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Deconvolution by simulation

Colin Mallows1
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Abstract: Given samples (x1, . . . , xm) and (z1, . . . , zn) which we believe are
independent realizations of random variables X and Z respectively, where we
further believe that Z = X + Y with Y independent of X, the problem is
to estimate the distribution of Y . We present a new method for doing this,
involving simulation. Experiments suggest that the method provides useful
estimates.

1. Motivation

The need for an algorithm arose in work on estimating delays in the Internet. We
can send a packet from an origin A to a remote site B, and have a packet returned
from B to A; the time that that this takes is called the “round-trip delay” for the
link A-B. These delays are very volatile and are occasionally large. We can also send
packets from A to a more remote site C, by way of B, and can arrange for packets
to be returned from C via B to A; this gives the round-trip delay for the A-B-C
path. However, we cannot directly observe the delay on the B-C link. Observation
suggests that delays for successive packets are almost independent of one another; in
particular the measured delays for two packets sent 20ms apart, the first from A to
B (and return), the second from A to B to C (and return), are almost independent.
We model this situation by assuming there are distributions FX and FY that give
the delays on the links A-B and B-C respectively, with the distribution of the A-C
delay being the convolution of these two distributions. In practice we are interested
in identifying changes in the distributions as rapidly as possible. However a more
basic question is, how to estimate the distribution FY when we can observe only X
and Z?

While our formulation of the deconvolution problem seems natural in our context,
we have not seen any study of it in the literature. A Google Scholar search for titles
containing “deconvolution” yields about 12000 references; many of these refer to
“blind deconvolution” which is what a statistician would term “estimation of a
transfer function”. If we delete titles containing “blind” there remain about 4730
titles. Most of these are in various applied journals, relating to a large variety of
disciplines. A selection of those in statistical and related journals are listed in the
References section. In all the papers we have seen, the distribution of X is assumed
known.

2. A note on notation

The usual convention is to write all mathematical variables in italics, with random
variables in upper-case, and realizations in lower-case. We depart from this by
using typewriter font like this for both observations and functions of them. Our
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algorithms are copied directly from implementations in the S language. Most of the
S functions that we use are self-explanatory, but a detailed explanation appears in
Appendix 1. Only two things need explanation here; the function c() (concatenate)
makes its arguments into a vector. Also, many S functions take a vector argument.
It is convenient that subscripts are not used in S; indices are shown by using square
brackets. Thus a vector x of length 3 has elements x[1],x[2],x[3]. This notation
makes it easy to write complicated expressions as indices.

3. Two naive methods, and a new idea

Recall that the observed samples are x = c(x[1], . . . , x[m]) and z = c(z[1], . . . , z[n]).
If we have m = n, a first suggestion is to sort x and z, forming sortx and sortz,
and to form yhat ← sortz− sortx (i.e. yhat[i] = sortz[i] - sortx[i]). If the
distributions of X and Z are Normal with variances σ2 and τ2 respectively, so that
what we want is an estimate of a Normal distribution with variance τ2 − σ2, this
method produces an estimate of a Normal distribution with the correct mean but
with variance (τ − σ)2 (because the sorted vectors are perfectly correlated), which
is too small. The method is not consistent as n → ∞.

Another approach, still assuming m=n, is to put both x and z into random orders
and to compute the vector of differences z-x. Again, this does not work; this gives
an estimate of the distribution of X + Y − X ′ where X ′ is an independent copy of
X. In the Normal case described above, this method gives an estimate of a Normal
distribution with variance τ2 + σ2 instead of τ2 − σ2.

The new idea is that a useful estimate could be obtained if we knew the “right”
order in which to take the zs before subtracting the xs; and we can estimate an
appropriate order by a simulation. Here is a first version of how this would work,
assuming m=n. Suppose we have a first estimate of FY , represented by a vector of
values oldy = c(oldy[1],...,oldy[n]). We choose a random permutation rperm
of (1, . . . , n), and put the elements of oldy into this order. We add the xs to give a
vector w where

w ← x + oldy[rperm]

We record the ranks of the elements of this vector. We put the elements of z into
this same order and subtract the xs. Thus

newy ← sort(z)[rank(w)] − x

We can repeat this operation as many times as we like.
We will attempt an explanation of why this might be expected to work below.

An example is shown in Figure 1. Here the sample size is n = 100, and both X and
Y are standard Normal. We generated pseudo-random samples z0 = x0 + y0 and
x1, placed these in sorted order (sortz0 = sort(z0) and sortx1 = sort(x1) and
started the algorithm by taking y1 = sort(sortz0 - sortx1). Successive versions
of y were obtained using the iteration. Note that rank(runif(n)) is a random
permutation of (1,. . . ,n).

newy ← sort(sortz0[rank(sortx1+ oldy[rank(runif(n))])] − sortx1).

We ran the iteration for 100 steps. Figure 1 shows the first nine y vectors, each
sorted into increasing order, plotted against standard normal quantiles. Also shown
is the straight line that corresponds to a normal distribution with mean mean(z0)
- mean(x1) and variance var(z0) - var(x1). Figure 2 shows iterations 81:100.
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Fig 1. QQplots of the first nine iterations for the Normal example.

Figure 3 shows values of a distance index d, which is the sum of absolute vertical
deviations between this line and the estimate y. The algorithm appears to be stable,
meaning that in repeated applications of the algorithm, the estimates stay close
together. The initial transient takes no more than four iterations. The average value
of the distance d over iterations 5:100 is 19.69. Also shown (with plotting character
“o”) are comparable values of d for random samples from a normal distribution
with the same mean and variance as this fitted normal distribution. The average
value of these is 14.74. If we average the y vectors over iterations 5:100, we get
a vector whose distance from this fitted normal distribution is d = 17.82. The
average distance between the iterates and their average is d = 8.95. Thus the
average distance between the iterates and their average is smaller than the average
distance between random normal samples and the population line.

The iteration seems to be giving good estimates of Y . Why should this be so?
Here is an argument to support this expectation. Suppose z = x+y; these vectors
are realizations of random variables X, Y, Z. we cannot observe any of x,y,z but
can see sortz = sort(z) and an independent realization of X, namely x1. How
can we define an estimate of y? Since X and Y are independent (by assumption),
if rperm is a random permutation, then zhat = sort(x) + sort(y)[rperm] is a
realization of Z, sorted according to sort(x). To retrieve y we simply subtract
sort(x) from zhat. If n is large, we expect zhat to be close to z, and sort(x1) to
be close to sort(x0). Thus we expect that putting z into the same order as zhat
will make z approximately equal to zhat; and subtracting sort(x1) from this will
approximately retrieve y. This argument does not explain why the iteration should
converge when it is started with y0 remote from the correct value. We do not yet
have an explanation of this.
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Fig 2. QQplots of iterations 81:100 for the Normal example.

4. Questions

Several questions come to mind immediately. Is this algorithm always stable? Is the
algorithm consistent, meaning that as n ← ∞, the empirical c.d.f of y converges in
probability to FY ? I thank a referee for reminding me that FY may not be unique.
What happens when it is not?

To approach these questions, we point out that in the algorithm we have de-
scribed, the possible values of the vector y are all of the form z[perm] − x where
perm is a permutation of (1, . . . , n). Thus in repeated applications y executes a
random walk on the n! possible values of this vector. This random walk will have a
stationary distribution, which may not concentrate on a single state (this seems to
be the usual case). Some states may be transient. Thus the most we can hope for
is that this stationary distribution is close to FY in some sense.

Clearly we need a proof that as n → ∞ this stationary distribution converges (in
some sense) to a distribution that is FY whenever this is identifiable. Also it would
be very pleasant to understand the distribution of the discrepancy measure d when
y is drawn from the stationary distribution. As yet we do not have these results, but
empirical evidence strongly suggests that the convergence result holds universally,
and that useful estimates are obtained in all cases. However the dispersion among
successive realizations of y is an over-optimistic estimate of the precision of the
estimate of FY .

Detailed analysis of the stationary distribution seems out of reach. Even with m
= n = 3, 924 different configurations of x and z need to be considered. There are
208 distinct stationary distributions. See Appendix 2.

We suggest that in practice we need to ignore an initial transient, and that the
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Fig 3. The index d for the first 100 iterations, with values for random normal samples.

dispersion among successive realizations of y is an over-optimistic estimate of the
precision of the estimate of FY .

We need to consider how to handle boundary conditions, for example (as in
the motivating example) that all values of Y are positive. The algorithm as stated
need not generate vectors y that satisfy such conditions. Also, we question how
the algorithm will perform when there are remote outliers in either or both z0 and
x1. Since these samples are assumed to be independent of one another, there is no
reason to hope that subtracting an x1 outlier from a z0 outlier will make any sense.
We study these questions in Section 6 below.

5. Variations

Several variations on the basic idea are as follows.

(a) Instead of using the actual data (x[1],...,x[n]) use a sample from an
estimate of FX , for example a bootstrap sample from the observed x.

(b) To add some smoothness to the algorithm, at each iteration replace x by x + ξ
and/or y by y + η, where ξ and η are vectors of small Gaussian perturbations.
We can use the same perturbations throughout, or we can use independent
perturbations at each step of the algorithm.

(c) Similarly we can (independently) smooth z by adding ζ. If we arrange that
varζ = varξ + varη, these smoothings should not introduce any bias into the
estimate of FY , because X + ξ + Y + η is distributed like Z + ζ. Of course
the efficiency of the method will degrade if the variance of ζ becomes large
(unless each of X, Y, Z is Gaussian).
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If m and n are not equal, to apply the algorithm we need to generate equal numbers
of values of x and z. We can do this either by

(d) creating vectors of some length N by bootstrapping from the observed x and z
(N could be very large, so that we are effectively regarding x and z as defining
empirical distributions),

(e) if m > n, by taking z with a random sample (without replacement) from x;
or similarly sampling z if n > m; or

(f) if m<n, suppose n = km+r with r<m. Then generate n values of x by repeating
x k times and adjoining a random sample of size r drawn from x. Similarly if
m > n, repeat z to fill out m values.

(g) In generating w we can use a bootstrap sample from y, possibly smoothed as
above.

To achieve stability in the estimate of FY , we can

(h) Apply the algorithm a moderate number of times, k say, and average the
resulting sorted y vectors; or

(i) concatenate successive y vectors to form a pooled estimate of FY ; if we do
this we can at each stage

(j) generate w by sampling from this pooled estimate.

It is not clear how to generalize the idea to deal with multivariate observations.

6. Boundary conditions, and outliers

If some bound on Y is known a priori, for example if it is known (as in the motivating
problem) that Y > 0, we need to decide what to do if the algorithm produces one
or more negative values in y. Some possibilities in this case are:

(k) At each iteration, round negative values of yhat up to zero.
(l) At each iteration, replace negative values by randomly sampling from the

positive ones;
(m) At each iteration, replace negative values in yhat by copies of the smallest

values among the positive ones.
(n) At each iteration, reject a random permutation if it leads to offending values;

draw further permutations until one is obtained that satisfies the positivity
conditions;

(o) At each iteration, adjust the permutation by changing (at random) a few
elements (as few as possible?) in such a way as to meet the conditions.

Our experience so far suggests that none of these proposals works very well. Pro-
posals (n) and (o) are excessively tedious, and have been tried only in very small
examples. At this point we recommend another strategy, namely

(p) Replace negative values in yhat by their absolute values.

We investigated two of these proposals as follows. We generated 100 pseudo-
random exponential variates x0, and added a similar (independent) vector y0 to
form the observed vector z0. We assumed that an independent vector x1 was also
observed. We ran the iteration in three ways:

(q) no adjustment
(l) replace negative values by a random sample from the positive values;
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Fig 4. The lowest 20 elements of the first nine iterations for each of three methods: Top:(q),
Middle:(l), Bottom:(p).

(p) Remove negative values of yhat, replacing them by their absolute values. This
can be done in S by an application of the abs function:

newy ← sort(abs(sortz0[rank(sortx1
+oldy[rank(runif(n))])] − sortx1)).

All three methods performed similarly for values of yhat greater than 0.25.
Figure 4 shows the lowest 20 values of yhat for the first nine iterations, plotted

against standard exponential quantiles, for each of these three methods, together
with the line through the origin with slope mean(z0) - mean(x1). We see that the
naive method (q) produces a large number of negative values; method (l) avoids
this but seems to introduce a positive bias; method (p) works well.

Figure 5 shows the number of negative elements in yhat (before adjustment) for
the three methods. The average numbers over the first 100 iterations are (q) 4.44,
(l) 3.35, (p) 2.68. We have no understanding why the “absolute values” method
works as well as it seems to.

We have run similar trials for the case where both X and Y are uniform on
(0, 1), so that Z has a triangular density supported on (0, 2). Here for method (p)
we need to reflect values above y=1 to lie in (0, 1). Again, method (p) seems to be
better than (q) and (l).

We have also investigated the performance of the “absolute values” method when
there is a positivity condition and outliers are present. We find that the non-outlying
part of the distribution is estimated satisfactorily. We took x0, x1, and y0 each to
contain 95 samples from a standard exponential distribution (with mean 1), and
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Fig 5. The number of negative elements (before adjustment) for each of three methods: Top:(q),
Middle:(l), Bottom:(p).

5 samples from an exponential distribution with mean 100. Figure 6 shows the
first four iterations of our basic algorithm, using the option (p) to adjust negative
estimates, plotted against sort(y0). Figure 7 expands the lower corner of this plot,
with the line through the origin of unit slope. The iterates seem to be staying close
to this line.

At this point our recommendation (if m = n and the variables are continuous,
so that there are no ties in the computed values), is to use the original method,
i.e. do not bootstrap or smooth or use (j). If the variables are lattice-valued, for
example integer-valued, it seems to help to add small random perturbations to x
and y[rperm] at each stage to break the ties randomly. It is not clear whether it is
as good to simply add small perturbations once and for all. To handle the boundary
and outlier problems, we recommend using the absolute-values method (p) above.

Appendix 1. The S language

In S the basic units of discourse are vectors; most functions take vector arguments.
The elements of a vector x of length n are x[1], . . . , x[n]. c() is the “concatenate”
function, which creates a vector from its arguments. Thus x = c(x[1], . . . , x[n]). If
the elements of an m-vector s are drawn from 1, . . . , n, (possibly with repetitions),
x[s] is the vector c(x[s[1]], . . . , x[s[m]]. The function sort() rearranges the ele-
ments of its argument into increasing order; so if x = c(2,6,3,4), sort(x) is
c(2,3,4,6). The function rank() returns the ranks of the elements of its argu-
ment; i.e. rank(x)[i] is the rank of x[i] in x. Thus if x = c(2,6,3,4), rank(x)
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Fig 6. Four iterates of the basic algorithm, using option (p) to handle the positivity condition,
when outliers are present.

is c(1,4,2,3). sort(x)[rank(x)] is just x. Another function we have used is
runif(), which generates pseudo-random uniform variables drawn from the in-
terval (0,1). Thus rank(runif(n)) is a random permutation of 1, . . . , n rnorm(n)
generates n standard normals; rexp(n) generates n random exponentials. The func-
tion abs() replaces the elements of its argument by their absolute values.

Appendix 2. The case m=n=3

Without loss of generality we may assume x1 = c(0,x,1) and z0 = c(-a,0,b)
with 0 < x < 1/2 and a and b positive. Examination of the 36 possible values of
(z0[perm1]-x1)[perm2] +x1 shows that the stationary distribution will change
whenever any of a,b and a+b crosses any of the values x,2x,1,1+x,1-x,1-2x,2,
2-x,2-2x. For a general x in (0,1/2) these cut-lines divide the positive quadrant
of the a,b plane into 154 regions. The configuration of these regions changes when
x passes through the values (1/6,1/5,1/4,1/3,2/5). Thus we need to consider six
representative values of x, perhaps x = c(10,22,27,35,44,54)/120, and for each
of these values of x we have 154 regions, 924 regions in all. We computed the
transition matrix of the random walk for each of these 924 cases, and found 208
different stationary distributions. One of these, where one state is absorbing and
the other five transient, occurs 84 times. Ten distributions occur only once each.

A similar calculation for m or n larger than 3 seems impractical.

Acknowledgments. Thanks to Lorraine Denby, for showing me the problem,
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Fig 7. Expansion of the lower corner of Figure 6.

Jon Bentley and Aiyou Chen for stimulating comments. Two referees contributed
insightful remarks.
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