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Estimation of AR and ARMA models by

stochastic complexity
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Tampere University of Technology, and Technical University of Tampere and Helsinki, and
Helsinki Institute for Information Technology

Abstract: In this paper the stochastic complexity criterion is applied to es-
timation of the order in AR and ARMA models. The power of the criterion
for short strings is illustrated by simulations. It requires an integral of the
square root of Fisher information, which is done by Monte Carlo technique.
The stochastic complexity, which is the negative logarithm of the Normalized
Maximum Likelihood universal density function, is given. Also, exact asymp-
totic formulas for the Fisher information matrix are derived.

1. Introduction

The negative logarithm of the NML (Normalized Maximum Likelihood) universal
model, called the stochastic complexity, provides a powerful criterion for estimation
of the model structure such as the optimal collection of the regressor variables in
the linear quadratic regression problem, [19], especially for small amounts of data.
It involves the integral of the square root of the Fisher information, which is easy
to calculate when the regressor matrix does not depend on the parameters. While
modeling gaussian time series with AR models are instances of linear quadratic
regression problems their order estimation poses trouble with the stochastic com-
plexity for the reason that the regressor matrix is determined by the parameters,
and the Fisher information is not constant. The same problem of course is also
with the ARMA models, which have the additional difficulty of calculation of the
maximum likelihood parameters.

In this paper we resort to Monte Carlo integration to overcome the problem
posed by the nonconstant Fisher information and study by simulations the efficiency
of the resulting order estimation criterion. Although exact formulas exist for the
Fisher information matrix they are quite cumbersome to evaluate, and we consider
asymptotic simplifications. This may run against the intent of getting a criterion
for small amounts of data, but the asymptotic estimates appear to be good enough,
and the resulting criterion for the short data sequences created is still superior
among the competing criteria such as the BIC [20], which is equivalent with a
crude asymptotic version of the MDL criterion [15], and a recently suggested one,
KICC [21], or bias corrected Kullback-Leibler criterion.
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We describe below the NML model for AR and ARMA class of models, and
discuss its optimality properties. We also derive in the Appendix the asymptotic
form of the Fisher information matrix for the general ARMA class of models.

2. Normalized maximum likelihood model

We consider the ARMA model:

yt +
n∑

i=1

aiyt−i = et +
m∑

j=1

bjet−j ,(1)

where et is zero-mean white Gaussian noise of variance σ2. The integers m, n are
nonnegative, and all coefficients ai and bj are real-valued. We can equivalently write

yt =
B(q)
A(q)

et, where B(q) = 1 + b1q
−1 + · · · + bmq−m, A(q) = 1 + a1q

−1 + · · · +

anq−n, and q−1 is the unit delay operator. We will use the notation ARMA(n,m)
for the class of the normal density functions {f(yN ; θ)} defined by such processes,
where θ = (a1, . . . , an, b1, . . . , bm, σ2), the parameters ranging over a subset of �k,
where k = n + m + 1. Let θ̂(yN ) denote the maximum likelihood estimates of the
parameters θ.

In order to define the range of the parameters properly we need to consider
another equivalent parametrization in terms of the roots of the two polynomials

n∏
i=1

(1 − giq
−1)yt =

m∏
j=1

(1 − hjq
−1)et,(2)

together with the noise variance σ2. We denote by gi the zeros of A(q) and by hj

the zeros of B(q). There are no repeated poles or zeros nor pole-zero cancellations.
We specify in the Appendix exactly the further restrictions on the type of the zeros
but for now let the same symbol θ denote the new parameters ranging over Θ ⊂ �k.

Consider the NML density function, [3],[18],

f̂(yN ; n, m) =
f(yN ; θ̂(yN ))

Ck,n
,

where

Ck,n =
∫

xN :θ̂(xN )∈Ω

f(xN ; θ̂(xN ))dxN

=
∫

θ̂∈Ω

g(θ̂; θ̂)dθ̂,

and g(θ̂; θ) denotes the density function on the statistic θ̂ induced by f(yN ; θ). In the
equation above, we use the identity f(xN ; θ̂(xN ), θ) = f(xN |θ̂(xN ); θ)g(θ̂(xN ); θ),
that is integrated first over xN at the point θ̂(xN ) = θ̂ = θ kept fixed, which gives
unity, and then over θ̂.

Under the main assumption that the convergence in distribution by the Cen-
tral Limit Theorem applies to the ML estimates, the stochastic complexity, L(yN ;
n, m) = ln 1/f̂(yN ; n, m), is given by

L(yN ; n, m) = − ln f(yN ; θ̂(yN )) +
k

2
ln

N

2π
+ ln

∫
Θ

|J(θ)|1/2dθ + o(1),(3)
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where Θ denotes the parameter space, and J(θ) is the Fisher information matrix
[18]. The rate of convergence o(1) is determined by the convergence of the ML
estimates to the normal density function.

To get a criterion for the structure in general we ought to add the code length
needed to encode the structure, but here we take the simple case where the structure
consists of a few first coefficients of the ARMA model, whose code length is much
shorter than the stochastic complexity and ignored. (If k is not small, we can use
the estimate L(k) = ln k + 2 ln ln k.)

The NML model has the following two optimality properties, which justify its
name:

(1) It is the unique solution f̂ = ĝ = q̂ to the following maxmin problem

max
g

min
q

Eg log
f(yN ; θ̂(yN ))

q(yN )
,

where g and q range over any sets that include f̂ . Notice that the logarithm of the
ratio is the difference between the ideal code length log 1/q and the unattainable
lower bound for any code length in the ARMA class.

(2) If the data generating distribution g is restricted to the ARMA class, the
mean of the stochastic complexity with respect to the model θ cannot be beaten
by any model what so ever, except for θ in a set whose volume goes to zero as N
grows.

3. Linear regression with constant regressor matrix

Before discussing the AR models we illustrate the stochastic complexity criterion
for linear quadratic regression with constant Fisher information by comparing it
with the BIC and the KICC criteria in a simple polynomial fitting problem for
small amounts of data.

For linear regression with a constant regressor matrix X = {xit} the stochastic
complexity criterion takes the form, [19],

min
γ∈Γ

{(N − k) ln τ̂ + k ln R̂ + (N − k − 1) ln
1

n − k
− (k − 1) ln k}.

The index γ = i1, . . . , ik, consists of the indices of the rows x̄i of the k×n regressor
matrix included in the linear combination

yt =
∑
i∈γ

βix̄it + et, t = 1, . . . , N,

τ̂ is the minimized squared error per symbol, and R̂ = 1
n β̂�XγX�

γ β̂, where Xγ is
the k × n submatrix of X consisting of the retained rows.

Notice that there are no hyper parameters defining the range of the parameters
βi and τ . They have been renormalized away.

Example 1. We discuss an example of polynomial fitting considered in [21] to in-
vestigate the performances of a model selection criterion called KICC. It is obtained
by an application of a bias correction to KIC (Kullback Information Criterion), [6],
and it is recommended to be used in linear regression problems when the sample
size is small. The underlying signal is generated by a third-order polynomial model
ỹ = x3 − 0.5x2 − 5x − 1.5, where the points x1, . . . , xN are chosen to be uniformly
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Table 1

Order estimation of the polynomial model in Example 1. The true order is k = 3. For each
criterion, the probability of correct estimation of the order is computed from 105 runs. Also

shown is the probability of overestimation of the polynomial order (4 ≤ k̂ ≤ 10). The probability

of underestimation (0 ≤ k̂ ≤ 2) is almost zero for all analyzed criteria. The best result for each
sample size N is represented with bold font.

Order Criterion Sample size(N)
25 30 40 50 60 70 80 90 100

k̂ = k NML 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98
BIC 0.79 0.84 0.89 0.91 0.93 0.94 0.95 0.95 0.95
KICC 0.93 0.92 0.91 0.91 0.90 0.90 0.90 0.90 0.89

k̂ > k NML 0.06 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02
BIC 0.21 0.16 0.11 0.09 0.07 0.06 0.05 0.05 0.05
KICC 0.07 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.11

distributed in [−3, 3]. The measurements y1, . . . , yN are obtained by addition to ỹi

zero-mean white Gaussian noise, whose variance is selected such that the signal-to-
noise ratio is SNR=10 dB. For each number of data points N , between 25 and 100,
105 different realizations are produced, to which polynomials of degree 0, 1, . . . , 10
are fitted with the least squares method.

The estimates of the order of the polynomial obtained with the NML, BIC and
KICC criteria are in Table 1. We have restricted our investigations only to these
three criteria, because in [21] KICC was shown to outperform other six estimation
criteria for N = 25 and N = 30. We see in the table that NML criterion performs
better than BIC and KICC in all the cases studied. Observe that the number of
correct estimations produced by KICC generally declines when more measurements
are available, while the BIC and the NML results improve with increasing N . For
example, KICC compares favorable with BIC for N = 25, but the situation is
reversed for N = 100.

4. AR models

The likelihood density function for an AR model is given by

f(yN ; θ) =
1

(2πσ2)N/2
e−

1
2σ2

∑N

t=1
(yt+a1yt−1+···+anyt−n)2 ,

where we put yt = 0 for t < 1. The maximized likelihood is
1

(2πeσ̂2)N/2
, where σ̂2

is the minimized sum per symbol σ̂2 =
1
N

N∑
t=1

(yt + â1yt−1 + · · · + ânyt−n)2. The

NML criterion (3) has now the expression

L(yN ; n) =
N

2
ln(2πeσ̂2) +

n + 1
2

ln
N

2π
+ ln

∫
Θ

|J(θ)|1/2dθ + o(1).(4)

The Fisher information matrix is given by
[
Rzz 0
0 1/(2σ4)

]
, where

Rzz =




r0 r1 · · · rn−1

r1 r0 · · · rn−2

...
...

. . .
...

rn−1 rn−2 · · · r0


 ,
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and ri = E[ztzt−i] denote the covariances of the process zt = yt/σ [9, 10]. Applying
the formula in [12] for the parameters transformation and the well-known Vieta’s
formulae, it is easy to calculate the Fisher information matrix for the parameter
set given by the model poles g = (g1, g2, . . . , gn) and the noise variance σ2.

Remark in (4) that the integral term makes the most important difference be-
tween the expression for the stochastic complexity and the BIC criterion. The inte-
gral has a lot of structural information which BIC lacks, and it generally increases
with n, because the determinant increases.

We note that the contribution of the σ2 to the integral is decoupled by the
contribution of the other parameters. Consequently we ignore for all the AR models
the contribution of σ2 because we do not have any “natural” finite limits for the
range of σ2. The constrain to have a stable model restricts the domain of the
magnitudes of the poles to be a hypercube.

Apart from the AR(1) case for which the integral in (3) can be found in a closed
form,

∫ 1

−1
1√

1−g2
dg = π, the evaluation of the integral will be done by the Monte

Carlo technique. To be more precise we use Sobol’ sequences [14] to perform the
Monte Carlo integration for AR(n) models with 1 ≤ n ≤ 6. For these values all
poles are complex if n is even, and exactly one pole is real-valued if n is odd, which
can be taken advantage of in calculating the form of the information matrix.

Our Matlab implementation is based on the algorithm described on p. 312 in
[14] and the code publicly available at [1]. We perform the Monte Carlo integration
for various AR models with M integration points. But first, to test the accuracy
we use the known result for the AR(1) model. Table 2 shows the fractional error
obtained when M = 105 and M = 106. For models with larger order, we report
the value ∆ = |Î107 − Î106 |/Î107 , where ÎM denotes the Monte Carlo evaluation of∫
Θ
|J(g)|1/2dθ calculated from M integration points. We show in Table 2 the results

on ∆ since it is known for Monte Carlo integration with Sobol’ sequences that the
fractional error decreases with the number of samples as (lnM)n/M [14].

Example 2. We evaluate the capabilities of NML, BIC and KICC criteria for es-

Table 2

Monte Carlo results for the integral term in the stochastic complexity formula (4) for
autoregressive models. For the AR(1) model the fractional error is reported.

M ÎM Fractional error or ∆
AR(1)
105 3.131956 0.003067
106 3.138952 0.000840

AR(2) - pure complex poles
106 42.06 -
107 47.41 0.11

AR(3) - one real-valued pole
106 122.67 -
107 137.73 0.11

AR(4) - pure complex poles
106 1069.66 -
107 1358.84 0.21

AR(5) - one real-valued pole
106 3733.59 -
107 8307.55 0.55

AR(6) - pure complex poles
106 23164.39 -
107 35981.48 0.36
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timating the order of AR models. The NML criterion is calculated with formula
(4), where the value of the integral term for n > 1 is the one from Table 2 com-
puted with M = 107 integration points. We extend our experimental framework
by considering another information theoretic criterion, namely the predictive least
squares criterion PLS, [16].

Figure 1 outlines the simulation procedure used in Example 2, and the estimation
results are shown in Tables 3-4.

Note that the evaluation of the various criteria for order estimation requires the

For the model order n ∈ {1, 2, 3},
For each order estimation criterion C and for each sample size N ,

N ∈ {25, 50, 100, 200}, initialize with zero two counters:
N c

N,C for correct estimations and N o
N,C for over-estimations.

Repeat the following steps 1000 times:

Generate independently the entries of Pµ as outcomes of U [(0.8, 1)],
and the entries of Pφ as outcomes of U [(0, π)].
If n is odd, generate the unique entry of Pρ

according to U
[
(−1,−0.8)

⋃
(0.8, 1)

]
.

Repeat the following steps 1000 times:

Simulate a time series with 300 entries for the AR(n) process
whose poles are given by Pµ, Pφ, Pρ.
Use null initial conditions and σ2 = 1.
Discard the first 100 entries of the time series and
dub z the vector formed with the rest of 200 measurements.

For each sample size N ∈ {25, 50, 100, 200},
Choose yN = [z1, . . . , zN ]�. Apply each criterion C
to estimate the model order n̂N,C from yN data,
under the hypothesis n̂N,C ∈ {1, . . . , 6}.
If n̂N,C = n, then increment N c

N,C .

If n̂N,C > n, then increment N o
N,C .

End
End

End
Calculate the probability of correct estimation p̂c

N,C = N c
N,C/106,

and the probability of over-estimation p̂o
N,C = N o

N,C/106 for the model order.

End

Fig 1. The simulation procedure applied in Example 2. The notation U [·] is used for the uniform
distribution.

Table 3

Example 2 - the probability of correct estimation of the AR order. The best result for each
sample size N is represented with bold font.

AR model order Criterion Sample size (N)
25 50 100 200

n = 1 NML 0.99 0.99 1.00 1.00
BIC 0.93 0.95 0.97 0.98
KICC 0.95 0.93 0.91 0.90
PLS 0.89 0.92 0.95 0.97

n = 2 NML 0.72 0.85 0.87 0.88
BIC 0.79 0.85 0.87 0.87
KICC 0.82 0.83 0.80 0.78
PLS 0.49 0.59 0.66 0.71

NML 0.49 0.74 0.83 0.84
n = 3 BIC 0.52 0.71 0.78 0.79

KICC 0.51 0.71 0.73 0.69
PLS 0.26 0.39 0.47 0.53
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Table 4

Example 2 - the probability to over-estimation of the order of AR models. The smallest
overestimation probability for each sample size N is represented with bold font.

AR model order Criterion Sample size (N)
25 50 100 200

n = 1 NML 0.01 0.01 0.00 0.00
BIC 0.07 0.05 0.03 0.02
KICC 0.05 0.07 0.09 0.10
PLS 0.11 0.08 0.05 0.03

n = 2 NML 0.07 0.09 0.11 0.12
BIC 0.10 0.11 0.12 0.13
KICC 0.06 0.14 0.20 0.22
PLS 0.20 0.19 0.17 0.15

n = 3 NML 0.01 0.03 0.06 0.12
BIC 0.07 0.09 0.12 0.18
KICC 0.03 0.10 0.20 0.29
PLS 0.21 0.22 0.23 0.23

estimate of noise variance for each order between one and six. Moreover, for the
PLS criterion the computation of the prediction errors must be performed for each
order and for each sample point. To reduce the computational burden, we resort to
the fast implementation of the prewindowed estimation method based on predictive
lattice filters [8], [22].

Observe in Table 3 that the NML criterion compares favorably with all the
other criteria when the sample size is at least 50. For the smallest amount of data
the asymptotic calculation of the Fisher information does not seem to be accurate
enough. In most of the cases BIC is ranked the second after the NML, and the results
of KICC do not improve when the sample size N is increased. For all criteria the
performances decline for the larger values of the model order, which is clear because
there is more to learn. Notice the moderate performances of the PLS criterion. We
mention that another comparative study [7] also reports the moderate capabilities
of PLS on estimating the order of AR models. This is to be expected since the
PLS criterion is based on the estimates of the parameters which are shaky for small
amounts of data.

5. ARMA models

The density function for ARMA models, (1), depends on how the initial values of
y are related to the inputs e. A simple formula results if we put yi = ei = 0 for
i ≤ 0. Then the linear spaces spanned by yt and et are the same. Let ŷt+1|t be the
orthogonal projection of yt+1 on the space spanned by yt. We have the recursion

(5) ŷt+1|t =
m∑

i=1

bi(yt−i+1 − ŷt−i+1|t−i) −
n∑

i=1

aiyt−i+1,

where ŷ1|0 = 0. With more general initial conditions the coefficients bi in (5) will
depend on t; see for instance [17]. The likelihood function of the model is then

f(yN ; θ, σ2) =
1

(2πσ2)N/2
e−

1
2σ2

∑N

t=1
(yt−ŷt|t−1)

2

.(6)
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Table 5

Results of model selection for the ARMA models in Example 3. The counts indicate for 1000
runs the number of times the structure of the model was correctly estimated by each criterion,
from the set {ARMA(n, m) : n, m ≥ 1, n + m ≤ 6}. The best result for each sample size N is

represented with bold font.

ARMA model Criterion Sample size (N)
25 50 100 200 400

n = 1, m = 1 NML 700 812 917 962 989
a1 = −0.5 BIC 638 776 894 957 983
b1 = 0.8 KICC 717 740 758 745 756

n = 2, m = 1 NML 626 821 960 991 994
a1 = 0.64, a2 = 0.7 BIC 532 740 898 961 978
b1 = 0.8 KICC 586 727 810 846 849

n = 1, m = 1 NML 851 887 918 931 961
a1 = 0.3 BIC 766 804 856 903 942
b1 = 0.5 KICC 860 764 654 614 577

The maximized likelihood is
1

(2πeσ̂2)N/2
, where σ̂2 = min

a1,...,an,b1,...,bm

1
N

N∑
t=1

(yt −

ŷt|t−1)2. The NML criterion (3) is then given by

(7) L(yN ; n, m) =
N

2
ln(2πeσ̂2) +

n + m + 1
2

ln
N

2π
+ ln

∫
Θ

|J(θ)|1/2dθ + o(1),

In Appendix we elaborate on the computation of the integral term for the NML
criterion, and the results are applied to the selection for ARMA models in the
following example.

Example 3. We calculate the structure of ARMA models for data generated by
three different processes, which also were used in [11]. For each model, the true
structure and the coefficients are given in Table 5, where we show the estimation
results for 1000 runs. In all experiments we have chosen the variance of the zero-
mean white Gaussian noise to be σ2 = 1. We mention that, similarly with the
experiments on the autoregressive models each data set yN was obtained after
discarding the first 100 generated measurements. This is to eliminate the effect
of the initial conditions. There exist different methods for estimation of ARMA
models. We selected the one implemented in Matlab as armax function by Ljung,
which is well described in his book [13].

Appendix: The asymptotic Fisher information matrix

We focus on the computation of the integral term in equation (7). The model is
assumed to be stable and minimum phase, which means that in (2) the roots for
both B(q) and A(q) are inside the open unit disc. Assume that n1 zeros of A(q)
and m1 zeros of B(q) are real-valued. Then we have the inequalities 0 ≤ n1 ≤ n
and 0 ≤ m1 ≤ m. Because all coefficients of A(q) and B(q) are real-valued, the
pure complex poles and zeros occur in complex conjugate pairs, and consequently
the differences n − n1 and m − m1 are both even integers. For the pure complex
poles and zeros we apply the parametrization in [5]:

g�+1 = g∗� = |g�| exp(−iφg�
), φg�

∈ (0, π), � ∈ {n1 + 1, n1 + 3, . . . , n − 1},
h�+1 = h∗

� = |h�| exp(−iφh�
), φh�

∈ (0, π), � ∈ {m1 + 1, m1 + 3, . . . , m − 1},
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where the symbol ∗ denotes the complex conjugate. The entries of the parameter
vector θ are given by:

θ = (g1, . . . , gn1 ,

|gn1+1|, φgn1+1 , . . . , |gn−1|, φgn−1 ,

h1, . . . , hm1 ,

|hm1+1|, φhm1+1 , . . . , |hm−1|, φhm−1 ,

σ2).

For the sake of clarity we define the subsets of indices for the θ parameters:

Pρ = {1, 2, . . . , n1}
Pµ = {n1 + 1, n1 + 3, . . . , n − 1}
Pφ = {n1 + 2, n1 + 4, . . . n}
P = Pρ

⋃
Pµ

⋃
Pφ

Zρ = {n + 1, n + 2, . . . n + m1}
Zµ = {n + m1 + 1, n + m1 + 3, . . . , n + m − 1}
Zφ = {n + m1 + 2, n + m1 + 4, . . . , n + m}
Z = Zρ

⋃
Zµ

⋃
Zφ

Based on (6) we use the following asymptotic expression for the log-likelihood func-
tion of the observations y1, . . . , yN , [2], [9]:

L = − 1
2σ2

N∑
t=1

e2
t −

N

2
lnσ2 + constant.

For all u, v ∈ {1, . . . , m + n + 1}, the (u, v) entry of the Fisher information matrix

is given by the formula [18]: Ju,v = − lim
N→∞

1
N

E[
∂2L

∂θu∂θv
]. Applying the results in

[2] and [9], we obtain in a straightforward manner:

Jn+m+1,n+m+1 = 1/(2σ4),
Ju,n+m+1 = Jn+m+1,v = 0 ∀u, v ∈ {1, . . . , n + m}.

For the following calculations we use the identity Ju,v = lim
N→∞

1
N

E[
∂L
∂θu

∂L
∂θv

]. Con-

sider first the case u, v ∈ Pρ. Simple calculations lead to

∂et

∂θu
= − q−1

1 − θuq−1
et = −

∞∑
p=1

θp−1
u q−pet,

and we obtain readily:

Ju,v =
1

Nσ4
E

[(
N∑

t=1

et

∞∑
p=1

θp−1
u et−p

) (
N∑

s=1

es

∞∑
r=1

θr−1
v es−r

)]

=
1

Nσ4

N∑
t=1

∞∑
p=1

(θuθv)p−1E
[
e2
t e

2
t−p

]
(8)

=
1

1 − θuθv
.
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We conclude for u, v ∈ Pρ

⋃
Zρ that Ju,v =

SuSv

1 − θuθv
, where

Su =
{
−1, u ∈ P
1, u ∈ Z

Formula (8) was deduced in [4] for the case when all the poles and the zeros of the
ARMA(n,m) model are real-valued. We evaluate next the entry (u, v) of the Fisher
information matrix for u ∈ Pρ

⋃
Zρ and v ∈ Pµ

⋃
Pφ

⋃
Zµ

⋃
Zφ. It is not difficult

to prove that

∂es

∂θv
=

∞∑
r=1

dv,res−r ∀s ∈ {1, . . . , N},

where the coefficients dv,r are real-valued, [5]. Therefore

Ju,v =
Su

Nσ4
E

[(
N∑

t=1

et

∞∑
p=1

θp−1
u et−p

)(
N∑

s=1

es

∞∑
r=1

dv,res−r

)]

=
Su

Nσ4

N∑
t=1

∞∑
p=1

θp−1
u dv,pE

[
e2
t e

2
t−p

]

= Su

∞∑
p=1

θp−1
u dv,p.

The following closed form expressions of dv,p are given in [5] for v ∈ Pµ

⋃
Zµ:

dv,p =

{
2Sv cos θv+1, p = 1

2Sv
θp

v sin(pθv+1) cos θv+1−θp−1
v sin((p−1)θv+1)θv

θv sin θv+1
, p ≥ 2

The equations above lead to

Ju,v = 2
SuSv

θuθv

cos θv+1

sin θv+1

∞∑
p=1

(θuθv)p sin(pθv+1)

−2
SuSv

sin θv+1

∞∑
p=1

(θuθv)p sin(pθv+1)

= 2SuSv
cos θv+1 − θuθv

1 − 2θuθv cos θv+1 + θ2
uθ2

v

,

for u ∈ Pρ and v ∈ Pµ

⋃
Zµ. Similarly for v ∈ Pφ

⋃
Zφ and p ≥ 1, we have, [5],

dv,p = −2Svθp
v−1 sin(pθv),

and it is easy to prove that

Ju,v = −2SuSv
θv−1 sin θv

1 − 2θuθv−1 cos θv + θ2
uθ2

v−1

.

When u, v ∈ Pµ

⋃
Zµ

⋃
Pφ

⋃
Zφ, we can apply the formulas given in [5] for the

computation of Ju,v in case all the poles and the zeros are purely complex.
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Analyzing the sign of the product SuSv, we find that the matrix J(θ) can be
re-written more compactly as J(θ) =

[
G −C

−C� H

]
, where the size of the block ma-

trix C is n × m. The identity
∣∣∣ G −C

−C� H

∣∣∣ =
∣∣ G C
C� H

∣∣ leads to the conclusion that∫
Θ
|J(θ)|1/2dθ has the same value for the models ARMA(n,m), ARMA(n+m,0),

ARMA(0,n+m). A similar conclusion was drawn in [4] for the particular case when
all the poles and the zeros are real-valued.
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