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Abstract: Consider a model parameterized by a scalar parameter of interest
and a nuisance parameter vector. Inference about the parameter of interest may
be based on the signed root of the likelihood ratio statistic R. The standard
normal approximation to the conditional distribution of R typically has error
of order O(n−1/2), where n is the sample size. There are several modifications
for R, which reduce the order of error in the approximations. In this paper, we
mainly investigate Barndorff-Nielsen’s modified directed likelihood ratio sta-
tistic, Severini’s empirical adjustment, and DiCiccio and Martin’s two modifi-
cations, involving the Bayesian approach and the conditional likelihood ratio
statistic. For each modification, two formats were employed to approximate the
conditional cumulative distribution function; these are Barndorff-Nielson for-
mats and the Lugannani and Rice formats. All approximations were applied
to inference on the ratio of means for two independent exponential random
variables. We constructed one and two-sided hypotheses tests and used the
actual sizes of the tests as the measurements of accuracy to compare those
approximations.

1. Introduction

When analyzing data arising from a model with a single unknown parameter, statis-
ticians frequently build tests of a simple null hypothesis around the likelihood ratio
statistic, since the signed square root of the likelihood ratio statistic, R, often has
a distribution that is well-approximated by a standard normal distribution under
the null hypothesis. In the presence of nuisance parameters, the statistic R depends
on the nuisance parameters. Practitioners often replace the nuisance parameters
in the likelihood function by their maximum likelihood estimates and examine the
resulting profile likelihood as a function of the parameter of interest. Denote by n
the sample size. The standard normal approximation to the conditional distribu-
tion of R typically has error of order O(n−1/2), and R can be used to construct
approximate confidence limits for the parameter of interest having coverage error
of that order. In large sample settings, this approximation works well. However, in
small sample situations, with 10 or 15 observations, the standard normal approxi-
mation may not be adequate. Hence, various authors developed modifications for R
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using saddlepoint approximation techniques. These modifications reduce the order
of error in the standard normal approximation to the conditional distribution of R.

Barndorff-Nielsen [2] first proposed the modified directed signed root of the like-
lihood ratio statistic R∗. This statistic will be reviewed in the next section. The
relative error in the standard normal approximation to the conditional distribution
of R∗ is of order O(n−3/2). Barndorff-Nielsen [3–5] also considered using a variation
on this approximation, of the same form as the univariate expansion of Lugannani
and Rice [10]. The drawback of these approximations is that the calculation their
calculation requires the calculation of an exact or approximate ancillary, and in
some situations it is hard or impossible to construct this ancillary. For the other
approximations that we will study in the following, no such ancillary needs to be
specified, and hence the approximations are easier to apply in practice.

Severini [12] proposed an approximation R̂∗ to Barndorff-Nielsen’s R∗ based on
empirical covariances. Under some assumptions and model regularity properties,
R̂∗ is distributed according to a standard normal distribution, with error O(n−1),
conditionally on the observed value of an ancillary statistic A. However, the con-
struction of this R̂∗ does not require the specification of A.

DiCiccio and Martin [8] proposed an alternative quantity to R∗, denoted by
R+, that is available without specification of A. The derivation of R+ involves the
Bayesian approach to constructing confidence limits considered by Welch and Peers
[15] and Peers [11]. In the presence of nuisance parameters, Peers [11] chose a prior
density for the parameters to satisfy a partial differential equation. With this prior,
the standard normal approximation to the conditional distribution of R+ has error
of order O(n−1). If the parameter of interest and the nuisance parameter vector
are orthogonal, solving the partial differential equation is relatively easier. In some
cases that the parameters are not orthogonal, solving that equation numerically is
problematic. Parameter orthogonality will be reviewed in the following section.

For a parameter of interest that is orthogonal to the nuisance parameter vector,
Cox and Reid [6] defined the signed root of the conditional likelihood ratio statistic
R. The standard normal approximation to the distribution of R has error of order
O(n−1/2). DiCiccio and Martin [8] defined R

+
similar as the R+ mentioned above.

The standard normal approximation to the conditional distribution of R
+

has error
of order O(n−1). The use of R and its modifications is often effective in situations
where there are many nuisance parameters. In such cases, the use of R and its
modified versions can produce unsatisfactory results; see DiCiccio, Field and Fraser
[7] for examples.

The above variants on R have never been systematically compared to each other
as a group. This paper provides an accuracy comparison among the modifications
stated above. Each of these approximations are used to generate an approximate
one-sided p-value by approximating P[R ≥ r], for r the observed value of R. Approx-
imate two-sided p-values are calculated by approximating 2 min(P[R ≥ r], P[R <
r]). One and two-sided hypotheses tests of size α may be constructed by rejecting
the null hypothesis when the p-value is less than α. Both the Barndorff-Nielson
format approximation

(1) Φ{R + R−1 log(U/R)}
and the Lugannani and Rice format approximation

(2) Φ(R) + φ(R)(R−1 − U−1)

were considered in this paper, where the variable U may vary for different modifica-
tions. We examined as an example the ratio of means of independent exponentials.
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We calculated via simulation the size of tests constructed as above, and then com-
pared the results among different approximations.

2. Methodology

We first review several statistics whose marginal distributions are very close to
standard normal. Consider continuous variables X1, . . . , Xn having joint density
function that depends on an unknown parameter ω = (ω1, . . . , ωd). Suppose that
ω = (ψ, χ), where ψ = ω1 is a scalar parameter of interest and χ = (ω2, . . . , ωd) is
a nuisance parameter vector. Let ω̂ = (ψ̂, χ̂) be the maximum likelihood estimator
of ω, and for fixed ψ, let χ̂ψ be the constrained maximum likelihood estimator of
χ. The signed root of the likelihood ratio statistic is R = sgn(ψ̂ − ψ0){2(l(ω̂) −
l(ψ0, χ̂0))}1/2, where χ̂0 will be shorthand for χ̂ψ0

and l(ω) is the log-likelihood
function for ω. The standard normal approximation to the distribution of R typ-
ically has error of order O(n−1/2), and R can be used to construct approximate
confidence limits for ψ having coverage error of that order.

The earliest general conditional saddlepoint tail probability approximation was
provided by Skovgaard [13], who applied double saddlepoint techniques to the prob-
lem of approximating tail probabilities for conditional distributions when the data
arise from a full exponential family. In this case the double saddlepoint distribution
function approximation can be expressed in terms of the quantities in the joint
density function. Skovgaard’s double saddlepoint approximation to the conditional
distribution function is of form (2), with U a Wald statistic. In this paper, we
consider only models more complicated than canonical exponential families, and so
won’t apply this approximation.

2.1. Barndorff-Nielsen’s modification

The modified signed root of the likelihood ratio statistic R∗ was first proposed by
Barndorff-Nielsen [2] and given by

R∗ = R + R−1 log(U/R),

where

(3) U =
|lχ;ω̂(ω̂ψ) l;ω̂(ω̂) − l;ω̂(ω̂ψ)|

|jχχ(ω̂ψ)| 12 |j(ω̂)| 12
,

and jχχ(ω̂ψ) = −lχχ(ψ0, χ̂0) and j(ω̂) = −lωω(ω̂), with lωω(ω) the matrix of
second-order partial derivatives of l(ω; ω̂,A) taken with respect to ω and lχχ(ω)
the submatrix of lωω(ω) corresponding to χ. Here U represents an approximate
conditional score statistic, which, in the multivariate normal case would exactly
coincide with R. Outside the multivariate normal case, it measures the difference
between R and U is a measure of departure from normality. The quantity l;ω̂(ω)
is the d × 1 vector of partial derivatives of l(ω; ω̂,A) taken with respect to ω̂,
and lχ;ω̂(ω) is a d × (d − 1) matrix of mixed second-order partial derivatives of
l(ψ, χ; ω̂,A) taken with respect to χ and ω̂. The sign of U is the same as that
of R and the resulting U is of the form U = R + Op(n−1/2). The relative error
in the standard normal approximation to the conditional distribution of R∗ is of
order O(n−3/2). The conditioning is on an exact or approximate ancillary statistic
A. The variable U is parameterization invariant and does not depend on χ.
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The value of ψ0 satisfying Φ(R∗) = α is an approximate upper 1− α confidence
limit which has relative coverage error of order O(n−3/2) both conditionally and
unconditionally. Barndorff-Nielsen [3–5] also considered using the alternative to
Φ(R∗) provided by the Lugannani and Rice format approximation (2).

Consider the exponential family model for a random vector T whose density
evaluated at t is fT(t; θ) = exp(θ�t−HT(θ)−G(t)). The random vector T is the
sufficient statistic and set τ(θ) = Eθ[T]. In the presence of nuisance parameters,
the calculation of U requires the specification of the ancillary A. Barndorff-Nielsen
[1] suggested an approximate ancillary statistic for use in conditional inference.
Kolassa [9], in Chapter 8.4, presented this approximate ancillary A as

B(ψ̂)(T − τ (ψ̂, χ))�,

with χ held fixed, and

B(ψ) = [(∂τ/∂ψ)⊥Σ(∂τ/∂ψ)⊥�]−
1
2 (∂τ/∂ψ)⊥.

Suppose that θ is scalar. Let l̃(θ; θ̂,a) = l(θ; θ̂,a)/n. Then

(4) FΘ̂|A(θ̂|a; θ) = [Φ(
√

nω̂) + φ(
√

nω̂)[1/ω̂ − 1/ž]/
√

n ][1 + Op(n−1)],

with ž = [l̃;1(θ̂; θ̂,a) − l̃;1(θ; θ̂,a)]/
√

j(θ̂), and the superscripts ; 1 on l̃;1 represent

differentiation of the likelihood with respect to θ̂, after reexpressing t in terms of
θ̂ and a. Here a is the observed value of A; FΘ̂|A(θ̂|a; θ) is the conditional cumula-
tive distribution function and Φ(·) is the standard normal cumulative distribution
function.

In the computation of Barndorff-Nielsen’s R∗, the calculation of U requires the
ancillary A to be specified, which may present difficulties in practice. In the fol-
lowing, we will introduce several modifications that do not require the specification
of A.

2.2. An empirical adjustment

Severini [12] proposed approximation R̂∗ to Barndorff-Nielsen’s R∗ based on em-
pirical covariances. Recalling the formula of U (3), the key step is to approximate
lχ;ω̂(ω̂ψ) and l;ω̂(ω̂) − l;ω̂(ω̂ψ).

Let l(j)(ω) denote the log-likelihood function based on observation j alone. De-
note

Q̂(ω; ω0) =
∑

l(j)(ω)l(j)ω (ω0)T , Î(ω; ω0) =
∑

l(j)ω (ω)l(j)ω (ω0)T ,

and î = Î(ω̂; ω̂). The quantity ω0 is any point in the parameter space. Then
l;ω̂(ω̂) − l;ω̂(ω) and lω;ω̂(ω) may be approximated by

hatl;ω̂(ω̂) − l̂;ω̂(ω) = {Q̂(ω̂; ω̂) − Q̂(ω; ω̂)}̂i(ω̂)−1ĵ

and
l̂ω;ω̂(ω) = Î(ω; ω̂)̂i(ω̂)−1ĵ,

where ĵ = j(ω̂) = −lωω(ω̂).
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Denote by Û the approximation to the statistic U based on the above quantities,
and then denote

R̂∗ = R + R−1 log(Û/R).

The quantity R̂∗ can be used in approximation (1). This represents a correction
similar to that of (3), with expectations of quantities replaced by sample means.
Under some assumptions plus model regularity properties, R̂∗ is distributed accord-
ing to a standard normal distribution, with error O(n−1), conditionally on a, the
observed value of the ancillary A. However, the construction of R̂∗ does not require
the specification of A. Again, the alternative approximation (2) is also available as
Φ(R) + φ(R)(R−1 − Û−1).

2.3. DiCiccio and Martin’s modification

DiCiccio and Martin [8] proposed an alternative variable to U , denoted by T , which
is available without specification of the ancillary A. The modification for approxi-
mation (1) is

(5) R+ = R + R−1 log(T/R),

where T is defined in (7). As with (3), the final term in R+ represents the departure
from normality; unlike (3), this measure represents the departure of the posterior
for ψ from normality, and involves the prior distribution. Once again, one might
use the alternative probability approximation (2) with T substituting the place
of U . The replacement of T avoids the necessity of specifying A in calculating U
and hence simplifies the calculations. The derivation of T involves the Bayesian
approach to constructing confidence limits considered by Welch and Peers [15] and
Peers [11]. When ω = ψ, that is, when the entire parameter is scalar and there
are no nuisance parameters, Welch and Peers [15] showed that the appropriate
choice is π(ω) ∝ {i(ω)}1/2, where i(ω) = E{−d2 l(ω)/ d ω2}. In the presence of
nuisance parameters, Peers [11] showed that π(ω) must be chosen to satisfy the
partial differential equation

(6)
d∑

j=1

i1j(i11)−1/2 ∂

∂ωj
(log π) +

d∑
j=1

∂

∂ωj
{i1j(i11)−1/2} = 0,

where ijk(ω) = E{−∂2l(ω)/∂ωj∂ωk} and (ijk) is the d × d matrix inverse of (ijk).
The variable T is defined as

T = lψ(ψ0, χ̂0)
| − lχχ(ψ0, χ̂0)|1/2π(ω̂)
| − lωω(ω̂)|1/2π(ψ0, χ̂0)

.(7)

Here lψ(ω) = ∂l(ω)/∂ψ, and π(ω) is a proper prior density for ω = (ψ, χ) which
satisfies the equation (6). Then the resulting approximation (2) is

P(ψ ≥ ψ0|X) = Φ(R) + (R−1 − T−1)φ(R) + O(n−3/2),

where T = U + Op(n−1), and thus the approximation (1) to the conditional distri-
bution based on R+R−1 log(T/R) has error of order O(n−1). To error of the order
Op(n−1), T is parameterization invariant under transformations ω �→ {ψ, τ(ω)}.

Parameter orthogonality may make a big difference in solving the partial differ-
ential equation (6). Orthogonality is defined with respect to the expected Fisher
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information matrix. We define θ1 to be orthogonal to θ2 if the elements of the
information matrix satisfy

(8) iθsθt =
1
n

E
(

∂l

∂θs

∂l

∂θt
; θ

)
=

1
n

E
(
− ∂2l

∂θs∂θt
; θ

)
= 0

for s = 1, . . . , p1, t = p1 + 1, . . . , p1 + p2, where θ = (θ1, θ2); θ1 and θ2 are of
length p1 and p2 respectively. If equation (8) is to hold for all θ in the parameter
space, then the parameterization is sometimes called globally orthogonal. If (8)
holds at only one parameter value θ0, then the vectors θ1 and θ2 are said to be
locally orthogonal at θ0. The most direct statistical interpretation of (8) is that the
relevant components of the statistic are uncorrelated.

The definition of orthogonality can be extended to more than two sets of parame-
ters, and in particular θ is totally orthogonal if the information matrix is diagonal.
In general, it is not possible to have total parameter orthogonality at all parameter
values, but it is possible to obtain orthogonality of a scalar parameter of interest ψ
to a set of nuisance parameters. If the parameter of interest and the nuisance para-
meter vector are orthogonal, solving the partial differential equation (6) is relatively
easier. The equation (6) reduces to

(iψψ)−1/2 ∂

∂ψ
(log π) +

∂

∂ψ
(iψψ)−1/2 = 0,(9)

whose solutions are of the form π(ψ, χ) ∝ {iψψ(ψ, χ)}1/2g(χ) (Tibshirani [14]),
where g(χ) is arbitrary and the suggestive notation iψψ(ψ, χ) is used in place
of i11(ψ, χ). In some cases in which the parameters are not orthogonal, solving
equation (6) numerically is problematic.

2.4. Conditional likelihood ratio statistic and its modification

For ψ and χ orthogonal, Cox and Reid [6] defined the conditional likelihood ratio
statistic for testing ψ = ψ0 as W = 2{l̄(ψ̄) − l̄(ψ0)}, where

l̄(ψ) = l(ψ, χψ) − 1
2

log | − lχχ(ψ, χ̂ψ)|

and ψ̄ is the point at which the function l̄(ψ) is maximized. The signed root of
the conditional likelihood ratio statistic is R = sgn(ψ̄−ψ0)W

1/2
, and the standard

normal approximation to the distribution of R has error of order O(n−1/2). Let
R

+
= R + R

−1
log(T/R). One may use approximations (1) and (2), say, Φ(R

+
) or

Φ(R) + φ(R)(R
−1 − T

−1
), where

T = l̄(1)(ψ0){−l̄(2)(ψ̄)}−1/2
π(ψ̄, λψ̄)
π(ψ0, λ0)

,

and l̄(j) = dj l̄(ψ)/ d ψj , j = 1, 2. Those approximations have errors of order
O(n−1).

The use of R and its modifications is often effective in situations where there are
many nuisance parameters. In such cases, the use of R and its modified versions
can produce unsatisfactory results; see DiCiccio, Field and Fraser [7] for examples.
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3. Example: Exponential samples with orthogonal interest and
nuisance parameters

Let X and Y be exponential random variables with means µ and ν respectively; the
ratio of the means ν/µ is the parameter of interest. The parameter transformation{

µ → λ√
ψ

, ν → λ
√

ψ

}
makes the two new parameters ψ and λ orthogonal. Then

X and Y have expectations λψ− 1
2 and λψ

1
2 , respectively.

Suppose we have n independent replications of (X, Y ). Denote ω = (ψ, λ). We
can obtain the log-likelihood function as

l(ω) = −n

[
ψx̄ + ȳ

λ
√

ψ
+ 2 log λ

]
.

Each of the approximations in section 2 may be used to generate an approxi-
mate one-sided p-value by approximating P[R ≥ r], for r the observed value of R.
Approximate two-sided p-values may be calculated by approximating 2 min(P[R ≥
r], P[R < r]). One and two-sided hypotheses tests of size α may be constructed by
rejecting the null hypothesis when the p-value is less than α. Both the Barndorff-
Nielson format approximation (1) and the Lugannani and Rice format approxima-
tion (2) were considered. We calculated via simulation the size of tests constructed
as above, and compared the results among different approximations.

Some of the approximations in section 2 require specific algebraic calculations.
We present the related calculations below. Other applications are generic, and no
specific algebraic calculations are needed.

3.1. Some algebraic calculations

Barndorff-Nielsen’s modification
The expectations of the sufficient statistics T = (X, Y ) in the new parameteri-

zation are τ (ψ, λ) =
{
λ/

√
ψ, λ

√
ψ

}
, and

d τ (ψ, λ)/ d ψ = {−λ/(2ψ
3
2 ), λ/(2ψ

1
2 )}.

A vector perpendicular to this is (d τ (ψ, λ)/ d ψ)⊥ = {ψ, 1} . The variance of the
sample mean vector is

Σ(ψ, λ) =
1
n

(
λ2/ψ 0

0 λ2ψ

)
.

In our case, B(ψ) =
√

n
{√

ψ/(
√

2λ), 1/(λ
√

2ψ)
}

, and

A =
√

2n
(√

X Y /λ − 1
)

.

Using Barndorff-Nielsen’s formula [4],

l̃(ψ; ψ̂, a) = −|a +
√

2n|(ψ + ψ̂)√
2nψψ̂

− 2 log λ,

and
ω̂ = sign(ψ̂ − ψ)ψ1/4

∣∣∣(a +
√

2n)(ψ
1
2 − ψ̂

1
2 )

∣∣∣ /(ψ̂1/4n1/2).
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The negative of the second derivative of the log likelihood is

j(ψ) =
∣∣∣(a +

√
2n)

∣∣∣ (3ψ − ψ̂)/(4
√

2nψψ̂5),

and the derivative of l̃(ψ; ψ̂, a) with respect to ψ̂ is

∣∣∣(a +
√

2n)
∣∣∣ (ψ − ψ̂)/(2

√
2nψψ̂3).

Then the quantity ž contributing to the tail probability approximation (4) is ž =

−
√

|a +
√

2n| (ψ − ψ̂)/(2
√

2nψψ̂).

DiCiccio and Martin’s modification
Based on the above, the information matrix is

i(ω) = E[−l′′(ω)] = n

(
1/2ψ2 0

0 2/λ2

)
.

The maximum likelihood estimators are ψ̂ = Y /X and λ̂ = (ψ̂X + Y )/(2ψ̂1/2) =√
X Y . For fixed ψ, let λ̂ψ be the constrained maximum likelihood of λ. Here,

λ̂ψ = (ψX + Y )/(2ψ1/2). If ψ = ψ0 = 1, then λ̂ψ0 = λ̂0 = (X + Y )/2.
In this case, the parameters are orthogonal. Using the simplified partial differ-

ential equation (9), we chose g(λ) = 1, and hence π(ψ, λ) =
√

n/(
√

2 ψ).
In addition to use the prior solved from equation (9), we also studied the outcome

from a uniform prior, that is to say, the prior with a constant density, which is
obviously not a solution to equation (9).

3.2. Simulation results

Simulation procedure
For sample size n = 10,

(1) Generate 10 draws from the pair of {X, Y }, where X and Y both follow stan-
dard exponential distribution;
(2) Calculate one and two-sided p-values for each approximation;
(3) Compare the p-values to the α level, say 0.05; denote by q the number of miss
coverages; if the p-value is less than 0.05, then q = q + 1;
(4) Repeat steps (1)-(3) for 10,000 times and report the final value of q; let q∗ =
(q/10000) ∗ 100, the Type I error probability in percentage.
(5) Repeat steps (1)-(4) for 100 times and report the average of q∗ as the measure-
ment of the accuracy for the modifications.

Approximations (1) and (2) have a removable singularity at R = 0. Consequently,
these and similar formulae require care when evaluating near R = 0. Specifically, we
found (1) and (2) to exhibit adequate numerical stability as long as |R| > 10−4. Out
of 1,000,000 simulated data sets, 60 presented R (or a modification of R) closer to
zero. In these cases, for all but the most extreme conditioning events, the resulting
conditional p-value is large enough as to not imply rejection of the null hypothesis,
and so these simulated data sets were treated as not implying rejection of the null
hypothesis.
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Table 1

Type I error probability (BN)

One-sided Two-sided
Approximation Average Average

Φ(R) 5.241 5.168

Φ(R) 4.807 4.575
Φ(R + R−1 log(U/R)) 5.046 4.760

Φ(R + R−1 log(Û/R)) 5.018 4.882
Φ(R + R−1 log(T/R)) 4.615 4.312
Φ(R + R−1 log(Tu/R)) 11.017 6.828

Φ(R + R
−1

log(T/R)) 4.883 4.411

Φ(R + R
−1

log(T u/R)) 11.723 7.249

Table 2

Type I error probability (LR)

One-sided Two-sided
Approximation Average Average

Φ(R) 5.241 5.168

Φ(R) 4.807 4.575
Φ(R) + φ(R)(R−1 − U−1) 5.046 4.760

Φ(R) + φ(R)(R−1 − Û−1) 5.017 4.881
Φ(R) + φ(R)(R−1 − T−1) 4.613 4.308

Φ(R) + φ(R)(R−1 − T−1
u ) 11.274 6.943

Φ(R) + φ(R)(R
−1 − T

−1
) 4.878 4.403

Φ(R) + φ(R)(R
−1 − T

−1
u ) 12.190 7.510

Results
Tables 1 and 2 below report the average of the Type I error probabilities (in

percentage) of the 100 rounds simulation. The quantities Tu and Tu are assumed
with uniform prior densities.

From the tables, we can see that for both the Barndorff-Nielsen format approxi-
mation (BN) and the Lugannani and Rice format approximation (LR), the empirical
adjustment has best performance. Barndorff-Nielsen’s modification has the best as-
ymptotic error rate (O(n−3/2) rather than O(n−1)), and hence we might expect
that the best performance from this approximation. Instead we observe the best
performance from other modifications with worse asymptotic error. The authors
hope to explore this discrepancy in later work.

One may also notice that the performance of DiCiccio and Martin’s modification
is not as good as expected. One explanation could be that, generally in small
sample settings Bayesian method is more sensitive to the choice of the prior density
than in the large sample situations. The importance of the choice of prior can be
demonstrated by the poor performance of the approximations with the incorrect
uniform priors.
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