Let Dj be the event that SK(σ) × (0, t] contains
j space-time Poisson points, and D2 = (D0 ∪ D1)c the event that this set contains
at least 2 Poisson points. On the event D1, let Y ∈ Rd denote the space coordinate
of the unique Poisson point, uniformly distributed on SK(σ). Then

Eσ[φ(σ(t))] = φ(σ) · Pσ(Gc ∩ D0) + E[φ(σY ) · 1Gc∩D1 ] + O
(
Pσ(G) + Pσ(D2)

)
= φ(σ) + tLφ(σ) + t2 · O

(
ψ2

K(σ) + |SK(σ)|2
)
.
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To get the second equality above, use

Pσ(Dj) = (j!)−1(t|SK(σ)|)j exp(−t|SK(σ)|),

Lemma 7.3 for bounding Pσ(G), and hide the constant from Lemma 7.3 and ‖φ‖∞
in the O-terms. Proof of the lemma is completed by (35).

We insert here an intermediate bound on the height H. It is a consequence of
Lemma 7.1 and a discretization of space.

Lemma 7.5. Fix t > 0, α ∈ (0, 1/2), and β > e2t1/(d+1). Then there are finite
positive constants θ0, C1 and C2 such that, for any θ ≥ θ0,

P
{
there exist y < x such that |y|∞ ≥ θ, |x − y|∞ ≥ α|y|∞,

and H((y, 0), (x, t)) ≥ β|x − y|d/(d+1)
∞

}
≤ C1 exp(−C2θ

d/(d+1)).
(37)

For positive m, define

(38) σm(x, t) ≡ sup
y≤x

|y|∞≤m

{
σ(y) + H((y, 0), (x, t))

}
Corollary 7.6. Fix a compact cube K ⊆ Rd, 0 < T < ∞, and initial state
σ ∈ Σ. Then there exists a finite random variable M such that, almost surely,
σ(x, t) = σM (x, t) for (x, t) ∈ K × [0, T ].

Proof. If σ(x) = ±∞ then y = x is the only maximizer needed in the variational
formula (7). Thus we may assume that I(K, σ) is finite.

Fix α ∈ (0, 1/2) and β > e2T 1/(d+1). By the boundedness of K, (37), and Borel-
Cantelli there is a finite random M such that

H((y, 0), (x, T )) ≤ β|x − y|d/(d+1)
∞

whenever x ∈ K and |y|∞ ≥ M . Increase M further so that M ≥ 1 + |x| for all
x ∈ K, and σ(y) ≤ −(2β + |I(K, σ)| + 1)|y|−d/(d+1)

∞ for all y such that y ≤ x for
some x ∈ K and |y|∞ ≥ M .

Now suppose y ≤ x, x ∈ K, σ(x) is finite, and |y|∞ ≥ M . Then

σ(y) + H((y, 0), (x, t)) ≤ −(2β + |I(K, σ)| + 1)|y|−d/(d+1)
∞ + β|x − y|d/(d+1)

∞
≤ −|I(K, σ)| − 1 ≤ σ(x) − 1 ≤ σ(x, t) − 1.

We see that y cannot participate in the supremum in (7) for any (x, t) ∈ K ×
[0, T ].

To derive the generator formula we need to control the error in Lemma 7.4
uniformly over time, in the form ∆τ (σ(s)) with 0 ≤ s ≤ t and a small τ > 0. For
a fixed k, λk(σ(s)) is nondecreasing in s because each coordinate of yh decreases
over time. For q > 0 and k ∈ Z introduce the function

(39) Ψq,k(σ) = sup
x≤q1

|x|d∞(
1 ∨ {k − σ(x)}

)d+1
.

A calculation that begins with

λk(σ) ≤ qd/2 + sup
h≤k−2

yq1,h 
=q1

2d|yq1,h|d∞
(k − h)d+1
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shows that
λk(σ) ≤ qd/2 + 2dΨq,k(σ).

Interface heights σ(x, s) never decrease with time, and Ψq,k(σ) is nonincreasing in k
but nondecreasing in σ. Therefore we can bound as follows, uniformly over s ∈ [0, t]:

ψ2
K(σ(s)) =

J(K,σ(s)+1∑
k=I(K,σ(s))+1

λ2
k(σ(s))

≤
(
J(K, σ(t)) − I(K, σ(0)) + 1

)
· max

I(K,σ(0))+1≤k≤J(K,σ(t))+1
λ2

k(σ(s))

≤
(
J(K, σ(t)) − I(K, σ(0)) + 1

)2(q2d + 1) + 24dΨ4
q,I(K,σ(0))

(
σ(t)
)
.(40)

Above we used the inequality c(a + b)2 ≤ 2ca2 + c2 + b4 for a, b, c ≥ 0. The next
lemma implies that the moments Eσ[Ψp

q,I(K,σ)(σ(t))] are finite for all p < ∞.

Lemma 7.7. Let σ be an element of the state space Σ. Fix t > 0 and a point
q1 ∈ Rd

+. Then there exists a finite number v0(σ) such that, for v ≥ v0(σ),

(41) Pσ
{
Ψq,I(K,σ)

(
σ(t)
)

> v
}
≤ C1 exp(−C2v

1/(d+1)),

where the finite positive constants C1, C2 are the same as in Lemma 7.5 above.

Proof. Choose α, β so that (37) is valid. Let

β1 = 2β + β(2α)d/(d+1) + 2.

Fix v0 = v0(σ) > 0 so that these requirements are met: v0 ≥ 1 + |I(K, σ)|d+1, and
for all y ≤ x ≤ q1 such that |x|d∞ ≥ v0,

σ(x) ≤ −β1|x|d/(d+1)
∞ and |y|∞ ≥ |x|∞ ≥ θ0.

Here θ0 is the constant that appeared in Lemma 7.5, and we used property (6) of
the state space Σ.

Let v ≥ v0. We shall show that the event on the left-hand side of (41) is contained
in the event in (37) with θ = v1/d. Suppose the event in (41) happens, so that some
x ≤ q1 satisfies

(42) v−1/(d+1)|x|d(d+1)
∞ > I(K, σ) − σ(x, t) and |x|d∞ ≥ v.

Note that the above inequality forces σ(x, t) > −∞, while the earlier requirement
on v0 forces σ(x) < ∞, and thereby also σ(x, t) < ∞. Find a maximizer y ≤ x so
that

σ(x, t) = σ(y) + H((y, 0), (x, t)).

Regarding the location of y, we have two cases two consider.
Case 1. y ∈ [x− 2α|x|∞1, x]. Let y′ = x− 2α|x|∞1. Then |x− y′|∞ ≥ α|y′|∞ by

virtue of α ∈ (0, 1/2). Also y′ ≤ x so the choices made above imply |y′|∞ ≥ |x|∞ ≥
v1/d.

H((y′, 0), (x, t)) ≥ H((y, 0), (x, t)) = σ(x, t) − σ(y)

> I(K, σ) − v−1/(d+1)|x|d/(d+1)
∞ − σ(x)

≥ (β1 − 2)|x|d/(d+1)
∞ ≥ β(2α)d/(d+1)|x|d/(d+1)

∞

= β|x − y′|d/(d+1)
∞ .
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In addition to (42), we used −v−1/(d+1) ≥ −1, −σ(y) ≥ −σ(x) ≥ β1|x|d/(d+1)
∞ , and

I(K, σ) ≥ −v
1/(d+1)
0 ≥ −|x|d/(d+1)

∞ .
Case 2. y /∈ [x − 2α|x|∞1, x]. This implies |x − y|∞ ≥ α|y|∞.

H((y, 0), (x, t)) = σ(x, t) − σ(y) > I(K, σ) − v−1/(d+1)|x|d/(d+1)
∞ − σ(y)

≥ −|x|d/(d+1)
∞ − v−1/(d+1)|x|d/(d+1)

∞ + β1|y|d/(d+1)
∞

≥ 2β|y|d/(d+1)
∞ ≥ β|x − y|d/(d+1)

∞ .

We conclude that the event in (41) lies inside the event in (37) with θ = v1/d, as
long as v ≥ v0, and the inequality in (41) follows from (37).

Corollary 7.8. Let K be a compact cube, ε > 0, and 0 < t < ∞. Then there exists
a deterministic compact cube L such that

Pσ
{
SK(σ(s)) ⊆ L for all s ∈ [0, t]

}
≥ 1 − ε.

Proof. For 0 ≤ s ≤ t, x ∈ SK(σ(s)) implies that I(K, σ(s)) is finite, x ≤ q1 and
σ(x, s) ≥ I(K, σ(s)). Consequently

|x|d∞ ≤ Ψq,I(K,σ(s))

(
σ(s)
)
≤ Ψq,I(K,σ)

(
σ(t)
)
.

Thus given ε, we can choose L = [−m1, m1] with m picked by Lemma 7.7 so that
Pσ
{
Ψq,I(K,σ)

(
σ(t)
)

> md
}

< ε.

We are ready for the last stage of the proof of Theorem 3.1.

Proposition 7.9. Let φ be a bounded measurable function on Σ supported on the
compact cube K = [−q1, q1] of Rd, and σ ∈ Σ. Then

(43) Eσ[φ(σ(t))] − φ(σ) =
∫ t

0

Eσ[Lφ(σ(s))]ds.

Proof. Pick a small τ > 0 so that t = mτ for an integer m, and denote the partition
by sj = jτ . By the Markov property,

Eσ[φ(σ(t))] − φ(σ) = Eσ

m−1∑
j=0

{
Eσ(sj)[φ(σ(τ))] − φ(σ(sj))

}
= Eσ

∫ t

0

m−1∑
j=0

1(sj ,sj+1](s)Lφ(σ(sj+1))ds


+ τ
(
Lφ(σ) − Eσ[Lφ(σ(t))]

)
+ Eσ

m−1∑
j=0

∆τ (σ(sj))

 ,(44)

where the terms ∆τ (σ(sj)) are as defined in Lemma 7.4.
We wish to argue that, as m → ∞ and simultaneously τ → 0, expression (44)

after the last equality sign converges to the right-hand side of (43).
Note first that Lφ(σ) is determined by the restriction of σ to the set SK(σ)∪K.

By Corollary 7.8 there exists a fixed compact set L such that SK(σ(s)) ∪ K ⊆ L
for 0 ≤ s ≤ t with probability at least 1 − ε. By Corollary 7.6, the time evolution
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{σ(x, s) : x ∈ L, 0 ≤ s ≤ t} is determined by the finitely many Poisson points in the
random compact rectangle [−M, M ]d × [0, t]. Consequently the process Lφ(σ(s)) is
piecewise constant in time, and then the integrand

∑m−1
j=0 1(sj ,sj+1](s)Lφ(σ(sj+1))

converges to Lφ(σ(s)) pointwise as m → ∞. This happens on an event with prob-
ability at least 1 − ε, hence almost surely after letting ε → 0.

To extend the convergence to the expectation and to handle the error terms, we
show that

(45) Eσ
[

sup
0≤s≤t

ψ2
K(σ(s))

]
< ∞.

Before proving (45), let us see why it is sufficient. Since

(46) |Lφ(σ)| ≤ 2‖φ‖∞|SK(σ)|,

(35) and (45) imply that also the first expectation after the equality sign in (44)
converges, by dominated convergence. The second and third terms of (44) vanish,
through a combination of Lemma 7.4, (35), and (45).

By the bound in (40) for sup0≤s≤t ψ2
K(σ(s)) and by Lemma 7.7, it only remains

to show that
Eσ
[ (

J(K, σ(t)) − I(K, σ(0)) + 1
)2 ]

< ∞.

This follows from property (6) of σ and the bounds for H in Lemmas 7.1 and 7.5.
We omit the proof since it is not different in spirit than the estimates we already
developed.

This completes the proof of Theorem 3.1.

8. Proof of the limit for the height function

Introduce the scaling into the variational formula (7) and write it as

(47) σn(nx, nt) = sup
y∈Rd:y≤x

{σn(ny, 0) + H((ny, 0), (nx, nt))}.

Lemma 8.1. Assume the processes σn satisfy (12) and (13). Fix a finite T > 0 and
a point b ∈ Rd such that b > 0, and consider the bounded rectangle [−b, b] ⊆ Rd.
Then with probability 1 there exist a random N < ∞ and a random point a ∈ Rd

such that

(48) σn(nx, nt) = sup
y∈[a,x]

{σn(ny, 0) + H((ny, 0), (nx, nt))}

for x ∈ [−b, b], t ∈ (0, T ], n ≥ N .

Proof. For β ≥ e2T 1/(d+1) and b ∈ Rd fixed, one can deduce from Lemma 7.1 and
Borel-Cantelli that, almost surely, for large enough n,

H((ni, 0), (nb, nt)) ≤ βn|b − i|d/(d+1)
∞

for all i ∈ Zd such that i ≤ b and |i − b|∞ ≥ 1. If y ∈ Rd satisfies y ≤ b and
|y − b|∞ ≥ 1, we can take i = [y] (coordinatewise integer parts of y) and see that

(49) H((ny, 0), (nb, nt)) ≤ βn + βn|b − y|d/(d+1)
∞

for all such y.
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In assumption (13) choose C > β so that −C+(2+|b|d/(d+1)
∞ )β < u0(−b)−1. Let

N and M be as given by (13), but increase M further to guarantee M ≥ 1. Now take
a ∈ Rd far enough below −b so that, if y ≤ b but y ≥ a fails, then |y|∞ ≥ M . [Since
assumption (13) permits a random M > 0, here we may need to choose a random
a ∈ Rd.] Then by (13), if y ≤ b but y ≥ a fails, then σn(ny, 0) ≤ −Cn|y|d/(d+1)

∞ .
Now suppose x ∈ [−b, b], y ≤ x, but y ≥ a fails. Then

σn(ny, 0) + H((ny, 0), (nx, nt))
≤ σn(ny, 0) + H((ny, 0), (nb, nt))
≤ −Cn|y|d/(d+1)

∞ + βn + βn|b − y|d/(d+1)
∞

≤ n
(
(−C + β)|y|d/(d+1)

∞ + β + β|b|d/(d+1)
∞

)
≤ nu0(−b) − n ≤ σn(−nb, 0) − n/2

[by assumption (12), for large enough n]
≤ σn(nx, 0) − n/2 [by monotonicity].

This shows that in the variational formula (47) the point y = x strictly dominates
all y outside [a, x].

Starting with (48) the limit (15) is proved (i) by partitioning [a, x] into small
rectangles, (ii) by using monotonicity of the random variables, and the monotonicity
and continuity of the limit, and (iii) by appealing to the assumed initial limits (12)
and to

(50) n−1H((ny, 0), (nx, nt)) → cd+1((x − y)!t)1/(d+1) = tg((x − y)/t) a.s.

To derive the limit in (50) from (3) one has to fill in a technical step because in
(50) the lower left corner of the rectangle (ny, nx] × (0, nt] moves as n grows. One
can argue around this complication in at least two different ways: (a) The Kesten-
Hammersley lemma [28], page 20, from subadditive theory gives a.s. convergence
along a subsequence, and then one fills in to get the full sequence. This approach
was used in [24]. (b) Alternatively, one can use Borel-Cantelli if summable deviation
bounds are available. These can be obtained by combining Theorems 3 and 9 from
Bollobás and Brightwell [6].

9. Proof of the defect boundary limit

In view of the variational equation (7), let us say σ(x, t) has a maximizer y if y ≤ x
and σ(x, t) = σ(y, 0) + H((y, 0), (x, t)).

Lemma 9.1. Suppose two processes σ and ζ are coupled through the space-time
Poisson point process.

(a) For a positive integer m, let Dm(t) = {x : ζ(x, t) ≥ σ(x, t) + m}. Then if
x ∈ Dm(t), ζ(x, t) cannot have a maximizer y ∈ Dm(0)c. And if x ∈ Dm(t)c, σ(x, t)
cannot have a maximizer y ∈ Dm(0).

(b) In particular, suppose initially σ(y, 0) ≤ ζ(y, 0) ≤ σ(y, 0) + h for all y ∈ Rd,
for a fixed positive integer h. Then this property is preserved for all time. If we
write

A(t) = {x : ζ(x, t) = σ(x, t) + h},
then

(51) A(t) = {x : σ(x, t) has a maximizer y ∈ A(0)}.
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(c) If h = 1 in part (b), we get additionally that

(52) A(t)c = {x : ζ(x, t) has a maximizer y ∈ A(0)c }.

Proof. (a) Suppose x ∈ Dm(t), y ∈ Dm(0)c, and ζ(x, t) = ζ(y, 0) + H((y, 0), (x, t)).
Then by the definition of Dm(t),

σ(x, t) ≤ ζ(x, t)−m = ζ(y, 0)−m +H((y, 0), (x, t)) ≤ σ(y, 0) +H((y, 0), (x, t))− 1

which contradicts the variational equation (7). Thus ζ(x, t) cannot have a maximizer
y ∈ Dm(0)c. The other part of (a) is proved similarly.

(b) Monotonicity implies that σ(x, t) ≤ ζ(x, t) ≤ σ(x, t) + h for all (x, t), so
A(t) = Dh(t). Suppose x ∈ A(t). By (a) ζ(x, t) cannot have a maximizer y ∈ A(0)c,
and so ζ(x, t) has a maximizer y ∈ A(0). Consequently

σ(x, t) = ζ(x, t) − h = ζ(y, 0) − h + H((y, 0), (x, t)) = σ(y, 0) + H((y, 0), (x, t)),

which says that σ(x, t) has a maximizer y ∈ A(0). On the other hand, if σ(x, t) has
a maximizer y ∈ A(0), then by (a) again x /∈ A(t)c. This proves (51).

(c) Now A(t) = D1(t) and A(t)c = {x : σ(x, t) = ζ(x, t)}. If ζ(x, t) has a
maximizer y ∈ A(0)c, then by part (a) x /∈ A(t). While if x ∈ A(t)c, again by part
(a) σ(x, t) must have a maximizer y ∈ A(0)c, which then also is a maximizer for
ζ(x, t). This proves (52).

Assume the sequence of processes σn(·) satisfies the hypotheses of the hydrody-
namic limit Theorem 4.1 which we proved in Section 8. The defect set An(t) was
defined through the (σn, ζn) coupling by (27). By (51) above, we can equivalently
define it by

(53) An(t) = {x : σn(x, t) has a maximizer y ∈ An(0) }.

In the next lemma we take the point of view that some sequence of sets that depend
on ω has been defined by (53), and ignore the (σn, ζn) coupling definition.

Lemma 9.2. Let B ⊆ Rd be a closed set. Suppose that for almost every sample
point ω in the underlying probability space, a sequence of sets An(0) = An(0;ω) is
defined, and has this property: for every compact K ⊆ Rd and ε > 0,

(54)
{
n−1An(0)

}
∩ K ⊆ B(ε) ∩ K for all large enough n.

Suppose the sets An(t) satisfy (53) and fix t > 0. Then almost surely, for every
compact K ⊆ Rd and ε > 0,

(55)
{
n−1An(nt)

}
∩ K ⊆ W (B, t)(ε) ∩ K for all large enough n.

In particular, if W (B, t) = ∅, then (55) implies that {n−1An(nt)} ∩ K = ∅ for all
large enough n.

Proof. Fix a sample point ω such that assumption (54) is valid, the conclusion of
Lemma 8.1 is valid for all b ∈ Zd

+, and we have the limits

(56) n−1σn(nx, nt) → u(x, t) for all (x, t),
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and

(57) n−1H((ny, 0), (nx, nt)) → tg((x − y)/t) for all y, x, t.

Almost every ω satisfies these requirements, by the a.s. limits (50) and (15), by
monotonicity, and by the continuity of the limiting functions. It suffices to prove
(55) for this fixed ω.

To contradict (55), suppose there is a subsequence nj and points xj ∈ K
such that njxj ∈ Anj (njt) but xj /∈ W (B, t)(ε). Note that this also contradicts
{n−1An(nt)} ∩K = ∅ in case W (B, t) = ∅, so the empty set case is also proved by
the contradiction we derive.

Let njyj ∈ Anj (0) be a maximizer for σnj (njxj , njt). Since the xj ’s are bounded,
so are the yj ’s by Lemma 8.1, and we can pass to a subsequence (again denoted
by {j}) such that the limits xj → x and yj → y exist. By the assumptions on xj ,
x /∈ W (B, t). For any ε > 0, yj ∈ B(ε) for large enough j, so y ∈ B by the closedness
of B.

Fix points x′ < x′′ and y′ < y′′ so that x′ < x < x′′ and y′ < y < y′′ in the
partial order of Rd. Then for large enough j, x′ < xj < x′′ and y′ < yj < y′′. By
the choice of yj ,

σnj (njxj , njt) = σnj (njyj , 0) + H((njyj , 0), (njxj , njt))

from which follows, by the monotonicity of the processes,

n−1
j σnj (njx

′, njt) ≤ n−1
j σnj (njxj , njt)

≤ n−1
j σnj (njy

′′, 0) + n−1
j H((njy

′, 0), (njx
′′, njt)).

Now let nj → ∞ and use the limits (56) and (57) to obtain

u(x′, t) ≤ u0(y′′) + tg((x′′ − y′)/t).

We may let x′, x′′ → x and y′, y′′ → y, and then by continuity u(x, t) ≤ u0(y) +
tg((x − y)/t). This is incompatible with having x /∈ W (B, t) and y ∈ B. This
contradiction shows that, for the fixed ω, (55) holds.

We prove statement (29) of Theorem 5.1. The assumption is that

(58) B(−ε) ∩ K ⊆
{
n−1An(0)

}
∩ K ⊆ B(ε) ∩ K for all large enough n.

We introduce an auxiliary process ξn(x, t). Initially set

(59) ξn(y, 0) =
{

σn(y, 0), y /∈ An(0)
σn(y, 0) + 1, y ∈ An(0).

ξn(y, 0) is a well-defined random element of the state space Σ because An(0) is
defined (27) in terms of ζn(y, 0) which lies in Σ. Couple the process ξn with σn and
ζn through the common space-time Poisson points. Then

σn(x, t) ≤ ξn(x, t) ≤ σn(x, t) + 1.

By part (b) of Lemma 9.1, An(t) that satisfies (53) also satisfies

An(t) = {x : ξn(x, t) = σn(x, t) + 1}.
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Then by part (c) of Lemma 9.1,

(60) An(t)c = {x : ξn(x, t) has a maximizer y ∈ An(0)c }.

The first inclusion of assumption (58) implies that n−1An(0)c∩K ⊆
(
Bc
)(ε)∩K

for large n. The processes ξn inherit all the hydrodynamic properties of the processes
σn. Thus by (60) we may apply Lemma 9.2 to the sets An(nt)c and the processes
ξn(nt) to get

(61) n−1An(nt)c ∩ K ⊆ W (Bc, t)(δ) ∩ K

for large enough n. By (55) and (61),

bd {n−1An(nt)} ∩ K ⊆ W (B, t)(δ) ∩ W (Bc, t)(δ) ∩ K

for large n. For small enough δ > 0, the set on the right is contained in[
W (B, t) ∩ W (Bc, t)

](ε) ∩ K = X(B, t)(ε) ∩ K. This proves (29).
To complete the proof of Theorem 5.1, it remains to prove

(62)
W (B, t)(−ε) ∩ K ⊆ n−1An(nt) ∩ K ⊆ W (B, t)(ε) ∩ K for all large enough n

under the further assumption that no point of W (Bc, t) is an interior point of
W (B, t).

The second inclusion of (62) we already obtained in Lemma 9.2. (61) implies[
W (Bc, t)(δ)

]c
∩ K ⊆ n−1An(nt) ∩ K.

It remains to check that, given ε > 0,

W (B, t)(−ε) ∩ K ⊆
[
W (Bc, t)(δ)

]c
∩ K

for sufficiently small δ > 0. Suppose not, so that for a sequence δj ↘ 0 there exist
xj ∈ W (B, t)(−ε) ∩ W (Bc, t)(δj) ∩ K. By Lemma 6.1 the set W (Bc, t) is closed.
Hence passing to a convergent subsequence xj → x gives a point x ∈ W (Bc, t)
which is an interior point of W (B, t), contrary to the hypothesis.

10. Technical appendix: the state space of the process

We develop the state space in two steps: first describe the multidimensional Skoro-
hod type metric we need, and then amend the metric to provide control over the
left tail of the height function. This Skorohod type space has been used earlier (see
[5] and their references).

10.1. A Skorohod type space in multiple dimensions

Let (X, r) be a complete, separable metric space, with metric r(x, y) ≤ 1. Let
D = D(Rd, X) denote the space of functions σ : Rd → X with this property: for
every bounded rectangle [a, b) ⊆ Rd and ε > 0, there exist finite partitions

ai = s0
i < s1

i < · · · < smi
i = bi
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of each coordinate axis (1 ≤ i ≤ d) such that the variation of σ in the partition
rectangles is at most ε: for each k = (k1, k2, . . . , kd) ∈

∏d
i=1{0, 1, 2, . . . ,mi − 1},

(63) sup{r(σ(x), σ(y)) : ski
i ≤ xi, yi < ski+1

i (1 ≤ i ≤ d)} ≤ ε.

Note that the partition rectangles are closed on the left. This implies that σ is
continuous from above: σ(y) → σ(x) as y → x in Rd so that y ≥ x; and limits exist
from strictly below: limσ(y) exists as y → x in Rd so that y < x (strict inequality
for each coordinate).

We shall employ this notation for truncation in Rd: for real u > 0 and x =
(x1, . . . , xd) ∈ Rd,

[x]u =
(
(x1 ∧ u) ∨ (−u), (x2 ∧ u) ∨ (−u), . . . , (xd ∧ u) ∨ (−u)

)
.

Let Λ be the collection of bijective, strictly increasing Lipschitz functions λ : Rd →
Rd that satisfy these requirements: λ is of the type λ(x1, . . . , xd) = (λ1(x1), . . . ,
λd(xd)) where each λi : R → R is bijective, strictly increasing and Lipschitz; and

γ(λ) = γ0(λ) + γ1(λ) < ∞

where the quantities γ0(λ) and γ1(λ) are defined by

γ0(λ) =
d∑

i=1

sup
s,t∈R

∣∣∣∣log
λi(t) − λi(s)

t − s

∣∣∣∣
and

γ1(λ) =
∫ ∞

0

e−u
(
1 ∧ sup

x∈Rd

∣∣ [λ(x)]u − [x]u
∣∣
∞

)
du.

For ρ, σ ∈ D, λ ∈ Λ and u > 0, define

d(ρ, σ, λ, u) = sup
x∈Rd

r
(
ρ([x]u) , σ([λ(x)]u)

)
.

And then

(64) dS(ρ, σ) = inf
λ∈Λ

{
γ(λ) ∨

∫ ∞

0

e−u d(ρ, σ, λ, u) du

}
.

The definition was arranged so that γ(λ−1) = γ(λ) and γ(λ ◦ µ) ≤ γ(λ) + γ(µ), so
the proof in [11], Section 3.5, can be repeated to show that dS is a metric.

It is clear that if a sequence of functions σn from D converges to an arbitrary
function σ : Rd → X, and this convergence happens uniformly on compact subsets
of Rd, then σ ∈ D. Furthermore, we also get convergence in the dS-metric, as the
next lemma indicates. This lemma is needed in the proof that (D, dS) is complete.

Lemma 10.1. Suppose σn, σ ∈ D. Then dS(σn, σ) → 0 iff there exist λn ∈ Λ such
that γ(λn) → 0 and

r
(
σn(x), σ(λn(x))

)
→ 0

uniformly over x in compact subsets of Rd.

Proof. We prove dS(σn, σ) → 0 assuming the second condition, and leave the other
direction to the reader. For each rectangle [−M1, M1), M = 1, 2, 3, . . . , and each
ε = 1/K, K = 1, 2, 3, . . . , fix the partitions {sk

i } that appear in the definition (63)
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of σ ∈ D. Pick a real u > 0 so that neither u nor −u is among these countably
many partition points.

d(σn, σ, λn, u) = sup
x∈Rd

r
(
σn([x]u) , σ([λn(x)]u)

)
≤ sup

x∈Rd

r
(
σn([x]u) , σ(λn([x]u))

)
+ sup

x∈Rd

r
(
σ(λn([x]u)) , σ([λn(x)]u)

)
.

The first term after the inequality vanishes as n → ∞, by assumption.
Let ε = 1/K > 0, pick a large rectangle [−M1, M1) that contains [−u1, u1]

well inside its interior, and for this rectangle and ε pick the finite partitions that
satisfy (63) for σ, and do not contain ±u. Let δ > 0 be such that none of these
finitely many partition points lie in (±u − δ,±u + δ). If n is large enough, then
supx∈[−M1,M1] |λn(x)− x| < δ, and one can check that λn([x]u) and [λn(x)]u lie in
the same partition rectangle, for each x ∈ Rd. Thus

sup
x∈Rd

r (σ(λn([x]u)) , σ([λn(x)]u) ) ≤ ε.

We have shown that d(σn, σ, λn, u) → 0 for a.e. u > 0.

With this lemma, one can follow the proof in [11], page 121, to show that (D, dS)
is complete. Separability of (D, dS) would also be easy to prove. Next, we take this
Skorohod type space as starting point, and define the state space Σ for the height
process.

10.2. The state space for the height process

In the setting of the previous subsection, take S = Z∗ = Z∪{±∞} with the discrete
metric r(x, y) = 1{x �= y}. Let Σ be the space of functions σ ∈ D(Rd,Z∗) that are
nondecreasing [σ(x) ≤ σ(y) if x ≤ y in Rd] and decay to −∞ sufficiently fast at
−∞, namely

(65) for every b ∈ Rd, lim
M→∞

sup
{
|y|−d/(d+1)

∞ σ(y) : y ≤ b, |y|∞ ≥ M
}

= −∞.

Condition (65) is not preserved by convergence in the dS metric, so we need to fix
the metric.

For σ ∈ Σ, h ∈ Z, and b ∈ Rd, let yb,h(σ) be the maximal y ≤ b in Rd such that
the rectangle [y, b] contains the set {x ≤ b : σ(x) ≥ h}. Condition (65) guarantees
that such a finite yb,h(σ) exists. In fact, (65) is equivalent to

(66) for every b ∈ Rd, lim
h→−∞

|h|−(d+1)/d|yb,h(σ)|∞ = 0.

For ρ, σ ∈ Σ and b ∈ Rd, define

θb(ρ, σ) = sup
h≤−1

|h|−(d+1)/d · |yb,h(ρ) − yb,h(σ)|∞

and
Θ(ρ, σ) =

∫
Rd

e−|b|∞(1 ∧ θb(ρ, σ)
)
db.

Θ(ρ, σ) satisfies the triangle inequality, is symmetric, and Θ(σ, σ) = 0, so we can
define a metric on Σ by

dΣ(ρ, σ) = Θ(ρ, σ) + dS(ρ, σ).

The effect of the Θ(ρ, σ) term in the metric is the following.
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Lemma 10.2. Suppose dS(σn, σ) → 0. Then dΣ(σn, σ) → 0 iff for every b ∈ Rd,

(67) lim
h→−∞

sup
n

|h|−(d+1)/d|yb,h(σn)|∞ = 0,

or equivalently, for every b ∈ Rd

(68) lim
M→∞

sup
n

sup
y≤b

|y|∞≥M

σn(y)

|y|d/(d+1)
∞

= −∞.

We leave the proof of the above lemma to the reader. Lemmas 10.1 and 10.2
together give a natural characterization of convergence in Σ.

Lemma 10.3. The Borel σ-field BΣ is the same as the σ-field F generated by the
coordinate projections σ 
→ σ(x).

Proof. The sets {x : σ(x) ≥ h} are closed, so the functions σ 
→ σ(x) are upper
semicontinuous. This implies F ⊆ BΣ.

For the other direction one shows that for a fixed ρ ∈ Σ, the function σ 
→
dΣ(ρ, σ) is F-measurable. This implies that the balls {σ ∈ Σ : dΣ(ρ, σ) < r} are
F-measurable. Once we argue below that Σ is separable, this suffices for BΣ ⊆ F .

To show the F-measurability of σ 
→ dS(ρ, σ) one can adapt the argument from
page 128 of [11]. To show the F-measurability of σ 
→ Θ(ρ, σ), one can start by
arguing the joint BRd ⊗F-measurability of the map (b, σ) 
→ yb,h(σ) from Rd × Σ
into Rd. We leave the details.

The remaining work is to check that (Σ, dΣ) is a complete separable metric space.

Proposition 10.4. The space (Σ, dΣ) is complete.

We prove this proposition in several stages. Let {σn} be a Cauchy sequence in
the dΣ metric. By the completeness of (D, dS), we already know there exists a
σ ∈ D(Rd,Z∗) such that dS(σn, σ) → 0. We need to show that (i) σ ∈ Σ and (ii)
Θ(σn, σ) → 0.

Following the completeness proof for Skorohod space in [11], page 121, we may
extract a subsequence, denoted again by σn, together with a sequence of Lipschitz
functions ψn ∈ Λ (actually labeled µ−1

n in [11]), such that

(69) γ(ψn) < 21−n

and

(70) σn(ψn(x)) → σ(x) uniformly on compact sets.

Step 1. σ ∈ Σ.

Fix b ∈ Rd, for which we shall show (66). It suffices to consider b > 0. Let bk =
b + k1. By passing to a further subsequence we may assume Θ(σn, σn+1) < e−n2

.
Fix n0 so that

(71) exp
(
|b2|∞ + d(n + 1) − n2

)
< 2−n for all n ≥ n0.

Lemma 10.5. For n ≥ n0 there exist points βn in Rd such that b1 < βn+1 < βn <
b2, and θβn(σn, σn+1) < 2−n.
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Proof. Let αn = b1 + e−n · 1 in Rd.

e−n2 ≥ Θ(σn, σn+1)

≥ inf
x∈(αn+1,αn)

{1 ∧ θx(σn, σn+1)} · e−|b2|∞ · Lebd{x : αn+1 < x < αn},

where
Lebd{x : αn+1 < x < αn} = (e−n − e−n−1)d ≥ e−d(n+1)

is the d-dimensional Lebesgue measure of the open rectangle (αn+1, αn). This im-
plies it is possible to choose a point βn ∈ (αn+1, αn) so that θβn(σn, σn+1) <
2−n.

βn+1 < βn implies yβn+1,h(σn+1) ≥ yβn,h(σn+1) − (βn − βn+1). For each fixed
h ≤ −1, applying the above Lemma inductively gives for n ≥ n0:

yβn+1,h(σn+1) ≥ yβn,h(σn+1) − (βn − βn+1)
≥ yβn,h(σn) − |h|(d+1)/d2−n · 1 − (βn − βn+1)

≥ · · · ≥ yβn0 ,h(σn0) − |h|(d+1)/d
n∑

k=n0

2−k · 1 − (βn0 − βn+1),

from which then

(72) inf
n≥n0

yb1,h(σn) ≥ yb2,h(σn0) − |h|(d+1)/d21−n0 · 1 − (b2 − b1).

Now fix h ≤ −1 for the moment. By (72) we may fix a rectangle [y1, b1] that
contains the sets {x ≤ b1 : σn(x) ≥ h} for all n ≥ n0. Let Q = [y1 − 1, b1 + 1]
be a larger rectangle such that each point in [y1, b1] is at least distance 1 from
Qc. By (69) and (70) we may pick n large enough so that |ψn(x) − x| < 1/4 and
σn(ψn(x)) = σ(x) for x ∈ Q. [Equality because Z∗ has the discrete metric.]

We can now argue that if x ≤ b and σ(x) ≥ h, then necessarily x ∈ Q, ψn(x) ≤ b1

and σn(ψn(x)) ≥ h, which implies by (72) that

x ≥ ψn(x)− (1/4)1 ≥ yb1,h(σn)− (1/4)1 ≥ yb2,h(σn0)− (5/4 + |h|(d+1)/d21−n0) · 1.

This can be repeated for each h ≤ −1, with n0 fixed. Thus for all h ≤ −1,

|yb,h(σ)| ≤ |b| ∨
(
|yb2,h(σn0)| + 5/4 + |h|(d+1)/d21−n0

)
,

and then, since σn0 ∈ Σ,

lim
h→−∞

|h|−(d+1)/d|yb,h(σ)| ≤ 21−n0 .

Since n0 can be taken arbitrarily large, (66) follows for σ, and thereby σ ∈ Σ.

Step 2. Θ(σn, σ) → 0.

As for Step 1, let us assume that we have picked a subsequence σn that satisfies
(69) and (70) and Θ(σn+1, σn) < e−n2

. Let φn = ψ−1
n . If we prove Θ(σn, σ) → 0

along this subsequence, then the Cauchy assumption and triangle inequality give it
for the full sequence.
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Fix an arbitrary index n1 and a small 0 < ε0 < 1. Fix also β ∈ Rd. For each
h ≤ −1, fix a rectangle [yh, β] that contains the sets {x ≤ β : σn(x) ≥ h} for each
σn for n ≥ n1, and also for σ, which Step 1 just showed lies in Σ. This can be done
for each fixed h because by (72) there exists n0 = n0(β) defined by (71) so that
the points yβ,h(σn) are bounded below for n ≥ n0. Then if necessary decrease yh

further so that

yh ≤ yβ,h(σ1) ∧ yβ,h(σ2) ∧ · · · ∧ yβ,h(σn0−1).

Let Qh,k = [yh − k1, β + k1] be larger rectangles.
On the rectangles Qh,2, h ≤ −1, construct the finite partition for σ which sat-

isfies (63) for ε = 1/2, so that the discrete metric forces σ to be constant on the
partition rectangles. Consider a point b = (b1, b2, . . . , bd) < β with the property
that no coordinate of b equals any one of the (countably many) partition points.
This restriction excludes only a Lebesgue null set of points b.

Find ε1 = ε1(β, b, h) > 0 such that the intervals (bi − ε1, bi + ε1) contain none
of the finitely many partition points that pertain to the rectangle Qh,2. Pick n =
n(β, b, h) > n1 such that σn(ψn(x)) = σ(x) and |ψn(x) − x| < (ε0 ∧ ε1)/4 for
x ∈ Qh,2. Since the maps ψ, φ do not carry any points of [yh, β] out of Qh,1,
yh,b(σn) = yh,b(σ ◦ φn). It follows that

|yh,b(σ) − yh,b(σn)| = |yh,b(σ) − yh,b(σ ◦ φn)| < ε0.

The last inequality above is justified as follows: The only way it could fail is that σ
(or σ ◦φn) has a point x ≤ b with height ≥ h, and σ ◦φn (respectively, σ) does not.
These cannot happen because the maps ψ, φ cannot carry a partition point from
one side of bi to the other side, along any coordinate direction i.

Now we have for a.e. b < β and each h ≤ −1, with n = n(β, b, h) > n1:

|h|−(d+1)/d|yh,b(σ) − yh,b(σn1)|
≤ |h|−(d+1)/d|yh,b(σ) − yh,b(σn)| + |h|−(d+1)/d|yh,b(σn) − yh,b(σn1)|
≤ ε0 + θb(σn, σn1)
≤ ε0 + sup

m:m>n1

θb(σm, σn1).

The last line has no more dependence on β or h. Since β was arbitrary, this holds
for a.e. b ∈ Rd. Take supremum over h ≤ −1 on the left, to get

1 ∧ θb(σ, σn1) ≤ ε0 + sup
m:m>n1

{1 ∧ θb(σm, σn1)} for a.e. b.

Integrate to get

Θ(σ, σn1) =
∫
Rd

e−|b|∞{1 ∧ θb(σ, σn1)} db

≤ Cε0 +
∫
Rd

e−|b|∞ sup
m:m>n1

{1 ∧ θb(σm, σn1)} db

≤ Cε0 +
∫
Rd

e−|b|∞ sup
m:m>n1

{
m−1∑
k=n1

1 ∧ θb(σk+1, σk)

}
db

= Cε0 +
∞∑

k=n1

∫
Rd

e−|b|∞{1 ∧ θb(σk+1, σk)} db

= Cε0 +
∞∑

k=n1

Θ(σk+1, σk) ≤ Cε0 +
∞∑

k=n1

e−k2
,
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where C =
∫
Rd e−|b|∞db. Since n1 was an arbitrary index, we have

lim sup
n1→∞

Θ(σn1 , σ) ≤ Cε0.

Since ε0 was arbitrary, Step 2 is completed, and Proposition 10.4 thereby proved.
We outline how to construct a countable dense set in (Σ, dΣ). Fix a < b in

Zd. In the rectangle [a, b] ⊆ Rd, consider the (countably many) finite rational
partitions of each coordinate axis. For each such partition of [a, b] into rectangles,
consider all the nondecreasing assignments of values from Z∗ to the rectangles.
Extend the functions σ̂ thus defined to all of Rd in some fashion, but so that they
are nondecreasing and Z∗-valued. Repeat this for all rectangles [a, b] with integer
corners. This gives a countable set D̂ of elements of D(Rd,Z∗). Finally, each such
σ̂ ∈ D̂ yields countably many elements σ̃ ∈ Σ by setting

σ̃(x) =
{
−∞, σ̂(x) < h
σ̂(x), σ̂(x) ≥ h

for all h ∈ Z. All these σ̃ together form a countable set Σ̃ ⊆ Σ.
Now given an arbitrary σ ∈ Σ, it can be approximated by an element σ̃ ∈ Σ̃

arbitrarily closely (in the sense that σ = σ̃◦φ for a map φ ∈ Λ close to the identity)
on any given finite rectangle [−β, β], and so that yb,h(σ̃) is close to yb,h(σ) for all
b in this rectangle, for any given range h0 ≤ h ≤ −1. Since |h|−(d+1)/d|yβ,h(σ)| < ε
for h ≤ h0 for an appropriately chosen h0, this suffices to make both d(σ, σ̃, φ, u)
and θb(σ, σ̃) small for a range of u > 0 and b ∈ Rd. To get close under the metric
dΣ it suffices to approximate in a bounded set of u’s and b’s, so it can be checked
that Σ̃ is dense in Σ.
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