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A new concentration result for regularized

risk minimizers

Ingo Steinwart,1 Don Hush1 and Clint Scovel1

Los Alamos National Laboratory

Abstract: We establish a new concentration result for regularized risk mini-
mizers which is similar to an oracle inequality. Applying this inequality to reg-
ularized least squares minimizers like least squares support vector machines,
we show that these algorithms learn with (almost) the optimal rate in some
specific situations. In addition, for regression our results suggest that using the
loss function Lα(y, t) = |y − t|α with α near 1 may often be preferable to the
usual choice of α = 2.

1. Introduction

The theoretical understanding of support vector machines (SVMs) and related
kernel-based methods has been substantially improved in recent years. Based on
Talagrand’s concentration inequality and local Rademacher averages it has recently
been shown that SVMs for classification can learn with rates up to 1

n under some-
what realistic assumptions on the data-generating distribution (see [12] and the
related work [3]). However, the currently available technique, namely the so-called
“shrinking technique” in [12], for establishing such rates requires choosing the en-
tire regularization sequence a-priori. Unfortunately, the optimal regularization se-
quences usually depend on some features of the data-generating distribution typ-
ically unknown in practice, and consequently the results derived by the shrinking
technique have some serious drawbacks.

In this work we replace the shrinking technique by a localization argument similar
to the localization argument used in conjunction with local Rademacher averages.
The key observation for this new localization argument is that regularized risk
minimizers control the size of the norm in the regularization term by their (excess)
risk in a non-trivial manner (see Lemma 4.1 for details). As a consequence of this
observation, we can not only localize with respect to small variances but also with
respect to small maximum norms.

Using the above (double) localization we obtain oracle-type inequalities for a
large class of regularized risk minimizers including support vector machines, and
regularization networks. For the former we can easily reproduce rates established
in [12, 13], while for the latter we show some minmax rates in specific situations
and provide results indicating that using the loss function Lα(y, t) = |y − t|α with
α near 1 to estimate the regression function may be more robust to both outliers
and the choice of regularization parameter than the usual choice α = 2.

2. An oracle inequality for regularized risk minimizers

Throughout this work we assume that X is compact metric space, Y ⊂ [−1, 1] is
compact, P is a Borel probability measure on X×Y , and H is a RKHS of continuous
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functions over X with closed unit ball BH . It is well-known that H can then be
continuously embedded into the space of continuous functions C(X) equipped with
the usual maximum-norm ‖.‖∞. In order to avoid constants we always assume that
this embedding has norm 1, i.e. ‖.‖∞ ≤ ‖.‖H .

Furthermore, L : Y × R → [0,∞) always denotes a continuous function which
is convex in the second variable. In the following we are particularly interested in
functions L that satisfy the growth assumptions introduced in [6]:

(1) sup
y∈Y

L(y, t) ≤ 1 + |t|α and sup
y∈Y

∣∣L|Y ×[−t,t](y, .)
∣∣
1
≤ cL tα−1

for some constants α ∈ [1, 2], cL > 0, and all t ∈ R, where |h|1 denotes the Lip-
schitz constant of a function h. The functions L will serve as loss functions and
consequently let us recall the associated L-risk

RL,P (f) = E(x,y)∼P L(y, f(x)),

where f : X → R is a measurable function. Note that (1) immediately gives
RL,P (0) ≤ 1. Furthermore, the minimal L-risk is denoted by R∗

L,P , i.e.

R∗
L,P = inf{RL,P (f) | f : X → R measurable},

and a function attaining this infimum is denoted by f∗
L,P .

The learning schemes we are interested in are based on an optimization problem
of the form

fP,λ := arg min
f∈H

(
λ‖f‖2

H + RL,P (f)
)

,

where λ > 0. Note that if we identify a training set T = ((x1, y1), . . . , (xn, yn)) ∈
(X × Y )n with its empirical measure, then fT,λ denotes the empirical estimators
of the above learning scheme. Obviously, support vector machines (see e.g. [5]) and
regularization networks (see e.g. [8]) are both learning algorithms which fall into
the above category.

One way to describe the approximation error of these learning schemes is the
approximation error function

a(λ) := λ‖fP,λ‖2 + RL,P (fP,λ) −R∗
L,P , λ > 0,

which we discussed in some detail in [13]. Furthermore in order to deal with the
complexity of the used RKHSs let us recall that for a subset A ⊂ E of a Banach
space E the covering numbers are defined by

N (A, ε, E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n⋃

i=1

(xi+εBE)
}

, ε > 0,

where BE denotes the closed unit ball of E. Given a finite sequence T = (z1, . . . ,
zn) ∈ Zn we are particularly interested in the Banach space L2(T ) which consists
of all equivalence classes of functions f : Z → R and which is equipped with the
norm

(2) ‖f‖L2(T ) :=
( 1

n

n∑
i=1

∣∣f(zi)
∣∣2) 1

2
.

In other words, L2(T ) is a L2-space with respect to the empirical measure of
(z1, . . . , zn). Furthermore, if T is of the form T = ((x1, y1), . . . , (xn, yn)), and
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TX := (x1, . . . , xn), then the space L2(TX) has the obvious meaning. In addition
to the convention 00 := 1 we utilize the following

(3) a∞ :=




0 if 0 ≤ a < 1,

1 if a = 1,

∞ if a > 1 .

Now we can state the main result of this paper:

Theorem 2.1. Let H be a RKHS of a continuous kernel over X with ‖.‖∞ ≤ ‖.‖H .
Assume that there are constants a ≥ 1 and 0 < p < 2 such that for all δ > 0 we
have

(4) sup
T∈Zn

logN
(
BH , δ, L2(TX)

)
≤ aδ−p .

Let L : Y × R → [0,∞) be a continuous function which is convex in its second
variable and satisfies (1). Furthermore, let P be a distribution on X × Y such that
f∗

L,P exists. Moreover, suppose that for all 0 < λ ≤ 1 and all f ∈ λ− 1
2 BH we have

(5) EP

(
L ◦ f − L ◦ f∗

L,P )2 ≤ c
(
‖f‖∞ + 1

)v (
EP L ◦ f − L ◦ f∗

L,P )ϑ

for some constants c ≥ 1, ϑ ∈ (0, 1], and v ∈ [0, 2]. Then there exists a constant
K ≥ 1 such that for all 0 < λ ≤ 1, ε > 0, x ≥ 1 satisfying

ε ≥ max
{

a(λ) + λ,

(
Ka

λ
2αp+v(2−p)

4 n

) 4
8−2αp−(v+2ϑ)(2−p)

,

(
Ka

λ
α(2+p)

4 n

) 4
(2+p)(2−α)

,

( Kx

λ
v
2 n

) 2
4−v−2ϑ

,
( Kx

λ
α
2 n

) 2
2−α

}
,

we have

Pr∗
(
T ∈ Zn : RL,P (fT,λ) −R∗

L,P < a(λ) + ε
)

≥ 1 − e−x

where Pr∗ denotes the outer probability.

Theorem 2.1 is proved in Section 4. Now we proceed to illustrate its utility with
some applications.

Example 2.2 (Least square regression with Sobolev spaces). Let us consider
the least squares loss function which is defined by L(y, t) = (y − t)2. Furthermore,
let us assume that H contains the regression function x 
→ E(y|x) and satisfies
the complexity exponent condition (4). In addition let (λn) be a strictly positive
null-sequence with λ

1+p/2
n n → ∞. Then in Section 5 we show that our learning

rate is of the form λn. In particular, if H is a Sobolev space of order m on some
suitable X ⊂ R

d, m > d/2, then we have p = d/m, and consequently, for λn :=
n− 2m

2m+d log n our rate becomes n− 2m
2m+d log n. This equals the optimal rate n− 2m

2m+d

up to a logarithmic factor (see e.g. [7] and the references therein).

Example 2.3 (Comparisonof different loss functions used for regression).
Consider again regression with the squared loss function L2(y, t) = (y − t)2 defin-
ing performance but use the loss function Lα(y, t) = |y − t|α with 1 ≤ α ≤ 2
to determine the estimate fT,λ. Suppose that H contains the regression function



A new concentration result for regularized risk minimizers 263

x 
→ E(y|x), and satisfies the complexity exponent condition (4). In Section 5 we
begin by using the oracle inequality of Theorem 2.1 to bound the excess Lα-risk
RLα,P (fT,λ) −R∗

Lα,P . When α = 2 we produce the results of Example 2.2. When
1 < α < 2 we set λ = n−κ with κ > 0 and observe that when κ ≤ 2

2+p we obtain
the rate n−κ independently of the value of α and when κ > 2

2+p we obtain the rate

n− 2
2+p +(κ− 2

2+p ) α
2−α . We conclude that the κ-optimal learning rate for the Lα risk

is n− 2
2+p and is achieved when κ = 2

2+p . Now suppose that the conditional distri-
butions P (y|x) are symmetric. These results are then combined with a calibration
inequality

RL2,P (fT,λ) −R∗
L2,P ≤ Ψ(RLα,P (fT,λ) −R∗

Lα,P )
derived from [11] to obtain bounds on RL2,P (fT,λ)−R∗

L2,P in terms of 1 < α < 2.
We observe that when κ ≤ 2

2+p we obtain the rate n−κ independently of the value of

α and when κ > 2
2+p we obtain the rate n− 2

2+p +(κ− 2
2+p ) 2

2−α . We conclude that the

κ-optimal learning rate for the L2 risk also is n− 2
2+p and is achieved when κ = 2

2+p .
It is important to observe that the rate for fixed κ gets worse as α increases towards
2 and in particular that we have no rates when 2− (κ− 2

2+p )(2+p) ≤ α ≤ 2. When
α = 1 [11, Example 3.25] shows how, even though the loss function is not strictly
convex, we can obtain a calibration inequality in terms of assumptions concerning
the concentration about the mean. Consequently with extra assumptions regarding
concentration about the mean we can apply these methods, but do not carry out
such calculations here since they they are out of the scope of this paper. Moreover,
since α = 1 is considered more robust to outliers than α = 2, these results suggest
that setting α near 1 has some substantial advantages to the usual choice α = 2.
However, to make such a claim more precise will require considering whether and
in which sense the assumptions of symmetry and boundedness have been violated.
Finally, let us now consider when H is a Sobolev space as in Example 2.2. Then it
is clear that we obtain the same optimal rates for all values of 1 < α ≤ 2, although
for α near 1 we should concern ourselves with the arising constants.

Example 2.4 (Hinge loss classification). Let Y := {−1, 1}, L be defined by
L(y, t) := max{0, 1−yt}, y ∈ Y , t ∈ R, and P be a distribution with Tsybakov noise
exponent q ∈ [0,∞] in the sense of [12, 13] (see also [2]). When q > 0, it follows
from [12, Lemma 6.6] that the assumption (5) is satisfied with α = 1, v = q+2

q+1 ,
ϑ = q

q+1 and c = ‖(2η − 1)−1‖q,∞ + 2. Moreover it is simple to show the same is
true when q = 0 but with c = 5. Hence the condition on ε becomes

ε ≥ max
{

a(λ) + λ,
K

λ

(a

n

) 4(q+1)
2q+pq+4

,
K

λ

(a

n

) 4
2+p

,
K

λ

(x

n

) 2(q+1)
q+2

,
K

λ

(x

n

)2
}

.

Some easy estimates then show that this reduces to

ε ≥ a(λ) + λ + Kx2λ−1
(a

n

) 4(q+1)
2q+pq+4 ,

where K ≥ 1 is a suitable constant and a and n are assumed to satisfy n ≥ a ≥ 1.
From this we immediately obtain the rates established in [12, Thm. 2.8] and [13,
Thm. 1].

3. A concentration result for ERM schemes

The proof of our main result Theorem 2.1 is based on a refinement of standard local
Rademacher average techniques. Since this refinement may be of its own interest
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we separate its presentation from the proof of 2.1.
Let us begin by introducing some notations. To this end let F be a class of

bounded measurable functions from Z to R. In order to avoid measurability con-
siderations we always assume that F is separable with respect to ‖.‖∞. Given a
probability measure P on Z we define the modulus of continuity of F by

ωP,n(F , ε) := ET∼P n

(
sup
f∈F,

EP f≤ε

|EP f − ET f |
)

,

where we emphasize that the supremum is, as a function from Zn to R, measurable
by the separability assumption on F . In addition note that the supremum is taken
over all f ∈ F with EP f ≤ ε, whereas usually the supremum is taken over all f ∈ F
with EP f2 ≤ ε.

We also need some notations related to ERM-type algorithms: we call C : F ×
Z → [0,∞) a cost function if C ◦ f := C(f, .) is measurable for all f ∈ F . Given a
probability measure P on Z we denote by fP,F ∈ F a minimizer of

f 
→ RC,P (f) := Ez∼P C(f, z).

Moreover, if P is an empirical measure with respect to T ∈ Zn we write fT,F and
RC,T (.) as usual. For simplicity, we assume throughout this section that fP,F and
fT,F do exist. Furthermore, although there may be multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of this
symbol can be expected. An algorithm that produces solutions fT,F is called an
empirical C-risk minimizer. Moreover, if F is convex, we say that C is convex if
C(., z) is convex for all z ∈ Z. Finally, C is called line-continuous if for all z ∈ Z

and all f, f̂ ∈ F the function t 
→ C(tf + (1− t)f̂ , z) is continuous on [0, 1]. If F is
a vector space then every convex C is line-continuous. Now we can formulate the
main result of this section:

Theorem 3.1. Let F be a convex set of bounded measurable functions from Z to
R, C : F × Z → [0,∞) be a convex, line-continuous cost function, and P be a
probability measure on Z. Assume that

G :=
{
C ◦ f − C ◦ fP,F : f ∈ F

}
is separable with respect to ‖.‖∞. Furthermore assume that there exist constants
b, B ≥ 0, β ∈ [0, 1], and w, W ≥ 0, ν ∈ [0, 2], ϑ ∈ [0, 2), such that

(6) ‖g‖∞ ≤ b
(
EP g

)β + B

and

(7) EP g2 ≤
(
b
(
EP g

)β + B
)ν(

w
(
EP g

)ϑ + W
)

for all g ∈ G. Then for n ≥ 1, x ≥ 1 and ε > 0 satisfying

ε ≥ 3ωP,n(G, ε) +

√
2x(bεβ + B)ν(wεϑ + W )

n
+

2x
(
bεβ + B

)
n

we have

Pr∗
(
T ∈ Zn : RC,P (fT,F ) < RC,P (fP,F ) + ε

)
≥ 1 − e−x .
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In order to prove Theorem 3.1 let us first recall Talagrand’s concentration in-
equality (see [14]). The following version of this inequality is derived from Bous-
quet’s result in [4] using a little trick presented in [1, Lem. 2.5]:

Theorem 3.2. Let P be a probability measure on Z and H be a set of bounded
measurable functions from Z to R which is separable with respect to ‖.‖∞ and
satisfies EP h = 0 for all h ∈ H. Furthermore, let M > 0 and τ ≥ 0 be constants
with ‖h‖∞ ≤ M and EP h2 ≤ τ for all h ∈ H. Then for all x ≥ 1 and all n ≥ 1 we
have

Pn

(
T ∈ Zn : sup

h∈H
ET h > 3ET ′∼P n sup

h∈H
ET ′h +

√
2xτ

n
+

Mx

n

)
≤ e−x .

This concentration inequality is used to prove the following lemma which is a
generalized version of Lemma 13 in [2] and Lemma 5.4 in [12]:

Lemma 3.3. Let P be a probability measure on Z and G be a set of bounded
measurable functions from Z to R which is separable with respect to ‖.‖∞. Let us
assume that G satisfies (6) and (7), and that there is a constant a ∈ [0, 1) such that
for all T ∈ Zn, ε > 0 for which there is a g ∈ G with

ET g ≤ aε and EP g ≥ ε

there is also an element g∗ ∈ G with

ET g∗ ≤ aε and EP g∗ = ε .

Then for all n ≥ 1, x ≥ 1, and all ε > 0 satisfying

(1 − a)ε ≥ 3ωP,n(G, ε) +

√
2x(bεβ + B)ν(wεϑ + W )

n
+

2x
(
bεβ + B

)
n

we have

Pr∗
(
T ∈ Zn : for all g ∈ G with ET g ≤ aε we have EP g < ε

)
≥ 1 − e−x .

Proof. We define H := {EP g − g : g ∈ G, EP g = ε}. Obviously, for all h ∈ H we
have EP h = 0 and

‖h‖∞ ≤ 2bεβ + 2B =: M ,

EP h2 ≤ EP g2 ≤ (bεβ + B)ν(wεϑ + W ) =: τ .

Moreover, it is also easy to verify that H is separable with respect to ‖.‖∞. As in
the proof of Lemma 5.4 in [12] our assumption on G now yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ aε and EP g ≥ ε

)
≤ Pr∗

(
T ∈ Zn : ∃g ∈ G with ET g ≤ aε and EP g = ε

)
= Pr∗

(
T ∈ Zn : ∃g ∈ G with EP g − ET g ≥ (1 − a)ε and EP g = ε

)
≤ Pn

(
T ∈ Zn : sup

g∈G
EP g=ε

(EP g − ET g) ≥ (1 − a)ε
)

= Pn
(
T ∈ Zn : sup

h∈H
ET h ≥ (1 − a)ε

)
.
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In order to bound the last probability we will apply Theorem 3.2. To this end
observe

3ET ′∼P n sup
h∈H

ET ′h +

√
2xτ

n
+

Mx

n
≤ (1 − a)ε ,

and consequently applying Theorem 3.2 yields

Pr∗
(
T ∈ Zn : ∃g ∈ G with ET g ≤ aε and EP g ≥ ε

)
≤ e−x.

With the help of the above lemma we can now prove Theorem 3.1:

Proof of Theorem 3.1. For a := 0 we will apply Lemma 3.3 to the class G. To this
end it obviously suffices to show the richness condition on G of Lemma 3.3: let
f ∈ F satisfy

ET (C ◦ f − C ◦ fP,F ) ≤ 0 and EP (C ◦ f − C ◦ fP,F ) ≥ ε .

For t ∈ [0, 1] we define ft := tf + (1− t)fP,F . Since F is convex we have ft ∈ F for
all t ∈ [0, 1]. By the line-continuity of C and Lebesgue’s theorem we find that the
map h : t 
→ EP (C ◦ ft − C ◦ fP,F ) is continuous for t ∈ [0, 1]. Since h(0) = 0 and
h(1) ≥ ε there is a t ∈ (0, 1] with

EP (C ◦ ft − C ◦ fP,F ) = h(t) = ε

by the intermediate value theorem. Moreover, for this t the convexity of C gives

ET (C ◦ ft − C ◦ fP,F ) ≤ ET

(
tC ◦ f + (1 − t)C ◦ fP,F − C ◦ fP,F

)
≤ 0 .

Now, let ε > 0 satisfy the assumption of the theorem. Then ε also satisfies the
assumptions of Lemma 3.3, and hence we find that with probability at least 1−e−x

every f ∈ F with ET (C ◦ f −C ◦ fP,F ) ≤ 0 satisfies EP (C ◦ f −C ◦ fP,F ) < ε. Since
we always have

ET

(
C ◦ fT,F − C ◦ fP,F

)
≤ 0

we obtain the assertion.

4. Proof of the main result

In order to prove our oracle-type inequality we will apply Theorem 3.1. To this end
we define the regularized cost function Cλ by

Cλ(x, y, f) := λ‖f‖2
H + L(y, f(x)) , x ∈ X, y ∈ Y, f ∈ H,

and the induced cost class

G(λ) :=
{
Cλ ◦ f − Cλ ◦ fP,λ : f ∈ λ−1/2BH

}
, λ > 0.

Obviously, the Cλ-risk minimizer produces the functions fP,λ and fT,λ. Note that
RL,P (0) ≤ 1 implies fP,λ ∈ λ−1/2BH for all distributions P on X × Y , and hence
the latter in particular holds for the empirical solutions fT,λ. However, it was al-
ready observed in [12] that, depending on the approximation error function, sharper
bounds for ‖fT,λ‖ are possible with high probability. In order to establish such
sharper bounds we employed a “shrinking technique” in [12] which is rather com-
plicated. The key idea of this paper is to replace the shrinking technique by a
localization argument based on (6). Consequently, let us first show that regularized
risk minimizers always satisfy the supremum bound (6):
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Lemma 4.1. Let 0 < λ ≤ 1, and suppose that g ∈ G(λ). Then for any f ∈ λ− 1
2 BH

such that g = Cλ ◦ f − Cλ ◦ fP,λ we have

‖g‖∞ ≤ 3
(

EP g

λ

)α
2

+
(a(λ)

λ

)α
2

+ 2 and

‖f‖H ≤
(a(λ) + EP g

λ

)1/2

.

Proof. Let us write ε := EP g. Then we have

λ‖f‖2
H ≤ λ‖f‖2

H + RL,P (f) −R∗
L,P

= λ‖fP,λ‖2 + RL,P (fP,λ) −R∗
L,P + ε

= a(λ) + ε ,

which establishes the second assertion. Consequently, ‖L ◦ f‖∞ ≤ 1 + ‖f‖α
∞ yields

‖Cλ ◦ f‖∞ ≤ λ‖f‖2
H + ‖L ◦ f‖∞ ≤ a(λ) + ε +

(a(λ)
λ

)α
2

+
( ε

λ

)α
2

+ 1 .

Analogously, we obtain ‖Cλ ◦ fP,λ‖∞ ≤ a(λ) +
(a(λ)

λ

)α
2 + 1, and therefore we find

‖g‖∞ ≤ max (‖Cλ ◦ f‖∞, ‖Cλ ◦ fP,λ‖∞) ≤ ε +
(a(λ)

λ

)α
2

+
( ε

λ

)α
2

+ 2 ,

where in the last step we used a(λ) ≤ 1. Now, f ∈ λ−1/2BH implies that ‖f‖∞ ≤
λ−1/2 and an easy calculation shows that 2+λ−α/2 ≤ 3λ− α

2−α . Therefore we obtain

ε ≤ EP Cλ ◦ f = λ‖f‖2
H + RL,P (f) ≤ 2 + ‖f‖α

∞ ≤ 2 + λ−α
2 ≤ 3λ− α

2−α .

From this we easily obtain ε ≤ 31−α
2 ( ε

λ )
α
2 ≤ 2( ε

λ )
α
2 , which gives the assertion.

We now prove that a variance bound of the form (5) assumed in Theorem 2.1
implies a variance bound of the form (7) assumed in Theorem 3.1:

Lemma 4.2. Let P be a distribution on X × Y and suppose that there exist con-
stants v ≥ 0, c ≥ 1, and ϑ ∈ [0, 1] such that the variance bound assumption (5) is
satisfied for some 0 < λ < 1 and all f ∈ λ− 1

2 BH . Then for all g ∈ G(λ) we have

EP g2 ≤ 16c

((
EP g

λ

) 1
2

+
(a(λ)

λ

)1/2

+ 1
)v(

(EP g)ϑ + 2aϑ(λ)
)

.

Proof. We use the shorthand notation E for EP . For g ∈ G(λ) pick an f ∈ λ− 1
2 BH

such that g = Cλ ◦ f − Cλ ◦ fP,λ. Now observe that

Eg2 = E
(
Cλ ◦ f − Cλ ◦ fP,λ

)2

= E
(
λ‖f‖2 − λ‖fP,λ‖2 + L ◦ f − L ◦ fP,λ

)2

≤ 2E
(
λ‖f‖2 − λ‖fP,λ‖2)2 + 2E

(
L ◦ f − L ◦ fP,λ

)2

≤ 2λ2‖f‖4 + 2λ2‖fP,λ‖4 + 2E
(
L ◦ f − L ◦ fP,λ

)2

≤ 4E
(
L ◦ f − L ◦ f∗

L,P

)2 + 4E
(
L ◦ f∗

L,P − L ◦ fP,λ

)2 + 2λ2‖f‖4 + 2λ2‖fP,λ‖4.
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Denote C := max
(
‖f‖∞ + 1, ‖fP,λ‖∞ + 1

)
. Then the assumption (5) and

aϑ + bϑ ≤ 2(a + b)ϑ for all a, b ≥ 0, imply that

E
(
L ◦ f − L ◦ f∗

L,P

)2 + E
(
L ◦ f∗

L,P − L ◦ fP,λ

)2

≤ 2cCv
(
E

(
L ◦ f − L ◦ f∗

L,P

)
+ E

(
L ◦ fP,λ − L ◦ f∗

L,P

))ϑ

.

Since λ2‖f‖4 ≤ 1 and λ2‖fP,λ‖4 ≤ 1 we hence obtain

Eg2 ≤ 8cCv
(
E

(
L◦f − L◦f∗

L,P

)
+ E

(
L◦fP,λ − L◦f∗

L,P

))ϑ

+2λ2‖f‖4+2λ2‖fP,λ‖4

≤ 8cCv
(
E

(
L◦f− L◦f∗

L,P

)
+E

(
L◦fP,λ− L◦f∗

L,P

))ϑ

+4
(
λ2‖f‖4+λ2‖fP,λ‖4

)ϑ

≤ 16cCv
(
E

(
L◦f − L◦f∗

L,P

)
+ E

(
L◦fP,λ − L◦f∗

L,P

)
+ λ2‖f‖4 + λ2‖fP,λ‖4

)ϑ

= 16cCv
(
Eg + 2E

(
L◦fP,λ− L◦f∗

L,P

)
+ 2λ‖fP,λ‖2

)ϑ

≤ 16cCv
(
(Eg)ϑ + 2aϑ(λ)

)
.

What is left is to bound C in the right hand side of this inequality. To that end
observe that Lemma 4.1 implies

‖f‖∞ ≤ ‖f‖H ≤
(a(λ) + Eg

λ

)1/2

and

‖fP,λ‖∞ ≤ ‖fP,λ‖H ≤
(a(λ)

λ

)1/2

≤
(a(λ) + Eg

λ

)1/2

so that we can bound

C = max
(
‖f‖∞ +1, ‖fP,λ‖∞ +1

)

≤
(a(λ) + Eg

λ

)1/2

+ 1 ≤
(

Eg

λ

)1/2

+
(a(λ)

λ

)1/2

+ 1.

The following lemma relates the covering numbers of BH with ωP,n(G(λ), ε):

Lemma 4.3. Let n ∈ N, and assume that there are constants a ≥ 1 and p ∈ (0, 2)
such that for all δ > 0, we have

sup
T∈Zn

logN
(
BH , δ, L2(TX)

)
≤ aδ−p .

Then there is a constant cL,p > 0 depending only on L and p such that for all
distributions P on X × Y , and all λ ∈ (0, 1], ε > 0 we have

ωP,n(G(λ), ε) ≤ cL,p max
{(a(λ) + ε

λ
+1

)αp
4

τ
2−p
4

ε

(a

n

) 1
2
,
(a(λ) + ε

λ
+1

)α
2
(a

n

) 2
2+p

}
,

where τε ≥ supg∈Gε
EP g2 and Gε := {g ∈ G(λ) : EP g ≤ ε}.

Proof. Our first goal is to bound the covering numbers of Gε. To this end recall that
for g := Cλ ◦ f − Cλ ◦ fP,λ ∈ Gε, Lemma 4.1 shows that ‖f‖H ≤

(a(λ)+ε
λ

)1/2 =: Λ.
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With the help of the auxiliary sets Ĝε := {Cλ ◦ f : f ∈ ΛBH} and H := {L ◦ f :
f ∈ ΛBH} we thus obtain

logN
(
Gε, 2δ, L2(T )

)
≤ logN

(
Ĝε, 2δ, L2(T )

)
≤ log

(1
δ

+ 1
)

+ logN
(
H, δ, L2(T )

)

≤ log
(1

δ
+ 1

)
+ logN

(
ΛBH ,

δ

|L|[−Λ,Λ]|1
, L2(TX)

)
.

Furthermore, the Lipschitz assumption (1) implies the right hand side is bounded
by

log
(1

δ
+ 1

)
+ logN

(
BH ,

δ

cLΛα
, L2(TX)

)
.

Consequently, there is a constant c̃L,p > 0 depending only on L and p such that for
all δ > 0 we have

sup
T∈Zn

logN
(
Gε, δ, L2(T )

)
≤ a c̃L,p

(a(λ) + ε

λ

)αp
2

δ−p ≤ a c̃L,p

(a(λ) + ε

λ
+ 1

)αp
2

δ−p.

By symmetrization, and the proofs of [9, Lem. 2.5] and [12, Prop. 5.7] we thus find

ωP,n(G(λ), ε) ≤ cL,p max
{(a(λ) + ε

λ
+1

)αp
4

τ
2−p
4

ε

(a

n

) 1
2
,
(a(λ) + ε

λ
+1

)α
2
(a

n

) 2
2+p

}
.

Proof of Theorem 2.1. Let g := Cλ ◦ f − Cλ ◦ fP,λ for some f ∈ λ−1/2BH . Lemma
4.1 implies that we have a supremum bound

‖g‖∞ ≤ 3
(

EP g

λ

)α
2

+
(a(λ)

λ

)α
2

+ 2.

Because of the variance bound assumption (5), Lemma 4.2 implies we have a vari-
ance bound of the form

EP g2 ≤ 16c

((
EP g

λ

) 1
2

+
(a(λ)

λ

)1/2

+ 1
)v(

(EP g)ϑ + 2aϑ(λ)
)

≤ 48c

((
EP g

λ

)α
2

+
(a(λ)

λ

)α
2

+ 1
) v

α
(

(EP g)ϑ + 2aϑ(λ)
)

≤
(

3
(

EP g

λ

)α
2

+
(a(λ)

λ

)α
2

+ 2
) v

α
(

48c(EP g)ϑ + 96caϑ(λ)
)

.

Therefore we have variance and supremum bounds of the form (7) and (6) with the
values b = 3λ−α

2 , β = α
2 , B = (a(λ)

λ )
α
2 + 2, w = 48c, ν = v

α , and W = 96caϑ(λ).

Denote τε := 3426cλϑ
(a(λ)+ε

λ +1
)ϑ+ v

2 . Then for g ∈ G(λ) with EP g ≤ ε we obtain

EP g2 ≤ (bεβ + B)ν(wεϑ + W )

= 48c

(
3
( ε

λ

)α
2

+
(a(λ)

λ

)α
2

+ 2
) v

α
(

εϑ + 2aϑ(λ)
)

≤ 96 · 9c

(( ε

λ

)α
2

+
(a(λ)

λ

)α
2

+ 1
) v

α
(

εϑ + aϑ(λ)
)

≤ 96 · 9 · 3 · 2c
(a(λ) + ε

λ
+ 1

) v
2
(
a(λ) + ε

)ϑ

≤ τε.
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Consequently we can apply Lemma 4.3 to obtain that

ωP,n(G(λ), ε)

≤ cL,p max
{(a(λ) + ε

λ
+ 1

) p
4
τ

2−p
4

ε

(a

n

) 1
2
,
(a(λ) + ε

λ
+ 1

) 1
2
(a

n

) 2
2+p

}

≤ cL,p

√
c max

{
λ

ϑ(2−p)
4

(a(λ)+ε

λ
+1

) 2αp+(v+2ϑ)(2−p)
8

(a

n

)1
2
,
(a(λ)+ε

λ
+1

)α
2
(a

n

) 2
2+p

}
.

We also bound the terms√
2x(bεβ + B)ν(wεϑ + W )

n
≤

√
2xτε

n
= 384

√
2cλ

ϑ
2

(
a(λ) + ε

λ
+ 1

)ϑ
2 + v

4
√

x

n

and

2x
(
bεβ + B

)
n

=
2x

n

(
3
( ε

λ

)α
2

+
(a(λ)

λ

)α
2

+ 2
)

≤ 24x

n

(a(λ) + ε

λ
+ 1

)α
2

and then observe that Theorem 3.1 implies that there is a constant K ≥ 1 such
that

Pr∗
(
T ∈ (X × Y )n : RCλ,P (fT,λ) < RCλ,P (fP,λ) + ε̃

)
≥ 1 − e−x ,

whenever

ε̃ ≥Kmax
{

λ
ϑ(2−p)

4

(a(λ) + ε̃

λ
+ 1

) 2αp+(v+2ϑ)(2−p)
8

(a

n

) 1
2
,
(a(λ) + ε̃

λ
+ 1

)α
2
(a

n

) 2
2+p

,

λ
ϑ
2

(a(λ) + ε̃

λ
+ 1

)ϑ
2 + v

4
(x

n

) 1
2
,
(a(λ) + ε̃

λ
+ 1

)α
2 x

n

}
.

If we further constrain by ε̃ ≥ a(λ) + λ we find that it is sufficient to satisfy

ε̃ ≥ max
{

a(λ) + λ, Kλ
ϑ(2−p)

4

( ε̃

λ

) 2αp+(v+2ϑ)(2−p)
8

(a

n

) 1
2
, K

( ε̃

λ

)α
2
(a

n

) 2
2+p

,

Kλ
ϑ
2

( ε̃

λ

)ϑ
2 + v

4
(x

n

) 1
2
, K

( ε̃

λ

)α
2 x

n

}
.

Since ϑ ∈ (0, 1] and v ∈ [0, 2] it follows that 0 < v + 2ϑ ≤ 4 which implies that
2αp+(v+2ϑ)(2−p)

8 ≤ 1 and ϑ
2 + v

4 ≤ 1. Consequently we find that it is sufficient to
satisfy

ε̃ ≥ max
{

a(λ) + λ,

(
K2a

λ
2αp+v(2−p)

4 n

) 4
8−2αp−(v+2ϑ)(2−p)

,

(
K

2+p
2 a

λ
α(2+p)

4 n

) 4
(2+p)(2−α)

,

(
K2x

λ
v
2 n

) 2
4−(v+2ϑ)

,

(
Kx

λ
α
2 n

) 2
2−α

}
.

Therefore we find that (with a change in the value of the constant K) if

ε ≥ max
{

a(λ) + λ,

(
Ka

λ
2αp+v(2−p)

4 n

) 4
8−2αp−(v+2ϑ)(2−p)

,

(
Ka

λ
α(2+p)

4 n

) 4
(2+p)(2−α)

,

(
Kx

λ
v
2 n

) 2
4−(v+2ϑ)

,

(
Kx

λ
α
2 n

) 2
2−α

}
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then

RL,P (fT,λ) ≤ λ‖fT,λ‖2
H + RL,P (fT,λ) = RCλ,P (fT,λ) < RCλ,P (fP,λ) + ε

= a(λ) + R∗
L,P + ε

holds with probability not less than 1 − e−x.

5. Examples

Here we perform the analysis mentioned in Examples 2.2 and 2.3. Let us first apply
the oracle inequality to bound RLα,P (fT,λ)−R∗

Lα,P with high probability. To that
end we now derive some variance bounds. First observe that [11, Table 3] shows
that the modulus of convexity δψα|[−B,B](ε) of the function ψα : t 
→ |t|α restricted
to the interval [−B, B] satisfies

(8) δψα|[−B,B](ε) ≥
α(α − 1)

8
Bα−2ε2

Consequently [2, Lemma 15] implies that modulus of convexity of RLα,P for func-
tions satisfying ‖f‖∞ ≤ B is bounded below by α(α−1)

8 2α−2Bα−2ε2 ≥ α(α−1)
16 ×

Bα−2ε2. Moreover, the mean value theorem implies that

∣∣|t1 − y|α − |t2 − y|α
∣∣ ≤ α

(
max (t1 + 1, t2 + 1)

)α−1

|t1 − t2|

so that the loss function f 
→ Lα(y, f(x)) has a Lipschitz constant less than
α
(
max{‖f1‖∞, ‖f2‖∞} + 1

)α−1. Now let

f∗
Lα,P ∈ arg min

{
RLα,P (f)

∣∣f : X → R measurable
}

and define gf (x, y) := |f(x)− y|α − |f∗
Lα,P (x)− y|α. Then the extension mentioned

after the statement of [2, Lemma 14] to non-margin loss functions implies that we
have the variance bound

Eg2
f ≤ 8α

(α − 1)
·
(
max{‖f‖∞, ‖f∗

Lα,P ‖∞} + 1
)2α−2

(
max{‖f‖∞, ‖f∗

Lα,P ‖∞}
)α−2 Egf

≤ 8α

(α − 1)
(
max{‖f‖∞, ‖f∗

Lα,P ‖∞} + 1
)α

Egf ..

Observe that the right hand side of these bounds goes to ∞ as α → 1 since ψ1

is not strictly convex. Also note that such a bound, but with different constants,
follows directly from [11, Equation 28]. Since ‖f∗

Lα,P ‖∞ ≤ 1 we then obtain

Eg2
f ≤ 8α

(α − 1)
(
‖f‖∞ + 2

)α
Egf ..

Therefore we can apply Theorem 2.1 with v = α and ϑ = 1 to obtain that there
exists a constant Kα ≥ 1 such that for all 0 < λ ≤ 1, ε > 0, x ≥ 1 satisfying

ε ≥ max
{

aα(λ) + λ,
( Kαa

λ
α(2+p)

4 n

) 4
(2+p)(2−α)

,
(Kαx

λ
α
2 n

) 2
2−α

}
,(9)
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we have

(10) Pr∗
(
T ∈ Zn : RLα,P (fT,λ) −R∗

Lα,P < aα(λ) + ε
)

≥ 1 − e−x

where aα(·) is the approximation error function defined with respect to the risk
RLα,P .

In [13] it was shown that the assumption f∗
Lα,P ∈ H implies that aα(λ) ≤

λ‖f∗
Lα,P ‖2

H for all λ > 0. We assume without loss of generality that aα(λ) ≤ λ.
Let us first consider when α = 2. If we now assume (λn) is a strictly positive null-
sequence with λ

1+p/2
n n → ∞ then it is easy from the convention (3) applied to the

inequality (9) that our learning rate is of the form λn thus finishing the proof for
Example 2.2. Now consider the case 1 < α < 2. Then (9) becomes

ε ≥ max
{

aα(λ) + λ, λ− α
2−α

(Kαa

n

) 4
(2+p)(2−α)

, λ− α
2−α

(Kαx

n

) 2
2−α

}
.(11)

Moreover when n ≥ Kαa elementary calculations show that it is sufficient to satisfy

(12) ε ≥ aα(λ) + λ + λ− α
2−α x

2
2−α

(Kαa

n

) 4
(2+p)(2−α)

..

If we now assume λ = n−κ. Then elementary calculations show that we obtain the
rate n−κ independently of the value α when κ ≤ 2

2+p and when κ > 2
2+p we obtain

the rate n− 2
2+p + α

2−α (κ− 2
2+p ).

Let us now assume that the conditional distributions P (y|x) are symmetric. We
now proceed to derive a calibration inequality

RL2,P (fT,λ) −R∗
L2,P ≤ Ψ(RLα,P (fT,λ) −R∗

Lα,P )

so that we can apply the bounds on RLα,P (fT,λ)−R∗
Lα,P ) defined by (10) and (12)

to obtain bounds on RL2,P (fT,λ)−R∗
L2,P in terms of α. Since we will need results

and notations from [11] we first give a brief outline of its content. Consider a loss
function L and a measure Q on Y . Then the associated inner risk is defined as

CL,Q(t) =
∫

Y

L(y, t)dQ(y), t ∈ R,

and can be used to compute the risk

RL,P (f) =
∫

X

CL,P (·|x)(f(x))dPX(x).

The minimal inner risk is defined as C∗
L,Q := inft∈R CL,Q(t). Consider now another

loss function Ĺ. Then the calibration function δmax,L,Ĺ(ε, Q) is defined as the largest
function comparing the excess inner risks, i.e.

δmax,L,Ĺ(CL,Q(t) − C∗
L,Q, Q) ≤ CĹ,Q(t) − C∗

Ĺ,Q
.

We shall also find it convenient to consider the template loss Lmean introduced in
[11] and defined by

Lmean(Q, t) := |EQ − t| , t ∈ R

and its inner risk

CLmean,Q(t) =
∫

Y

|EQ − t|dQ(y), t ∈ R.
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We can now proceed to derive the appropriate calibration inequality function Ψ
for comparing L2 and Lα. Since P (y|x) is symmetric for all x, [11, Theorem 3.23]
implies that we have mean calibration with calibration function bounded below by

δmax,Lmean,Lα(ε, Q) ≥ δψα|[−(2+ε),2+ε](2ε)

where δψα|[−(2+ε),2+ε] is the modulus of convexity of the function ψα restricted to
the interval [−(2 + ε), 2 + ε]. By (8) we then obtain

δmax,Lmean,ψα(ε, Q) ≥ α(α − 1)
2

(2 + ε)α−2ε2.

Since [11, Equation (38)] states δmax,L2,Lα(ε, Q) = δmax,Lmean,Lα(
√

ε, Q) we find

δmax,L2,Lα(ε, Q) ≥ α(α − 1)
2

(2 +
√

ε)α−2ε.

We now seek to apply [11, Theorem 2.13]. In that notation we bound

Bf = sup
x

∣∣f(x) − E(y|x)
∣∣2 ≤

∣∣‖f‖∞ + 1
∣∣2.

Denote φ(ε) := α(α−1)
2 (2 +

√
ε)α−2ε. Then since

d

dε

(
(2 +

√
ε)α−2ε

)
= (2 +

√
ε)α−3(2 +

α

2
√

ε) > 0

and
d2

dε2

(
(2 +

√
ε)α−2ε

)
= (α − 2)ε−

1
2

(3
2

+
α

4
√

ε
)
(2 +

√
ε)α−4 ≤ 0

we conclude that φ is strictly monotonically increasing and concave. It follows that

φ∗∗
Bf

(ε) ≥ φ∗∗
|‖f‖∞+1|2(ε) =

φ
(∣∣‖f‖∞ + 1

∣∣2)∣∣‖f‖∞ + 1
∣∣2 ε =

α(α − 1)
2

(3 + ‖f‖∞)α−2ε

where ∗∗ denotes the Fenchel-Legendre bi-conjugate operation (see e.g. [10]). It then
follows from [11, Theorem 2.13] that

(13) RL2,P (f) −R∗
L2,P ≤ 2

α(α − 1)
(3 + ‖f‖∞)2−α(RLα,P (f) −R∗

Lα,P )

for all bounded measurable functions f . Note that the constant in this inequality
goes to ∞ as α goes to 1. The deeper reason for this behaviour is that ψα is strictly
convex when α > 1 but not strictly convex when α = 1 as discussed in [11].

We conclude from inequalities (13) and (10) that whenever (12) is satisfied that
with probability greater than 1 − e−x we have

RL2,P (fT,λ) −R∗
L2,P ≤ 4

α(α − 1)
(3 + ‖fT,λ‖∞)2−αε.

However we also know from the last line of the proof of Theorem 2.1 that whenever
(12) is satisfied that with probability greater than 1 − e−x

‖fT,λ‖∞ ≤ ‖fT,λ‖H ≤
√

aα(λ) + ε

λ
≤

√
2
√

ε

λ
.
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Now since 1 ≤ ε
λ when (12) is satisfied it follows that

(3 + ‖fT,λ‖∞)2−α ≤
(
3 +

√
2
√

ε

λ

)2−α

≤
(
3 +

√
2
)( ε

λ

)1−α
2

so that with probability greater than 1 − 2e−x we have

RL2,P (fT,λ) −R∗
L2,P ≤ 4

α(α − 1)
(3 +

√
2)λ

α
2 −1ε2−α

2 .

If we now apply the inequality aα(λ) ≤ λ and let

ε := 2λ + λ− α
2−α x

2
2−α

(Kαa

n

) 4
(2+p)(2−α)

,

then we see that with probability greater than 1 − 2e−x we have

RL2,P (fT,λ) −R∗
L2,P

≤ 4
α(α − 1)

(3 +
√

2)λ
α
2 −1

(
2λ + λ− α

2−α x
2

2−α

(Kαa

n

) 4
(2+p)(2−α)

)2−α
2

≤ cα

(
λ + λ− 2

2−α x
4−α
2−α

(Kαa

n

) 2
2+p

4−α
2−α

)

for some constant cα which depends only on α.
Now let us consider the case when λ = n−κ. Then disregarding the constants

the righthand side becomes

n−κ + n(κ− 2
2+p ) 2

2−α− 2
2+p

so that we obtain performance bounds of the form n−ρ with

ρ = min
(
κ,

2
2 + p

+
( 2
2 + p

− κ
) 2
2 − α

)
.

Simple calculations show that when κ ≤ 2
2+p then ρ = κ independently of the value

of α and when κ > 2
2+p then ρ = 2

2+p + ( 2
2+p − κ) 2

2−α . In the latter case it is
important to observe that the rates get worse as α increases towards 2. Indeed one
can show that ρ ≤ 0 in the interval

2 − (κ − 2
2 + p

)(2 + p) ≤ α ≤ 2.

Moreover one can see that smaller α minimizes the sensitivity to the degree to
which κ is greater than 2

2+p .
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