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the estimation of network traffic
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Abstract: This paper introduces an iterative tomogravity algorithm for the
estimation of a network traffic matrix based on one snapshot observation of
the link loads in the network. The proposed method does not require complete
observation of the total load on individual edge links or proper tuning of a
penalty parameter as existing methods do. Numerical results are presented
to demonstrate that the iterative tomogravity method controls the estimation
error well when the link data is fully observed and produces robust results
with moderate amount of missing link data.

1. Introduction

This paper concerns the estimation of network traffic based on link data. The traf-
fic matrix of a network, which gives the amount of source-to-destination (SD) flow,
is an essential element in a wide range of network administration and engineering
applications. However, in today’s fast growing communication networks, it is of-
ten impractical to directly measure network traffic matrices due to cost, network
protocol and/or administrative constraints, while measurements of the total traffic
passing through certain individual links are more readily available. Thus, the prob-
lem of estimating SD traffic based on link data, called network tomography [10], is
of great interest to communications service providers.

In the network tomographic model [10]

y = Ax,(1.1)

where y is a vector of traffic loads on links, A = (aij) is a known routing matrix
with elements aij = 1 if link i is in the path for the j-th pair of SD nodes and
aij = 0 otherwise, and x is the SD traffic flow as a vectorization of the traffic
matrix. Here the routing protocol A is fixed. In typical network applications, the
number of links (edges) is of the same order as the number of nodes (vertices) in
the network graph, while the number of SD pairs is of the order of the square of
the number of nodes. Thus, dim(y) � dim(x) and the network tomographic model
(1.1) is ill-posed. Vardi [10] identified the ill-posedness of (1.1) as the main difficulty
of network tomography and proposed to estimate the expected traffic flow based on
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independent copies of y by modeling the variance of y. The problem has since being
considered by many research groups. See Vanderbei and Iannone [9] for MLE/EM,
Cao et al. [1, 2] for MLE/EM in the model xj ∼ N(λj , φλc

j) and non-stationarity
issues, Medina et al. [8], Liang and Yu [6] for a more scalable pseudo-likelihood,
Liang et al. [7] for additional direct observations of flow data for selected SD pairs,
and Coates et al. [4] and Castro et al. [3] for surveys with additional references. In
general, these methods require observations of multiple copies of y.

An interesting and noticeable development in the area is the introduction of
(tomo)gravity algorithms and related methods based on a single snapshot of the
network, i.e. one copy of y. Zhang et al. [11] observed that in certain communica-
tions networks (e.g. a backbone network where each node represents a PoP, or point
of presence), almost all the traffic flow is generated by and destined to a known
set of edge nodes which do not serve as intermediate nodes in any SD paths. Thus,
each SD path begins with a source edge node, traverses through an inbound edge
link, an inner network, and then an outbound edge link to a destination edge node.
Under this assumption, the total inbound flow N

(in)
s from a source node s is the

sum of the loads over all the inbound edge links from s and the total outbound flow
N

(out)
d to a destination node d is the sum of the loads over all the outbound edge

links to d. The edge nodes communicate to each other through an inner network
with a directed graph composed of inner nodes and links and a routing protocol,
but the inner nodes does not generate or receive traffic. Moreover, Zhang et al. [11]
observed that for each fixed source node s, the distribution of the inbound traffic
N

(in)
s from s to different destinations d is approximately proportional to the total

outbound loads N
(out)
d these destinations receive. Formally, this is called the gravity

model and can be written in Vardi’s [10] vectorization as

x̃j =
N

(in)
sj N

(out)
dj

N
, N =

∑
s

N (in)
s =

∑
d

N
(out)
d ,(1.2)

where sj and dj are respectively the source and destination nodes for the j-th SD
pair, x̃j is the corresponding component of the simple gravity solution x̃ as an
approximation of the vector x in (1.1), and N is the total flow. The gravity model
is best described as

x̃sd = N (in)
s N

(out)
d /N(1.3)

with a slight abuse of notation, where x̃sd is the traffic flow from source s to des-
tination d in the gravity model, i.e. x̃j = x̃sjdj . Here, the relationship between the
link data y and the SD traffic flow x is still governed by the tomographic model
(1.1). Due to the additional information provided in the gravity model (1.2) about
the nature of the SD traffic x, the number of unknowns in x is square rooted. Thus,
the ill-posedness of (1.1) is greatly alleviated. In particular, if all link loads are ob-
served, the total inbound flow N

(in)
s and outbound flow N

(out)
d for individual edge

nodes and thus the total traffic N are all available network statistics in the gravity
model. In addition to the gravity solution x̃ in (1.2), Zhang et al. [11] developed
the simple tomogravity solution

arg min
x

{
‖x − x̃‖ : Ax = y

}
(1.4)

and more general tomogravity solutions when the edge nodes are further classified
as “access” or “peering”, while Zhang et al. [12] developed entropy regularized
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tomogravity solution as

arg min
x

{
‖y − Ax‖2 + φN2K

(
x/N, x̃/N

)}
,(1.5)

where K(·, ·) is the Kullback-Leibler information and φ is a tuning parameter for
the penalty level. These tomogravity solutions require complete knowledge of the
total inbound and outbound flow, i.e. N

(in)
s and N

(out)
d , for all individual source and

destination nodes. They perform reasonably well when such information is available
and have been implemented in certain AT&T commercial networks.

In this paper, we propose an iterative tomogravity (ITG) algorithm which alter-
nately seeks estimates as local optimal solutions in the tomographic space (1.1) and
a gravity space of network traffic flow x. Our algorithm, described in Section 2, is
based on a single snapshot of the link data and does not require the full knowledge
of the total inbound and outbound flow for all individual edge nodes. The idea is
to use the gravity space, instead of the specific simple gravity solution (1.2), to reg-
ularize the network tomography problem (1.1). In Section 3, we present the results
of a real-data experiment to demonstrate that the ITG method is competitive com-
pared with other tomogravity algorithms when the complete link data is available
and robust when a moderate amount of link data is missing.

2. An iterative tomogravity algorithm

In a general network tomographic model, the observed link data, as a sub-vector
y∗ of the vector y in (1.1), satisfies

y∗ = A∗x,(2.1)

where the matrix A∗ = (a∗
ij) is composed of the rows of the routing matrix A in

(1.1) corresponding to the observed links, and x is the SD traffic flow as in (1.1).
Let J be the total number of SD-pairs of concern. For the observation y∗, the
tomographic space of probability vectors is

T ∗ =
{
f ∈ IRJ : y∗ ∝ A∗f , f ≥ 0, 1T f = 1

}
,(2.2)

where 1 is the vector composed of 1’s and vT denotes the transpose of a vector v.
Here and in the sequel, inequalities are applied to all components of vectors.

In the literature, different types of flow and load are often specifically denoted.
Let y(net) be the link loads of the inner network, y(edge) the loads on the links be-
tween the edge nodes and inner network, y(self) the load on the links from the edge
nodes to themselves, x(net) the traffic flow between distinct edge nodes (necessarily
through the inner network), and x(self) the flow of the edge nodes to themselves.
Since x(self) does not go through the inner network and the flow from an edge node
to itself is the same as the load on the corresponding self-link, the tomographic
model can be written as

y =

 y(net)

y(edge)

y(self)

 =

 A(net) 0
A(edge) 0

0 I(self)

 (
x(net)

x(self)

)
= Ax,(2.3)

with I(self) being the identity matrix giving y(self) = x(self), provided that the inner
network does not generate traffic. This is a special case of Vardi’s [10] tomographic
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model (1.1) describing decompositions of the SD traffic x and link load y, but (1.1)
can be also viewed as y(net) = A(net)x(net). In this paper, the observed y∗ in (2.1)
is a general sub-vector of the y in (2.3) to allow partial observation of y(edge) and
networks without y(self) and x(self).

Suppose throughout the sequel that the list of the SD-pairs (sj , dj), i = 1, . . . , J ,
forms a product set composed of all the pairings from a set S of source nodes to a
set D of destination nodes (D �= S allowed), so that J = |S||D|, where |C| is the
size of a set C. This gives a one-to-one mapping between IRJ and the space of all
|S| × |D| matrices:

v = (v1, . . . , vJ)T ∼ (vsd)|S|×|D|, vj = vsjdj .

In this notation, the gravity space of probability vectors is

G =
{
g ∈ IRJ : g ∼ (gsd)|S|×|D| = pqT , g ≥ 0, 1T g = 1

}
,(2.4)

i.e. gsd = psqd or matrices of rank 1, where p ∈ IR|S| and q ∈ IR|D|.
Zhang et al. [11] proposed (1.2) as the simple gravity algorithm and (1.4) as

the simple tomogravity algorithm. Zhang et al. [12] proposed (1.5) as the entropy-
regularized tomogravity algorithm. Their basic ideas can be summarized as follows:
(i) The gravity model gives a rough approximation of the SD flow; (ii) When the
simple gravity solution (1.2) is available, it can be used to regularize Vardi’s tomo-
graphic model (1.1). Motivated by their work, we propose the following algorithm
which provides estimates of the SD flow x in (2.1).

Iterative tomogravity algorithm (ITG):

Initialization: g = 1/J(2.5)

Iteration: f (new) = arg min
{

K(f ,g(old)) : f ∈ T ∗
}

(2.6)

g(new) = arg min
{

K(f (new),g) : g ∈ G
}

(2.7)

Finalization: N̂ =
(
1T y∗)/(

1T A∗f ( fin)
)

(2.8)

x̂ = N̂ f ( fin)(2.9)

where K(f ,g) is the Kullback-Leibler information defined as

(2.10) K(f ,g) =
J∑

j=1

fj log
fj

gj
.

As mentioned earlier, our basic idea is to use the gravity space (2.4), instead of
the simple gravity solution (1.2), to regularize the tomographic model (2.2). A main
advantage of this approach is that it does not require the knowledge of the simple
gravity solution or equivalently, the complete observation of loads on all edge links.
Numerical results in Section 3 demonstrate that when the complete link data y
is observed, the ITG (2.9) and the entropy-regularized tomogravity (1.5) perform
comparably in terms of estimation error, and they both outperform the simple
gravity (1.2) and tomogravity (1.4). Moreover, the ITG without using the knowledge
of the “access” or “peering” status of links has similar performance compared with
the generalized tomogravity method [11] which requires such knowledge. We note
that the ITG method does not need a tuning parameter as (1.5) does.
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A main difference between ITG (2.9) and the simple tomogravity (1.4) is that the
simple gravity solution x̃ in (1.2) is not explicitly used in ITG, since g is treated
as an unknown in the ITG algorithm. However, the information in the observed
portions of y(edge) and y(self) is still utilized in the ITG iterations through the
tomographic space (2.2), instead of directly computing x̃ from y(edge) and y(self)

as in (1.3). If the simple gravity x̃ (or an approximation of it if x̃ is not fully
available) is used as the initialization for ITG, the simple tomogravity solution is
the result of a single ITG iteration. We may also treat g = x̃/N as an unknown in
(1.5), cf. Section 4, but then a tuning parameter is still required.

We use the relaxation algorithm of Krupp (1979) to compute (2.6) of the ITG,
while (2.7) is explicit with

g
(new)
sd =

∑
d′

f
(new)
sd′

∑
s′

f
(new)
s′d

as in (1.3). Here is a full description of the relaxation algorithm. Let g(old) =

(g(old)
1 , . . . , g

(old)
J )T be a given probability vector. The problem is to minimize

K
(
f ,g(old)

)
under the linear constraints in (2.2). Since y∗

i = 0 implies fij = 0
for all j with a∗

ij = 1 and thus reduces the optimization problem to a subset of j,
we assume y∗ = (y∗

1 , . . . , y∗
r ) > 0 where r is the total number of links with observed

load. Define

hij =

{
a∗

ij/y∗
i − a∗

rj/y∗
r , i = 1, . . . , r − 1,

1, i = r.

The linear constraints A∗f = y∗ and 1T f = 1 for the tomographic space (2.2) can
be written as Hf = (0T , 1)T , where H = (hij). Krupp’s [5] relaxation algorithm
maximizes

vr −
J∑

j=1

g
(old)
j exp

{
r∑

i=1

hijvi − 1

}
(2.11)

over all vectors v = (v1, . . . , vr)T and then set

f
(new)
j = g

(old)
j exp

{
r∑

i=1

hijvi − 1

}
.(2.12)

As (2.11) is concave in v, its optimization is done by the Newton-Raphson method
for individual components vi, cycling through i = 1, . . . , r. Since hr,j = 1 for all j,
f (new) in (2.12) is properly normalized.

The iteration steps (2.6) and (2.7) are both monotone in K(f ,g), so that the ITG
algorithm reaches a local minimum of the Kullback-Leibler information between the
tomographic (2.2) and gravity (2.4) spaces. However, since K(f ,g) is not convex
jointly in (f ,g) with g in the gravity space, ITG is not guaranteed to converge to
a global minimum.

3. An example

We conduct numerical experiments with data collected over the Abilene Network
(an Internet2 high-performance backbone network in United States) illustrated in



Iterative tomogravity algorithm 17

Fig 1. Abline Network.

Figure 1, with 12 nodes, 144 total traffic pairs (132 SD pairs and 12 self pairs),
30 inner links, and 24 edge links. We collect the full 12 × 12 SD traffic matrices in
5 min intervals for consecutive 19 weeks in 2004. We randomly pick four different
periods of 3 days and use the data in these four time periods. We call these four raw
datasets as X1, X2, X3, and X4. It turns out that the four datasets give different
traffic patterns as the time periods cover different days of the week, cf. Figure 2.
For each dataset and each hour, we compute x as the hourly total SD flow and
y = Ax with a fixed routing matrix A used in the Abilene data.

We compare four procedures using the complete data y as y∗: the ITG (2.9), the
simple tomogravity (STG) in (1.4), the generalized tomogravity (GTG) of Zhang et
al. [11] utilizing the extra information of “access” or “peering” status of links, and
the entropy regularized tomogravity (ERTG) in (1.5). Since the traffic flow for self
pairs (s = d) is directly observable as the load on the self links, the ITG and STG
estimate these components of x without error. Thus, we measure the performance
of all estimators by the relative total error for non-self SD pairs∑

s �=d

∣∣∣x̂sd − xsd

∣∣∣/ ∑
s �=d

xsd,(3.1)

where xsd is the flow from source s to destination d. We compute the relative total
error for (1.5) with various values of the tuning parameter φ and found that the

Table 1

Average of relative total errors for 288 different hours (4 different 3-day periods) based on
complete link data. The best tuning parameter is used for the ERTG, while extra

information is used for the GTG.

Method risk
Iterative Tomogravity (ITG) 0.3001
Entropy Regularized (ERTG) 0.2995
Simple Tomogravity (STG) 0.3139
Generalized Tomogravity (GTG) 0.3026
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Fig 2. The total hourly traffic for the 4 non-overlapping 3 day periods.

Fig 3. Compare of the error rate using different models, dataset X1.
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Fig 4. Compare of the error rate using different models, dataset X2.

Fig 5. Compare of the error rate using different models, dataset X3.
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Fig 6. Compare of the error rate using different models, dataset X4.

performance of (1.5) is near the best in a wide neighborhood of φ = 10−3 = 0.001.
This confirms the results of Zhang et al. [12]. Thus, φ = 10−3 = 0.001 is used for
(1.5) in our experiment. We plot the relative total error (3.1) against hour for the
four datasets in Figures 3, 4, 5, and 6. We tabulate the average relative error in
Table 1. From the results of the experiments, we observed that the performance of
the proposed ITG is comparable to the ERTG with the best choice of the tuning
parameter and the GTG based on extra information, while all three outperform the
STG.

We also exam the relative errors for different SD pairs as functions of the total
traffic flow for the SD pairs. We compute the relative total error over 3-day time
periods

t∗∑
t=1

∣∣∣x̂(t)
sd − x

(t)
sd

∣∣∣/ t∗∑
t=1

x
(t)
sd(3.2)

for fixed SD pairs in individual datasets, where t indicates time points with t∗ = 72.
We group the values of (3.2) for SD pairs in all datasets according to the total flow∑t∗

t=1 x
(t)
sd with the grid {0, 1/4, 1/2, 3/4, 1, 1.5, 2, 2.5, 3, 4, 5, 7} in the unit of 1010

packets, and tabulate in Table 2 the average of (3.2) within groups. From Table
2, we observe that the estimation error is essentially a decreasing function of the
amount of traffic for individual SD pairs.

Finally, we check the robustness of the ITG (2.9) with missing link data (i.e. y∗

is a proper sub-vector of y). We focus on the case of missing data in edge links as
the ITG is the only procedure among the four that do not require observations for
all edge links. Let k be the number of edge links with missing data. We use only
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Table 2

Relative total errors over 72 hours for fixed SD pairs and 3-day periods, grouped according to
the total flow. The relative total errors are decreasing functions of the flow for all 4 procedures.

Flow # in ITG ERTG STG GTG
Level Group

0 – 0.25 215 4.4799 5.8725 4.5833 5.3545
0.25 – 0.5 100 0.4320 0.4279 0.4548 0.4158
0.5 – 0.75 73 0.3457 0.3449 0.3666 0.3467
0.75 – 1 30 0.2997 0.2992 0.3379 0.2505
1 – 1.5 46 0.2286 0.2305 0.2402 0.2588
1.5 – 2 25 0.2878 0.2859 0.2934 0.3089
2 – 2.5 18 0.1836 0.1828 0.1802 0.2080
2.5 – 3 6 0.1583 0.1576 0.1689 0.1207
3 – 4 7 0.1143 0.1126 0.1335 0.1261
4 – 5 6 0.1456 0.1448 0.1514 0.1373
5 – 7 2 0.0887 0.0938 0.0767 0.0882

data for the first day in dataset X1 and compute the average of the relative total
error for 10 random missing patterns for each given k. We plot this average against
k in Figure 7. From Figure 7, we find that the performance of the ITG method is
robust against small or moderate amount of missing link data (up to 5 out of 24
edge links).

4. Discussion

We consider the estimation of SD traffic flow in a network based on observations of
a snapshot of traffic loads on links. Based on the ideas of Vardi [10] and Zhang et
al. [11, 12], we propose an iterative tomogravity method which allows incomplete
observation of the link data. Our main idea is to use the gravity space (2.4), instead
of the simple gravity solution (1.2), to regularize Vardi’s [10] tomographic model
(1.1). A numerical study with a real-life dataset demonstrates that the proposed
method has similar performance compared with the methods proposed in [11, 12]
which demand complete observation of the link data. We discuss below a number
of related issues.

There are two other possible ways of using the gravity space (2.4) to regularize
(1.1) that we do not explore in this paper. The first is to use the ITG (2.9) instead
of the simple gravity (1.2) in the penalty function in (1.5), resulting in

arg min
x

{
‖y∗ − A∗x‖2 + φN̂2K

(
x/N̂,g(fin)/N̂

)}
(4.1)

with the N̂ in (2.8). The second is to alternate between the optimization in the
gravity space and entropy-regularized solution, i.e. to replace (2.6) with

N (new) =
(
1T y∗)/(

1T A∗g(old)
)

(4.2)

f (new) = arg min
{
‖y∗ − N (new)A∗f‖2

+φ{N (new)}2K
(
f ,g(old)

)
: f ∈ T ∗

}
.(4.3)

A small numerical study seems to indicate that there is little difference between
(4.1) and the ITG.

The proposed ITG (2.9) implicitly assumes that the measurement error in the
tomographic model (2.1) is of smaller order than the bias representing the Kullback-
Leibler distance K(x/N,G∗) between x/N and the gravity space (2.4). This seems
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Fig 7. Relative total errors of the ITG versus the number of edge links with missing data. Average
over 10 random missing patterns is used for each point in the plot. The ITG is robust against
small or moderate amount of missing link data.

to be the case in our real-data experiments since ITG significantly improves upon
the simple tomogravity (1.4) by formally reducing K(x/N, x̃/N) to K(x/N,G∗).
In cases where the measurement error in the tomographic model is potentially of
larger order than K(x/N,G∗) [or K(x/N, x̃/N)] it would make sense to replace
(2.6) by (4.2) and (4.3) in ITG [or to use (1.5)] with a proper tuning parameter φ.

A possibility to further reduce the bias is to consider the mixed gravity model

Fmix =

{
f : f =

k∗∑
k=1

πkf (k), f (k) ∈ G
}

.(4.4)

For example, we may compute a regularized mixed tomogravity solution

arg min

{∥∥∥∥∥y − N

k∗∑
k=1

πkf (k)

∥∥∥∥∥ + N2
k∗∑

k=1

φkK(f (k),g(k))

}
(4.5)

by alternately optimizing over g(k) ∈ G, f (k), k = 1, . . . , k∗ and the mixing vector
(π1, . . . , πk∗)T .

It seems that for a network with a fixed routing protocol, the ITG estimate x̂
in (2.9) is a continuous map of y∗, so that x̂ − Ex is asymptotically normal when
y∗ − EA∗x is asymptotically normal with Ex/N ∈ G, as N → ∞. Our simulation
study in a small artificial network has demonstrated the validity of this asymptotic
normality theorem for moderate sample sizes.

Estimation of traffic matrix based on link-load data alone is difficult as the
estimation error is typically above 20%. More accurate results can be obtained if
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additional information can be extracted from packets passing through routers. See
for example Zhao, Kumar, Wang and Xu [13].
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