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Multivariate volatility models

Ruey S. Tsay1
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Abstract: Correlations between asset returns are important in many financial
applications. In recent years, multivariate volatility models have been used to
describe the time-varying feature of the correlations. However, the curse of
dimensionality quickly becomes an issue as the number of correlations is k(k−
1)/2 for k assets. In this paper, we review some of the commonly used models
for multivariate volatility and propose a simple approach that is parsimonious
and satisfies the positive definite constraints of the time-varying correlation
matrix. Real examples are used to demonstrate the proposed model.

1. Introduction

Let rt = (r1t, . . . , rkt)′ be a vector of returns (or log returns) of k assets at time
index t. Let Ft−1 be the sigma field generated by the past information at time index
t − 1. We partition the return rt as

(1) rt = µt + et,

where µt = E(rt|Ft−1) is the conditional mean of the return given Ft−1 and et is
the innovation (or noise term) satisfying et = Σ1/2

t εt such that

(2) Cov(et|Ft−1) = Cov(rt|Ft−1) = Σt,

where εt = (ε1t, . . . , εkt)′ is a sequence of independently and identically distributed
random vectors with mean zero and identity covariance matrix, and Σ1/2

t is the
symmetric square-root matrix of a positive-definite covariance matrix Σt, that is,
Σ1/2

t Σ1/2
t = Σt. In the literature, Σt is often referred to as the volatility matrix.

Volatility modeling is concerned with studying the evolution of the volatility matrix
over time. For asset returns, behavior of the conditional mean µt is relatively simple.
In most cases, µt is simply a constant. In some cases, it may assume a simple vector
autoregressive model. The volatility matrix Σt, on the other hand, is much harder
to model, and most GARCH studies in the literature focus entirely on modeling
Σt.

The conditional covariance matrix Σt can be written as

(3) Σt = DtRtDt

where Dt is a diagonal matrix consisting of the conditional standard deviations of
the returns, i.e., Dt = diag{√σ11,t, . . . ,

√
σkk,t} with σij,t being the (i, j)th element

of Σt, and Rt is the correlation matrix.
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In recent years, many studies extend the univariate generalized autoregressive
conditional heteroscedastic (GARCH) model of Bollerslev [2] to the multivariate
case for modeling the volatility of multiple asset returns; see the recent article [1] for
a survey. Multivariate volatility models have many important applications in finance
and statistics. They can be used to study the correlations between asset returns.
These correlations play an important role in asset allocation, risk management,
and portfolio selection. There are two major difficulties facing the generalization,
however. First of all, the dimension of volatility matrix increases rapidly as the
number of asset increases. Indeed, there are k(k + 1)/2 variances and covariances
for k asset returns. Second, for asset returns the covariance matrix is time-varying
and positive definite. Many of the multivariate volatility models proposed in the
literature fail to satisfy the positive-definite constraints, e.g., the diagonal VEC
model [3], even though they are easy to understand and apply.

The goal of this paper is to propose a simple approach to modeling multivari-
ate volatility. The proposed model is kept parsimonious in parameterization to
overcome the difficulty of curse of dimensionality. In addition, a simple structure
equation is imposed to ensure that the resulting time-varying covariance matrices
are positive definite. On the other hand, the proposed model is not very flexible
and may encounter lack of fit when the dimension is high. To safe guard against
model inadequacy, we consider model checking using some bootstrap methods to
generate finite-sample critical values of the test statistics used.

The paper is organized as follows. In Section 2, we briefly review some of the
multivariate volatility models relevant to the proposed model. Section 3 considers
the proposed model whereas Section 4 contains applications to daily returns of
foreign exchange rates and U.S. stocks. Section 5 concludes.

2. A brief review of vector volatility models

Many multivariate volatility models are available in the literature. In this section,
we briefly review some of those models that are relevant to the proposed model.
We shall focus on the simple models of order (1, 1) in our discussion because such
models are typically used in applications and the generalization to higher-order
models is straightforward. In what follows, let aij denote the (i, j)th element of the
matrix A and uit be the ith element of the vector ut.

VEC model. For a symmetric n × n matrix A, let vech(A) be the half-stacking
vector of A, that is, vech(A) is a n(n+1)/2×1 vector obtained by stacking the lower
triangular portion of the matrix A. Let ht = vech(Σt) and ηt = vech(ete

′
t). Using

the idea of exponential smoothing, Bollerslev et al. [3] propose the VEC model

(4) ht = c + Aηt−1 + Bht−1

where c is a k(k+1)/2-dimensional vector, and A and B are k(k+1)/2×k(k+1)/2
matrices. This model contains several weaknesses. First, the model contains k(k +
1)[k(k + 1) + 1]/2 parameters, which is large even for a small k. For instance, if
k = 3, then the model contains 78 parameters, making it hard to apply in practice.
To overcome this difficulty, Bollerslev et al. [3] further suggest that both A and
B matrices of Eq. (4) are constrained to be diagonal. The second weakness of the
model is that the resulting volatility matrix Σt may not be positive definite.
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BEKK model. A simple BEKK model of Engle and Kroner [5] assumes the form

(5) Σt = C ′C + A′et−1e
′
t−1A + B′Σt−1B

where C, A, and B are k×k matrices but C is upper triangular. An advantage of the
BEKK model is that Σt is positive definite if the diagonal elements of C is positive.
On the other hand, the model contains many parameters that do not represent
directly the impact of et−1 or Σt−1 on the elements of Σt. In other words, it is
hard to interpret the parameters of a BEKK model. Limited experience also shows
that many parameter estimates of the BEKK model in Eq. (5) are statistically
insignificant, implying that the model is overparameterized.

Using the standardization of Eq. (3), one can divide the multivariate volatility
modeling into two steps. The first step is to specify models for elements of the
Dt matrix, and the second step is to model the correlation matrix Rt. Two such
approaches have been proposed in the literature. In both cases, the elements σii,t

are assumed to follow a univariate GARCH model. In other words, σii,t are based
entirely on the i-the return series.

Dynamic correlation model of Tse and Tsui. In [8], the authors propose that (a)
the individual volatility σii,t can assume any univariate GARCH models, and (b)
the correlation matrix Rt of Eq. (3) follows the model

(6) Rt = (1 − λ1 − λ2)R + λ1Ψt−1 + λ2Rt−1

where λ1 and λ2 are non-negative parameters satisfying 0 ≤ λ1+λ2 < 1, R is a k×k
positive definite parameter matrix with Rii = 1 and Ψt−1 is the k × k correlation
matrix of some recent asset returns. For instance, if the most recent m returns are
used to define Ψt−1, then the (i, j)th element of Ψt−1 is given by

ψij,t−1 =
∑m

v=1 ui,t−vuj,t−v√
(
∑m

v=1 u2
i,t−v)(

∑m
v=1 u2

j,t−v)
,

where uit = eit/
√

σii,t. If m > k, then Ψt−1 is positive definite almost surely. This
in turn implies that Rt is positive definite almost surely. We refer to this model as
a DCCT (m) model. In practice, one can use the sample correlation matrix of the
data to estimate R in order to simplify the calculation. Indeed, this is the approach
we shall take in this paper.

From the definition, the use of DCCT (m) model involves two steps. In the first
step, univariate GARCH models are built for each return series. At step 2, the
correlation matrix Rt of Eq. (6) is estimated across all return series via the maxi-
mum likelihood method. An advantage of the DCCT (m) model is that the resulting
correlation matrices are positive definite almost surely. In addition, the model is
parsimonious in parameterization because the evolution of correlation matrices is
governed by two parameters. On the other hand, strong limitation is imposed on
the time evolution of the correlation matrices. In addition, it is hard to interpret
the results of the two-step estimation. For instance, it is not clear what is the joint
distribution of the innovation et of the return series.

Dynamic correlation model of Engle. A similar correlation model is proposed by
Engle [4]. Here the correlation matrix Rt follows the model

(7) Rt = W−1
t QtW

−1
t
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where Qt = [qij,t] is a positive-definite matrix, Wt = diag{√q11,t, . . . ,
√

qkk,t} is a
normalization matrix, and the elements of Qt are given by

Qt = (1 − α1 − α2)Q̄ + α1ut−1u
′
t−1 + α2Qt−1,

where ut is the standardized innovation vector with elements uit = eit/
√

σii,t,
Q̄ is the sample covariance matrix of ut, and α1 and α2 are non-negative scalar
parameters satisfying 0 < α1 +α2 < 1. We refer to this model as the DCCE model.

Compared with the DCCT (m) model, the DCCE model only uses the most recent
standardized innovation to update the time-evolution of the correlation matrix.
Since ut−1u

′
t−1 is singular for k > 1 and is, in general, not a correlation matrix, and

the matrix Qt must be normalized in Eq. (7) to ensure that Rt is indeed a correlation
matrix. Because a single innovation is more variable than the correlation matrix
of m standardized innovations, the correlations of a DCCE model tend to be more
variable than those of a DCCT (m) model.

To better understand the difference between DCCT (m) and DCCE models, con-
sider the correlation ρ12,t of the first two returns in rt. For DCCT (m) model,

ρ12,t = (1 − λ1 − λ2)ρ12 + λ2ρ12,t−1 + λ1

∑m
v=1 u1,t−vu2,t−v√

(
∑m

v=1 u2
1,t−v)(

∑m
v=1 u2

2,t−v)
.

On the other hand, for the DCCE model,

ρ12,t =
α∗q̄12 + α1u1,t−1u2,t−1 + α2q12,t−1√

(α∗q̄11 + α1u2
1,t−1 + α2q11,t−1)(α∗q̄22 + α1u2

2,t−1 + α2q22,t−1)
,

where α∗ = 1 − α1 − α2. The difference is clearly seen.

3. Proposed models

We start with the simple case in which the effects of positive and negative past
returns on the volatility are symmetric. The case of asymmetric effects is given
later.

3.1. Multivariate GARCH models

In this paper, we propose the following model

(8) rt = µt + et, µt = φ0 +
p∑

i=1

φirt−i, et = Σ1/2εt

where p is a non-negative integer and {εt} is a sequence of independent and identi-
cally distributed multivariate Student-t distribution with v degrees of freedom. The
probability density function of εt is

f(ε) =
Γ((v + k)/2)

[π(v − 2)]k/2Γ(v/2)
[1 + (v − 2)−1ε′ε]−(v+k)/2.

The variance of each component of εt is 1. The volatility matrix is standardized as
Eq. (3) with elements of Dt and the correlation matrix Rt satisfying

D2
t = Λ0 + Λ1D

2
t−1 + Λ2G

2
t−1,(9)

Rt = (1 − θ1 − θ2)R̄ + θ1ψt−1 + θ2Rt−1,(10)
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where Gt = diag{e1t, . . . , ekt}, Λi = diag{�11,i, . . . , �kk,i} are diagonal matrices such
that �ii,1 + �ii,2 < 1 and 0 ≤ �ii,j for i = 1, . . . , k and j = 1, 2, R̄ is the sample
correlation matrix, θi are non-negative real numbers satisfying θ1 + θ2 < 1, and
ψt−1 is the sample correlation matrix of the last m innovations as defined in the
DCCT (m) model of Eq. (6). We use m = k + 2 in empirical data analysis.

This model uses univariate GARCH(1,1) models for the conditional variance of
components of rt and a combination of the correlation matrix equations of the
DCCT (m) and DCCE models for the correlation. The order of GARCH models
can be increased if necessary, but we use (1,1) for simplicity. In addition, Λ1 and
Λ2 can be generalized to non-diagonal matrices. However, we shall keep the simple
structure in Eq. (9) and (10) for ease in application and interpretation.

The proposed model differs from the DCCT (m) model in several ways. First,
the proposed model uses a multivariate Student-t distribution for innovation so
that the degrees of freedom are the same for all asset returns. This simplifies the
model interpretation at the expense of decreased flexibility. Second, the proposed
model uses sample correlation matrix R̄ to reduce the number of parameters. Third,
the proposed model uses joint estimation whereas the DCCT (m) model performs
separate estimations for variances and correlations.

3.2. Model with leverage effects

In financial applications, large positive and negative shocks to an asset have different
impacts on the subsequent price movement. In volatility modeling, it is expected
that a large negative shock would lead to increased volatility as a big drop in asset
price is typically associated with bad news which, in turn, means higher risk for
the investment. This phenomenon is referred to as the leverage effect in volatility
modeling. The symmetry of GARCH model in Eq. (9) keeps the model simple, but
fails to address the leverage effect. To overcome this shortcoming, we consider the
modified model

(11) D2
t = Λ0 + Λ1D

2
t−1 + Λ2G

2
t−1 + Λ3L

2
t−1,

where Λi (i = 0, 1, 2) are defined as before, Λ3 is a k× k diagonal matrix with non-
negative diagonal elements, and Lt−1 is also a k × k diagonal matrix with diagonal
elements

Lii,t−1 =
{

ei,t−1 if ei,t−1 < 0,
0 otherwise.

In Eq. (11), we assume that 0 <
∑3

j=1 �ii,j ≤ 1 for i = 1, . . . , k. This is a sufficient
condition for the existence of volatility.

From the definition, a positive shock ei,t−1 affects the volatility via �ii,2e
2
i,t−1. A

negative shock, on the other hand, contributes (�ii,2 + �ii,3)e2
i,t−1 to the volatility.

Checking the significance of �ii,3 enables us to draw inference on the leverage effect.

4. Application

We illustrate the proposed model by considering some daily asset returns. First,
we consider a four-dimensional process consisting of two equity returns and two
exchange rate returns. Second, we consider a 10-dimensional equity returns. In
both examples, we use m = k + 2 to estimate the local correlation matrices ψt−1

in Eq. (10).
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Example 1. In this example, we consider the daily exchange rates between U.S.
Dollar versus European Euro and Japanese Yen and the stock prices of IBM and
Dell from January 1999 to December 2004. The exchange rates are the noon spot
rate obtained from the Federal Reserve Bank of St. Louis and the stock returns are
from the Center for Research in Security Prices (CRSP). We compute the simple
returns of the exchange rates and remove returns for those days when one of the
markets was not open. This results in a four-dimensional return series with 1496
observations. The return vector is rt = (r1t, r2t, r3t, r4t)′ with r1t and r2t being
the returns of Euro and Yen exchange rate, respectively, and r3t and r4t are the
returns of IBM and Dell stock, respectively. All returns are in percentages. Figure 1
shows the time plot of the return series. From the plot, equity returns have higher
variability than the exchange rate returns, and the variability of equity returns
appears to be decreasing in recent years. Table 1 provides some descriptive statistics
of the return series. As expected, the means of the return are essentially zero and
all four series have heavy tails with positive excess kurtosis.

The equity returns have some serial correlations, but the magnitude is small.
If multivariate Ljung-Box statistics are used, we have Q(3) = 59.12 with p-value
0.13 and Q(5) = 106.44 with p-value 0.03. For simplicity, we use the sample mean
as the mean equation and apply the proposed multivariate volatility model to the
mean-corrected data. In estimation, we start with a general model, but add some
equality constraints as some estimates appear to be close to each other. The results
are given in Table 2 along with the value of likelihood function evaluated at the
estimates.

For each estimated multivariate volatility model in Table 2, we compute the
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Fig 1. Time plots of daily return series from January 1999 to December 2004: (a) Dollar-Euro
exchange rate, (b) Dollar-Yen exchange rate, (c) IBM stock, and (d) Dell stock.
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Table 1

Descriptive statistics of daily returns of Example 1. The returns are in percentages, and the
sample period is from January 1999 to December 2004 for 1496 observations

Asset USEU JPUS IBM DELL
Mean 0.0091 −0.0059 0.0066 0.0028
Standard error 0.6469 0.6626 5.4280 10.1954
Skewness 0.0342 −0.1674 −0.0530 −0.0383
Excess kurtosis 2.7090 2.0332 6.2164 3.3054
Box-Ljung Q(12) 12.5 6.4 24.1 24.1

Table 2

Estimation results of multivariate volatility models for Example 1 where Lmax denotes the value
of likelihood function evaluated at the estimates, v is the degrees of freedom of the multivariate

Student-t distribution, and the numbers in parentheses are asymptotic standard errors

Λ0 Λ1 Λ2 (v, θ1, θ2)′

(a) Full model estimation with Lmax = −9175.80
0.0041(0.0033) 0.9701(0.0114) 0.0214(0.0075) 7.8729(0.4693)
0.0088(0.0038) 0.9515(0.0126) 0.0281(0.0084) 0.9808(0.0029)
0.0071(0.0053) 0.9636(0.0092) 0.0326(0.0087) 0.0137(0.0025)
0.0150(0.0136) 0.9531(0.0155) 0.0461(0.0164)

(b) Restricted model with Lmax = −9176.62
0.0066(0.0028) 0.9606(0.0068) 0.0255(0.0068) 7.8772(0.7144)
0.0066(0.0023) 0.0240(0.0059) 0.9809(0.0042)
0.0080(0.0052) 0.0355(0.0068) 0.0137(0.0025)
0.0108(0.0086) 0.0385(0.0073)

(c) Final restricted model with Lmax = −9177.44
0.0067(0.0021) 0.9603(0.0063) 0.0248(0.0048) 7.9180(0.6952)
0.0067(0.0021) 0.0248(0.0048) 0.9809(0.0042)
0.0061(0.0044) 0.0372(0.0061) 0.0137(0.0028)
0.0148(0.0084) 0.0372(0.0061)

(d) Model with leverage effects, Lmax = −9169.04
0.0064(0.0027) 0.9600(0.0065) 0.0254(0.0063) 8.4527(0.7556)
0.0066(0.0023) 0.0236(0.0054) 0.9810(0.0044)
0.0128(0.0055) 0.0241(0.0056) 0.0132(0.0027)
0.0210(0.0099) 0.0286(0.0062)

standardized residuals as
ε̂t = Σ̂−1/2

t et,

where Σ̂1/2
t is the symmetric square-root matrix of the estimated volatility matrix

Σ̂t. We apply the multivariate Ljung-Box statistics to the standardized residuals ε̂t

and its squared process ε̂2t of a fitted model to check model adequacy. For the full
model in Table 2(a), we have Q(10) = 167.79(0.32) and Q(10) = 110.19(1.00) for
ε̂t and ε̂2t , respectively, where the number in parentheses denotes p-value. Clearly,
the model adequately describes the first two moments of the return series. For the
model in Table 2(b), we have Q(10) = 168.59(0.31) and Q(10) = 109.93(1.00). For
the final restricted model in Table 2(c), we obtain Q(10) = 168.50(0.31) and Q(10)
= 111.75(1.00). Again, the restricted models are capable of describing the mean
and volatility of the return series.

From Table 2, we make the following observations. First, using the likelihood
ratio test, we cannot reject the final restricted model compared with the full model.
This results in a very parsimonious model consisting of only 9 parameters for the
time-varying correlations of the four-dimensional return series. Second, for the two
stock return series, the constant terms in Λ0 are not significantly different from
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Fig 2. Time plots of estimated volatility series of four asset returns. The solid line is from the
proposed model and the dashed line is from a rolling estimation with window size 69: (a) Dollar-
Euro exchange rate, (b) Dollar-Yen exchange rate, (c) IBM stock, and (d) Dell stock.

zero and the sum of GARCH parameters is 0.0372+0.9603 = 0.9975, which is very
close to unity. Consequently, the volatility series of the two equity returns exhibit
IGARCH behavior. On the other hand, the volatility series of the two exchange rate
returns appear to have a non-zero constant term and high persistence in GARCH
parameters. Third, to better understand the efficacy of the proposed model, we
compare the results of the final restricted model with those of rolling estimates. The
rolling estimates of covariance matrix are obtained using a moving window of size
69, which is the approximate number of trading days in a quarter. Figure 2 shows
the time plot of estimated volatility. The solid line is the volatility obtained by the
proposed model and the dashed line is for volatility of the rolling estimation. The
overall pattern seems similar, but, as expected, the rolling estimates respond slower
than the proposed model to large innovations. This is shown by the faster rise and
decay of the volatility obtained by the proposed model. Figure 3 shows the time-
varying correlations of the four asset returns. The solid line denotes correlations
obtained by the final restricted model of Table 2 whereas the dashed line is for
rolling estimation. The correlations of the proposed model seem to be smoother.

Table 2(d) gives the results of a fitted integrated GARCH-type with leverage
effects. The leverage effects are statistically significant for equity returns only and
are in the form of an IGARCH model. Specifically, the Λ3 matrix of the correlation
equation in Eq. (11) is

Λ3 = diag{0, 0, (1− 0.96− 0.0241), (1− 0.96− 0.0286)} = diag{0, 0, 0.0159, 0.0114}.

Although the magnitudes of the leverage parameters are small, but they are statis-
tically significant. This is shown by the likelihood ratio test. Specifically, compared
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Fig 3. Time plots of time-varying correlations between the percentage simple returns of four
assets from January 1999 to December 2004. The solid line is from the proposed model whereas
the dashed line is from a rolling estimation with window size 69.
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the fitted models in Table 2(b) and (d), the likelihood ratio statistic is 15.16, which
has a p-value 0.0005 based on the chi-squared distribution with 2 degrees of free-
dom.

Example 2. In this example, we consider daily simple returns, in percentages,
of the S&P 500 index and nine individual stocks from January 1990 to December
2004 for 3784 observations. Thus, we have a 10-dimensional return series. The
ten assets are given in Table 3 along with some descriptive statistics. All asset
returns have positive excess kurtosis, indicating heavy tails. Except for the stock of
General Electrics, return minimums exceed the maximums in modulus, suggesting
asymmetry in price changes due to good and bad news.

Sincere there are some minor serial and cross correlations in the 10-dimensional
returns, we fit a vector autoregressive model of order 3, i.e. VAR(3), to the data
to remove the dynamic dependence and employ the resulting residual series in
volatility modeling. See Eq. (8).

We have applied the proposed volatility model in Eqs. (9)- (10) to the residual se-
ries of the VAR(3) model. But our subsequently analysis shows that the model with
leverage effects in Eq. (11) is preferred based on the likelihood ratio test. Therefore,
for simplicity in presentation, we shall only report the results with leverage effects.

Employing the volatility model in Eq. (11) with the correlations in Eq. (10), we
found that for the returns of IBM, DELL, GE, and GM stocks the leverage effects
follow integrated GARCH models. Consequently, for these four stock returns the
leverage parameters are given by

Λii,3 = 1 − Λii,1 − Λii,2,

where Λii,j is the ith diagonal element of the matrix Λj , j = 1, 2, 3. Table 4 shows
the parameter estimates of the 10-dimensional volatility model.

For model checking, we use a bootstrap method to generate the critical values of
multivariate Ljung-Box statistics for the standardized residuals and their squared
series. Specifically, we generate 10,000 realizations each with 3781 observations from
the standardized residuals of the fitted model. The bootstrap samples are drawn
with replacement. For each realization, we compute the Ljung-Box statistics Q(5),
Q(10), and Q(15) of the series and its squared series. Table 5 gives some critical
values of the Ljung-Box statistics. For the fitted model, we have Q(10) = 836.12
and Q(15) = 1368.71 for the standardized residuals and Q(10) = 1424.64 and
Q(15) = 1923.75 for the squared series of standardized residuals. Compared with
the critical values in Table 5, the Ljung-Box statistics are not significant at the
1% level. Thus, the fitted model is adequate in modeling the volatility of the 10-
dimensional return series. We also applied the AIC criterion to the squared series
of standardized residuals. The criterion selected a VAR(0) model, confirming that
the fitted multivariate volatility model is adequate.

From the fitted model, we make the following observations. First, except for
two marginal cases, all estimates of leverage parameters are statistically significant
at the 5% level based on their asymptotic standard errors. The two marginally
significant leverage parameters are for BA amd PFE stocks and their t-ratios are
1.65 and 1.92, respectively. Thus, as expected, the leverage effects are positive and
most of them are significant. Second, all parameters of the volatility equation are
significant. Thus, the model does not contain unnecessary parameters. Third, the
model contains 30 parameters. This is very parsimonious for a 10-dimensional return
series. Fourth, the correlations evolve slowly with high persistence parameter 0.9864.
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Table 3

Descriptive statistics of asset returns used in Example 2. Except for the S&P index, tick symbol
is used to denote the company. Returns are in percentages

Asset Mean St.Error Skewness Ex.Kurt. Minimum Maximum
S&P 0.038 1.03 −0.018 3.58 −6.87 5.73
IBM 0.066 2.03 0.294 6.32 −15.54 13.16
INTC 0.122 2.82 −0.122 4.17 −22.02 20.12
DELL 0.236 3.49 −0.012 3.45 −25.44 20.76
GE 0.074 1.70 0.176 3.80 −10.67 12.46
BA 0.052 1.98 −0.282 6.08 −17.62 11.63
GM 0.039 2.01 0.111 1.98 −13.53 10.34
JNJ 0.076 1.59 −0.139 4.32 −15.85 8.21
MRK 0.051 1.80 −0.861 14.91 −26.78 9.60
PFE 0.084 1.91 −0.068 1.94 −11.15 9.71

Table 4

Parameter estimates of the proposed volatility model with leverage effects for the 10 asset
returns of Example 2. For leverage effects, those estimates without standard errors denote

IGARCH constraints

Λ1 λI
Estimate 0.9658
Std.Err 0.0024

Λ2 Diagonal matrix with elements
Estimate .0154 .0174 .0168 .0298 .0191 .0206 .0187 .0110 .0128 .0192
Std.Err .0031 .0026 .0038 .0030 .0029 .0041 .0037 .0038 .0028 .0037

Λ0 Diagonal matrix with elements
Estimate .0077 .0211 .0763 .0170 .0185 .0279 .0342 .0281 .0369 .0309
Std.Err .0010 .0042 .0121 .0067 .0031 .0054 .0074 .0048 .0061 .0058

Λ3 Diagonal matrix with elements
Estimate .0178 .0168 .0126 .0044 .0152 .0107 .0155 .0210 .0143 .0115
Std.Err .0049 .0059 .0065 .0064 .0059 .0060

Parameter v θ2 θ1

Estimate 9.54 .9864 .0070
Std.Err .417 .0016 .0006

Table 5

Critical values of Ljung-Box statistics for 10-dimensional standardized residual series.
The values are obtained by a bootstrap method with 10,000 iterations. The sample size

of the series is 3781

Standardized residuals Squared standardized residuals

Statistics 1% 5% 10% 1% 5% 10%
Q(5) 576.92 553.68 541.33 915.89 696.82 617.74
Q(10) 1109.05 1075.25 1057.94 1150.31 1281.03 1170.12
Q(15) 1633.31 1591.61 1571.17 2125.65 1837.28 1713.50

Fifth, the estimate of the degrees of freedom for multivariate Student-t innovation
is 9.54, confirming that the returns have heavy tails.

Remark. In this paper, we use a MATLAB program to estimate the proposed
multivariate volatility models. The negative log likelihood function is minimized
with inequality parameter constraints using the function fmincon. Limited experi-
ence shows that the results are not sensitive to the initial values, but initial values
that are far away from the final estimates do require many more iterations. The
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estimation, however, can become difficult if some parameters are approching the
boundary of the parameter space. For instance, if there is no leverage effect, then
the hessian matrix can be unstable when the leverage parameter is included in the
estimation.

5. Extensions and some alternative approaches

In this paper, we consider a simple approach to model multivariate volatilities of
asset returns. Unlike other methods available in the literature, the proposed ap-
proach estimates the conditional variances and correlations jointly and the result-
ing volatility matrices are positive definite. The proposed model can handle the
leverage effects and is parsimonious. We demonstrated the efficacy of the proposed
model by analyzing a 4-dimensional and a 10-dimensional asset return series. The
results are encouraging. We also used a bootstrap method to obtain finite-sample
critical values for the multivariate Ljung-Box statistics for testing serial and cross
correlations of a vector series.

There are possible extensions of the proposed model. For example, Eq. (10) re-
quires that all correlations have the same persistence parameter θ2. This restriction
can be relaxed by letting θ1 and θ2 be diagonal matrices of positive real numbers.
The model would become

Rt = (I − θ2
1 − θ2

2)R̄ + θ1ψt−1θ1 + θ2Rt−1θ2.

Under this model, the ith asset return contributes θii,2 to the persistence of corre-
lations. In addition, one can have equality constraints among diagonal elements of
each θi matrix to keep the model parsimonious.

Some alternative approaches have been considered in the literature to overcome
the curse of dimensionality in multivariate volatility modeling. Palandri [7] uses
a sequential Cholesky decomposition to build a multivariate volatility of 69 stock
returns. The independent component models have also been used to simplify the
modeling procedure, e.g., see [6].
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