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Sieve estimates for biased survival data∗
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Abstract: In studies involving lifetimes, observed survival times are frequently
censored and possibly subject to biased sampling. In this paper, we model
survival times under biased sampling (a.k.a., biased survival data) by a semi-
parametric model, in which the selection function w(t) (that leads to the biased
sampling) is specified up to an unknown finite dimensional parameter θ, while
the density function f(t) of the survival times is assumed only to be smooth.
Under this model, two estimators are derived to estimate the density function
f , and a pseudo maximum likelihood estimation procedure is developed to
estimate θ. The identifiability of the estimation problem is discussed and the
performance of the new estimators is illustrated via both simulation studies
and a real data application.

1. Introduction

The problem of analyzing survival data arises in many application fields, such as
clinical trials in medicine, reliability assessments in engineering, biology, epidemiol-
ogy and public health. Censoring is a common phenomenon accompanying survival
data, often due to voluntary or involuntary drop-out of study subjects. In addi-
tion, survival data may have been drawn by biased sampling (with or without our
knowledge) in which whether a survival time T can be observed depends on a se-
lection function w(t) which is the probability of observing T if the true value of T
is t. Survival data drawn under such biased sampling, when w(t) is not a constant,
are hereafter called biased survival data/sample. When w(t) is a constant, the sur-
vival data are called the standard survival data. Here are three examples of biased
survival data, with the first given in more detail.

1. In a study of Scleroderma, a rare disease, some data of all cases of Scle-
roderma diagnosed in Michigan from 1980 to 1991 were collected and the
times from diagnosis of Scleroderma to death were recorded [2]. Based on the
Kaplan–Meier (K–M) estimates of survival curves for patients diagnosed in
1980–1985 versus 1986–1991, Gillespie (one of the authors in [2]) found that
the earlier group patients (from 1980–1985) lived significantly longer than
the later group patients (from 1986–1991). What had happened? If anything
had changed, medical care should have improved in 1986–1991 over 1980–1985
and hence the second group of patients should have had better survival times.
According to Gillespie, their sources of information included hospital data-
bases and responses from private physicians. Unfortunately, because hospital
records did not always go back to 1980, and physicians did not always re-
member patients they saw many years ago, patients who were still alive (and
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thus had more current hospital records) were more likely to be collected in
the sample than those who died in the early period. This resulted in a biased
survival sample for the 1980–1985 group. Indeed, as Gillespie stated “We feel
that the result is entirely due to our length-biased sample.” Length-biased
sampling is a special example of biased sampling with w(t) ∝ t.

2. In assessing familial risk of disease based on a reference database, which is
a collection of family histories of cases typically assembled as a result of one
family member being diagnosed with a disease. Clearly, the larger a family is,
the greater the probability that this family will be found from the registry is
[3].

3. In cancer screening programs, whether the pathological changes of a patient
in the preclinical phase can be discovered depends very much on the phase of
the tumor.

Let f(t) be the true probability density function (pdf) of the survival time T and
F (t) the corresponding cumulative distribution function (cdf). If the sampling bias
in a biased survival sample is ignored in an estimation of f or F , resulting estimates
are not consistent and can be misleading as shown in Example 1. In fact, the
missingness resulting from biased sampling is sometimes also called “non-ignorable”
missing because it leads to an observed sample that has a density weighted by w,
as demonstrated in (1) below, in contrast to missing at random, MAR, in which
whether a subject is missing is independent of t and may be ignored.

In this paper, we propose a semi-parametric model that incorporates both the
censoring information and biased sampling scheme for modeling biased survival data
(Section 2). In our model, the density function f(t) of the survival times is assumed
to be smooth, and the selection function w(t) is specified up to an unknown finite
dimensional parameter θ and is a constant when θ = θ0; for example, w(t) ∝ tθ,
for θ ≥ 0. So this model is applicable to both biased survival data and standard
survival data. The identifiability of estimating (f, w) is also discussed. The semi-
parametric parameter (f, θ) under our semi-parametric model is “sieve” identifiable.
In Section 3, two estimators, one called weighted kernel estimator (WKE) and the
other called transformation-based estimator (TBE), are derived for estimating f ;
and a “pseudo” maximum likelihood procedure is proposed for estimating θ. Our
new estimators are compared with those that ignore either censoring or sampling
biases or assume that the selection function is known; and examined as the sample
size increases (Section 4). The L1, L2 distances and MSE of our estimators f̂ con-
verge, while the naive estimator (that ignore both censoring and selection biases),
the K–M estimator and the Jones estimator [8] did not perform as well as ours. In
terms of a confidence interval for F (t), our WKE and TBE also beat the naive, the
K–M and Jones estimators. The application of the new estimators is illustrated via
an analysis of a survival data set on time until death of bone-marrow transplant
patients in Section 5. The paper concludes with some discussions in Section 6.

2. Model

In an idealized situation, there would be T1, . . . , TN
iid∼ f for us to make an inference

about f . In reality, we observe only a subset of T1, . . . , TN , where each Ti is included
in the subset with probability w(ti) if the value of Ti is ti. The function w(t) is
called the selection function. Abusing the notation a little, we denote the subset
by T = {t1, t2, . . . , tn}, then the observed sample size n ∼ Binomial (N, κ), where
κ = Ef (w(T )) < ∞ is the mean value of the probability of observing T . The
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observed sample T no longer has the common pdf f . Instead, conditioning on n,

(1) t1, . . . , tn
iid∼ fw(t) ≡ w(t)f(t)

κ
.

Thus, if a standard procedure that ignores the selection bias in T is used, the
resulting density estimate based on ti’s might be consistent to fw, but not to f , the
density of interest. A new procedure that accounts for both censoring and selection
biases must be developed to delineate f and w.

Identifiability. If both f(t) and w(t) in (1) are completely unknown, the problem
of estimating both f and w based on T , one biased sample, is unidentifiable. For
any w(t) and an arbitrary h(t) > 0 for which the integral κ′ =

∫
f(u)/h(u)du is

finite, the pair (w(t), f(t)) gives the same likelihood as the pair (h(t)w(t), f(t)/(h(t)·
κ′)). To ensure the identifiability, (a) either w(t) or f(t) has to be assumed to be
parametric; or (b) there is another biased sample T ′ which has some overlap with
T . The overlap T ∩ T ′ provides some information about w and hence allows both
f and w to be estimable nonparametrically in the range of T ∩ T ′. See Lloyd and
Jones [12], Wang and Sun [25], for more information on nonparametric estimates
of f and w, based on two biased samples.

In this paper, we consider the case when there is only one biased survival sample,
which is T with some of its members censored. Here N , the size of the idealized
sample is not assumed to be known. In other words, our first model assumption is:

Model Assumption 2.1. The observable sample is: (T, I) = {(t̃i, Ii), i = 1, . . . , n},
where t̃i = ti ∼ fw if ti is uncensored (Ii = 1), and t̃i = ci, a censoring time, if
ti is censored (Ii = 0). The censoring times ci’s are independent of survival times
ti’s and have a common censoring distribution that has the same support as that
of fw. Further, a right censoring scheme is assumed: Ii = 1 if ti ≤ ci, 0 otherwise.

To ease the notation, we abuse the notation again to simplify t̃i by ti hereafter.
So, we observe {(ti, Ii)}, where if Ii = 1, the actual survival time is ti ∼ fw,
uncensored, if Ii = 0, the survival time is censored and is greater than ti.

Next, given only one biased survival sample, we shall assume either w or f to
be a parametric function. If both f and w are parametric functions, estimating f
and w is equivalent to estimating parameters in a parametric survival model. For
example, let

f(t) ∝ γαtα−1e−γtα

, and w(t) ∝ tβ ,

then the weighted density is

fw(t) =
γα

κ′ tα+β−1e−γtα

.

The unknown parameters, α, β, γ, can be estimated by maximizing the likelihood:

(2) L =
∏

i

[fw(ti)]Ii [Sw(ti)]1−Ii ,

where Sw(ti) = 1−
∫ ti

0
fw(u)du is the survival function at ti. The expression of the

resulting mle from (2) may be complicated but the estimates are straightforward to
compute. Hence, as long as the parameters are identifiable from (2), the parameters
can be estimated using standard parametric estimation procedures.1

1In the case where both f(t) and w(t) are specified up to an unknown finite dimensional
parameter, typical identifiability conditions for a parametric model are still needed (though stan-
dard) to estimate the parameters consistently. For example, if f(t) ∝ eαt, w(t) ∝ e−βt, then
fw(t) ∝ e(α−β)t. Clearly, only α − β is identifiable based on one biased sample.
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The estimation problem becomes more interesting and challenging when f(t) is
assumed to be smooth while w(t) is a parametric function. This semi-parametric
model is more general than a parametric model and is useful when there is no
obvious choice for a parametric assumption on f . So, we assume next:

Model Assumption 2.2. For the biased survival data in Model Assumption 2.1,
the pdf f is assumed to be smooth and the selection function w(t), denoted hereafter
by w(t, θ), is specified up to an unknown finite dimensional parameter θ ∈ Θ. Hence
the weighted density is now

(3) fw(t) =
w(t, θ)f(t)

κ(θ)

where κ(θ) = Ef (w(T, θ)) with the expectation taken for T ∼ f .

The semi-parametric model specified by (3) is related to those considered by
Gill et al [6], Robbins and Zhang [14], and Vardi and Zhang [21], among others.
A notable difference is that in our semi-parametric model (which satisfies Model
Assumptions 2.1 and 2.2), f is assumed smooth so that nonparametric smoothing
techniques can be used in estimating f and a sieve estimate of θ based on a pseudo
likelihood can be developed as that in Section 3.

Let S(θ) = {t : w(t, θ) > 0} be the support of w(t, θ). If S(θ) depends on θ in
that both sets S(θ)− S(θ′) and S(θ′)− S(θ) have positive measure under F for all
θ 
= θ′ ∈ Θ, then both θ and f are completely identifiable as shown by Lemma 2.3
of Gilbert et al. [5]. In practice, the selection function may be a polynomial function
in t, e.g. w(t, θ) ∝ tθ, θ ≥ 0, and w(t, 0) is a constant. This w has support (0,∞),
which is independent of θ. So it does not satisfy the condition of this Lemma 2.3.
However, we can put a constraint on the form of w(t, θ) and the type of f̂(t), for
each fixed sample size. Then the resulting semi-parametric estimator, under a sieve
identifiability defined in §3, will be similar to those obtained by “sieve” methods
and hence will lead to reasonable estimators of θ and f . See Section 3.

Alternatively, if one can model f as a parametric function, the assumption for
w can be relaxed to be nonparametric. In Sun and Woodroofe [18], f is assumed
to come from an exponential family of distributions and w is assumed only to be
monotone. They also developed an iterative MM (maximization-maximization) al-
gorithm for estimating both w and parameter in f when N in the idealized situation
is known and unknown (two very different cases). They showed that the MM al-
gorithm converges to correct (penalized) maximum likelihood estimators and the
estimators are consistent. This type of semi-parametric model is dual to the semi-
parametric model proposed above and may be extended to allow for censored ob-
servations. We do not consider this extension in this paper. For a recent tutorial on
MM algorithms under other settings, see [7].

3. Semi-parametric estimators

In this section, we develop semi-parametric estimators of (f , θ) under Model As-
sumptions 2.1 and 2.2, and discuss an additional identifiability condition required
for our estimation procedure.

3.1. Weighted kernel estimator (WKE)

The bias due to censoring can be corrected in a standard kernel estimator by weight-
ing the K–M estimator with the censoring information as proposed by Marron and
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Padgett [13]. The basic idea is as follows: Order the sample (T, I) with respect to
T and denote it by {(t(i), I[i]), i = 1, . . . , n}. Then the K–M estimate of the cdf is

(4) F̂km(t) =




0, 0 ≤ t ≤ t(1),

1 −
∏j−1

i=1

(
n−i

n−i+1

)I[i]

, t(j−1) < t ≤ t(j),

1, t > t(n).

The Marron and Padgett’s kernel estimator of f(t) induced by F̂km is then

f̂(t; h) =
∫

Kh(t − z)dF̂km(z) =
n∑

i=1

siKh(t − t(i)),

where Kh(t) = (1/h)K(t/h), K is a symmetric probability density kernel such as
the N(0, 1) density function, and si is the size of the jump of F̂km in (4) at t(i).

We can correct the selection bias by replacing the weight function si with
si/w

(
t(i), θ

)
. Therefore, a new weighted kernel estimator is proposed,

(5) f̂wk(t) = κ̂wk

n∑
i=1

siKh(t − t(i))

w(t(i), θ̂)
,

where κ̂wk is a normalizing constant, such that κ̂−1
wk = (

∑
si/w(t(i), θ̂)), and θ̂ is a

good estimate of θ, such as one described in Section 3.3. If w(t(i), θ̂) ∝ t(i) is a known
length-biased selection function, f̂wk(t) in (5) is reduced to the Jones estimate [8].
See the comparisons of f̂wk with the Jones estimate in Section 4.

3.2. Transformation based estimator (TBE)

Another way to correct both the selection and censoring biases is by using the
transformation-based method of El Barmi and Simonoff [4] to correct for the se-
lection bias, and using si from the K–M estimate of the transformed variable to
account for the censoring bias, simultaneously.

Let g(y) be the density function of Y = W (T ) ≡ W (T, θ), where T ∼ fw and

W (t, θ) =
∫ t

0

w(u, θ)du

is the cumulative selection function. For example, if w(t, θ) = c · tθ, for a constant
c > 0 and θ ≥ 0, then W (t, θ) = c · tθ+1/(θ + 1) is monotone in t on [0,∞). The
cumulative distribution function of Y can be easily shown to be

(6) G(y) = Fw

(
W−1(y)

)
,

where W−1(t) is the inverse function of W (t, θ) for fixed θ and Fw(x) =
∫ x

0
fw(u)du

is the cdf of fw. Differentiating G(y), we obtain the pdf g(y) = f(W−1(y))/κ. Thus,

f(t) = κ · g(W (t, θ)).

Hence, for fixed θ, let (Y, I) = {(Yi, Ii), i = 1, . . . , n}, where Yi = W (ti, θ). Or-
der this sample with respect to Y and denote it by {(Y(i), I[i]))}. Then the K–M
estimator of the cdf of Y is

F̂km(y) =




0, 0 ≤ y ≤ Y(1),

1 −
∏j−1

i=1

(
n−i

n−i+1

)I[i]

, Y(j−1) < y ≤ Y(j),

1, y > Y(n).
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Let si denote the jump size of this K–M estimate at Y(i). Then our proposed
transformation based estimator is

(7) f̂tb(t) = κ̂tb

n∑
i=1

siKh(W (t, θ) − Y(i)),

where κ̂tb is a normalizing constant such that κ̂−1
tb =

∑
siKh(W (t, θ) − Y(i)). Here

θ is replaced by a good estimate θ̂ when θ is unknown. See next section for an
estimate of θ. If θ is known and si = 1/n for all i, f̂tb(t) is reduced to the El Barmi
and Simonoff estimate.

3.3. Estimator of θ

If θ is unknown, we propose to estimate it by maximizing a corresponding “pseudo”
or “sieve” log-likelihood:

l̂wk(θ) =
n∑

j=1

Ij log[f̂wk(tj , θ)] +
n∑

j=1

(1 − Ij) log[Ŝwk(tj , θ)], or(8)

l̂tb(θ) =
n∑

j=1

Ij log[f̂tb(tj , θ)] +
n∑

j=1

(1 − Ij) log[Ŝtb(tj , θ)](9)

where f̂wk(t, θ) = f̂wk(t) and ftb(t, θ) = f̂tb(t) are defined in (5) and (7) with θ̂

replaced by θ, and Ŝwk(tj , θ) and Ŝtb(tj , θ) are the survival functions at point tj for
the two methods respectively,

Ŝwk(t, θ) = 1 −
∫ t

0

f̂wk(u, θ)du, Ŝtb(t, θ) = 1 −
∫ t

0

f̂tb(u, θ)du.

In the rest part of this paper, the following “sieve” identifiability is assumed:

Model Assumption 3.1 (Sieve identifiability). The semi-parametric model
with unknown parameters θ and f is “sieve” identifiable in the following sense:

l̂wk(θ1) = l̂wk(θ2) for a.s. all ti ∈ R+ ⇐⇒ θ1 = θ2,

l̂tb(θ1) = l̂tb(θ2) for a.s. all ti ∈ R+ ⇐⇒ θ1 = θ2,

where R+ is the support of f . For practical purposes, in the one-dimensional case,
R+ can be taken as (0, a) for some large a > 0.

This type of identifiability ensures that θ is identifiable under the sieve likelihood
(8), or (9), respectively, and the mle of θ from the corresponding sieve likelihood
exists. Call the θ̂ which maximizes (9), the pseudo mle. Since the sieve likelihood is
usually a good approximation to the true likelihood as n → ∞, we expect our WKE
and TBE f̂ based on the θ̂ to be consistent. This is very much in the same spirit as
that of a histogram estimator. A properly chosen histogram estimator is consistent
to f under some regularity conditions while the fully nonparametric mle of f is a
useless and inconsistent estimate of f . The fully nonparametric mle places a delta
function at every data point. The consistency of our WKE and TBE are confirmed
by Table 1 in Section 4. Our final WK and TB estimators of f are f̂wk(t, θ̂wk) and
f̂tb(t, θ̂tb), where θ̂wk and θ̂tb are the respective pseudo mle’s from the corresponding
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WK and TB sieve likelihoods (8) and (9). See Section 6 for a further discussion on
the asymptotic justification of our proposed procedures.

In some extreme cases or when the sample size is not large enough, the optimal
value of θ may be located at the edge of the specified range Θ of θ. The penalized
log-likelihoods of the form

�̂∗wk = log L̂wk =
∑
j∈U

log f̂wk(tj , θ) +
∑
j∈C

log Ŝwk(tj , θ) −
αn

κwk
,(10)

�̂∗tb = log L̂tb =
∑
j∈U

log f̂tb(tj , θ) +
∑
j∈C

log Ŝtb(tj , θ) −
αn

κtb
,(11)

are then considered to overcome this difficulty, where C = {i : Ii = 0} and U = {i :
Ii = 1}, 0 < α ≤ 1 may approach zero as n → ∞, which was discussed in details
by Woodroofe and Sun [26]. This penalized log-likelihood is maximized subject to
the constraint

w(t, θ) ≥ ε, for all t ∈ R+, ε ≥ 0 and sup
t

w(t, θ) = 1.

Under this constraint, “w(t, θ) ∝ t” means that w(t, θ) is only proportional to t in
(ε, a − ε) ∈ R+ for some ε > 0.

In this study, we take α = cn−0.5, where c is a constant and its value can be
chosen by the Jackknife or Cross-validation method. In this paper, we choose c by
minimizing either of the following expressions,

CV1 =
n − 1

n

∑
(θ̂−i,c − θ̂.,c)2 + (n − 1)2(θ̂c − θ̂.,c)2,(12)

CV2 =
1
n

∑
i

f̂−i,c(ti),(13)

CV3 =
1

κ̂c(1 − κ̂c)

{
n − 1

n

∑
(κ̂−i,c − κ̂.,c)2 + (n − 1)2(κ̂c − κ̂.,c)2

}
,(14)

where the subscript “−i” means that the ith data point has been omitted and the
subscript “.” denotes an average of ∗−i’s. The CV estimation of c can be compu-
tationally intensive. For large data sets, the fast Fourier transformation may be
implemented to speed up the algorithm [17].

4. Simulation Studies

4.1. Setup

In this simulation study, we consider a Weibull density with shape parameter γ = 2
and scale parameter λ = 1,

(15) f(t, γ, λ) = λγtγ−1 exp(−λtγ).

The solid line in Figure 1 shows the density curve of f defined in (15).
To show the results of ignoring either sampling or censoring biases in a typical

density estimate, we draw four samples using the following four designs. The kernel
density curves of these four samples (without a correction for either selection or
censoring biases), f̂(t) = 1/(nh)

∑
i K((t− ti)/h) for ti ∈ S, are shown in Figure 1.
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Fig 1. Kernel estimates of densities for samples with sampling bias and/or censoring.

• Simple random sample (S = S0): A simple random sample of size 3000 was
drawn from f . The density curve of this sample was estimated by using the
standard kernel method and is shown by the short-dashed curve in Figure 1.
It’s easy to see this curve is close to the true density curve of f as expected.

• Sample with censoring bias only (S = Sc): A sample of size 3000 was randomly
selected from f and 30% of the data points were randomly censored. As shown
in Figure 1, the kernel density curve (dotted curve) of sample Sc shifts to the
left of the true density curve f . This is also expected as now the sampling
distribution (of Sc) is different from the target distribution (f). This is typical
for right-censored survival data.

• Sample with selection bias only (S = Sb): A sample of size 3000 was randomly
chosen from the population. Each of these 3000 elements was observed subject
to the selection probability w(t, θ) = w(t, 0.5) ∝

√
t. This w(t, θ) implies that

the elements with longer survival times were more likely to be sampled. The
kernel density estimate of the density curve of sample Sb was computed and
is shown as the dash-dotted line in Figure 1. We see that the sample density
curve shifts to the right. This is also a case that the sampling distribution is
different from the target distribution.

• Sample with both censoring and selection biases (Scb): In sample Sb, if 30% of
the data are further randomly censored, we obtain a biased survival sample.
The density curve of Scb is estimated and shown as the long-dashed curve in
Figure 1. We find that the selection bias in this case somehow has balanced
out the left-shift-ness of the density curve of Sc though it is still not as good
as the estimate based on a simple random sample from f . We can not rely on
this kind of cancellation. If w(t, θ) had decreased with the increase of t, the
selection bias would make the sample density curve more right-skewed.

The observed sample sizes n were governed by the selection function and cen-
soring scheme; they varied from one realization to another.

The results from these four experiments show that if a sampling distribution is
different from a target distribution, then the deviation of the sampling distribution
from the target distribution must be considered in developing a good estimate of
the target density function, otherwise the resulting estimator is inconsistent.
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4.2. Estimates based on a biased and censored sample

Using a biased sample that has some of the data points right-censored, we can
estimate f and w by WKE and TBE. First, we estimate the unknown parameter θ
in the selection function w(t, θ) by maximizing the log-likelihoods in (8) and (9) or
the penalized log-likelihoods in (10) and (11).

Figure 2 shows the pseudo maximum likelihood estimates of the unknown pa-
rameter θ. By using the WKE, we obtained an estimate of θ̂ = 0.42 (plot 2(a)),
which is closer to the true θ = 0.5 than that by using the TBE (plot 2(b)). We can
then estimate f by using the estimates in (5) and (7), by replacing θ’s with θ̂’s. In
Figure 3, the thick solid line shows the true density curve of f , while the dashed
line shows the WKE by treating the true parameter θ as known (θ = 0.5) and the
thin solid line shows the WKE by using the estimated parameter θ̂ = 0.42. The
kernel density curve of the sample is also plotted as the dot-dashed line. From this
figure, we can see that the three density curves are close and the WKE’s based on
known θ and θ̂ are only slightly better. However, this result is based on only one
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Fig 2. Maximum likelihood estimators of θ.
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Fig 4. Transformation based estimates of f .

sample. See the next subsection for a report on the overall performance.
The TBE’s obtained by using the true and estimated θ are displayed in Figure 4.

From Figure 4, we can see that by using the true parameter θ, we obtained an
estimate (dashed line) which is close to the density curve of the sample (biased
with censoring). While by using the estimated parameter θ̂ = 0.898, we obtained
an estimate which is much closer to the true density curve f . The reason for this
superiority is perhaps that fixing θ = 0.5 may have limited some degrees of freedom
of the semi-parametric approach – data can speak for themselves. The curves of
TBE’s are closer to the true density curve but coarser than those of WKE’s. This is
expected because the TBE corrects for the selection bias and censoring bias exactly
in the same order as how biased survival data are formed, and the coarseness may
come from the transformation or the way the window-width is determined. Further
improvement is possible by applying some smoothing techniques to the TBE.

Hence, as an estimate of f , TBE estimate is the winner though it is a bit rough,
but it can be smoothed out one more time.

4.3. Overall performance of WKE and TBE

To study the overall performance of the weighted kernel estimator and transforma-
tion-based estimator, we designed two experiments. The first experiment has the
following design:

Step 1: Draw a sample S of size N = 50 from f , subject to biased sampling
with a selection function w(t, θ) = w(t, 1.0), and with 30% of the data points
censored.

Step 2: Based on this sample S, estimate the cdf F (t) by using the WKE, TBE,
Jones estimate, naive estimate (with which we estimate the density function
from the biased survival data, but without considering either the selection or
censoring biases), denote the results by F̂wke, F̂tbe, F̂jones, F̂naive respectively.

Step 3: Repeat step 1 and step 2 for 1000 times. Compute L1, L2 and MSE as
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defined by

L1 =
∑

i

|F̂ (ti) − F (ti)| · di, L2 =
∑

i

(F̂ (ti) − F (ti))2 · di,

MSE =
1
n

∑
i

(F̂ (ti) − F (ti))2,

where di = (ti+1−ti−1)/2 for i = 2, 3, . . . , n−1 and d1 = t2−t1, dn = tn−tn−1.
So, L1 and L2 above are approximations of the L1 and L2 distances (in the
form of integrals).

Step 4: Take other values of N , N = 100, 200, . . . , and repeat step 1 through
step 3.

Table 1 shows the L1, L2 distances, and MSE of f̂ from the true f . Note that since
the real θ = 1 in this case, the assumptions used in the Jones estimate are justified
and the Jones estimate is equivalent to the WKE with a known θ. From this table,
we see that the L1, L2 distances and MSE’s of the WKE, TBE and Jones estimates
decrease as n increases while those of the naive estimate do not. Also, the L1, L2

distances and MSE’s of the WKE and TBE are much smaller than those of the
Jones estimate, which is consistent to the findings in the previous subsection that
the WKE and TBE of f based on estimated θ perform better than the ones based
on known θ.

Table 1

Comparisons of estimates

Population L1 L2 MSE

size mean sd mean sd mean sd
tbe 0.279 0.126 0.066 0.056 0.037 0.034

50 wke 0.277 0.135 0.064 0.056 0.037 0.034
jones 0.345 0.133 0.091 0.064 0.051 0.039
naive 4.837 1.677 1.999 0.900 1.080 0.422

tbe 0.239 0.100 0.045 0.037 0.024 0.022
100 wke 0.260 0.126 0.051 0.045 0.028 0.025

jones 0.345 0.109 0.079 0.046 0.041 0.026
naive 3.023 0.868 1.340 0.495 0.651 0.215

tbe 0.192 0.072 0.029 0.021 0.014 0.012
200 wke 0.220 0.105 0.035 0.030 0.019 0.017

jones 0.334 0.083 0.068 0.031 0.035 0.017
naive 1.808 0.430 0.882 0.272 0.406 0.111

tbe 0.156 0.045 0.019 0.010 0.009 0.006
400 wke 0.179 0.091 0.024 0.022 0.013 0.012

jones 0.328 0.060 0.063 0.021 0.032 0.012
naive 0.613 0.178 0.261 0.110 0.170 0.077

tbe 0.140 0.039 0.016 0.008 0.007 0.004
800 wke 0.148 0.073 0.016 0.016 0.009 0.008

jones 0.322 0.044 0.058 0.015 0.030 0.008
naive 1.109 0.207 0.647 0.176 0.185 0.023

tbe 0.124 0.033 0.012 0.006 0.005 0.003
1600 wke 0.126 0.060 0.012 0.011 0.006 0.006

jones 0.323 0.032 0.058 0.011 0.030 0.006
naive 0.838 0.317 0.396 0.218 0.191 0.028

tbe 0.118 0.034 0.011 0.006 0.005 0.003
3000 wke 0.107 0.048 0.009 0.008 0.004 0.004

jones 0.319 0.024 0.056 0.008 0.028 0.005
naive 0.855 0.263 0.425 0.177 0.199 0.021
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Fig 6. Weighted kernel estimates of f .

In our second experiment, we take θ = 0.5 and repeat step 1 through step 3 and
then compute the 95% pointwise confidence bands (based on the 2.5 and 97.5 per-
centage points from the repeats for each point) for the TBE, WKE, Jones estimate,
the Kaplan–Meier estimate and the naive estimate. In this case, the length-biased
assumption (θ = 1) assumed in the Jones estimate is off from the true θ = 0.5.
From Figure 5 and Figure 6, we can easily find that when both selection bias and
censoring bias exist, only our 95% confidence bands from TBE and WKE cover
completely the true CDF of the survival times (the solid curve in the middle). The
Jones estimate, the Kaplan–Meier estimate, and the naive estimate under-estimated
F (t) substantially. In Figure 5, we select the constant c by the criteria in (14) and
in Figure 6, we select the constant c by the criteria in (13).

4.4. Remarks

A direct plug-in methodology was used to select the bandwidth in our study as that
used in [15, 16, 23]. This algorithm was built into an R package: KernSmooth 2.22
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Copyright M. P. Wand 1997 .
For simplicity, we used the Gaussian kernel here. Other kernels such as the

boundary kernels can also be used to correct the boundary effect for the survival
data (survival times will never be negative.)

Some rough knowledge about κ or θ might be used to restrict the range of the
search for c. Here we restrict c ∈ (1, 20).

5. An application

In a data set of bone marrow transplantation, there are a total of 137 patients, who
were treated at one of four hospitals. The study involves transplants conducted
at these institutions from March 1, 1984, to June 30, 1989. The maximum follow-
up was 7 years. There were 42 patients who relapsed and 41 who died while in
remission. Twenty-six patients had an episode of acute Graft-versus-host disease,
and 17 patients either relapsed or died in remission without their platelets returning
to normal levels [10].

Several potential risk factors were measured at the time of transplantation. For
each disease, patients were grouped into risk categories based on their status at
the time of transplantation. The categories were as follows: acute lymphoblastic
leukemia (ALL), acute myelocytic leukemia (AML) low-risk and AML high-risk.
Here we will focus on the disease-free survival probabilities for ALL, AML low-risk
and AML high-risk patients. An individual is said to be disease-free at a given time
after transplant if that individual is alive without the recurrence of leukemia.

There are 38 patients in group ALL, 54 patients in group AML low-risk and 45
patient in group AML high-risk. Figure 7 shows the estimates of the cumulative
distribution function F (t) with the K–M estimator for the three groups. Because
the largest times in the study are different for these three groups, we find that these
three estimates end at different points. The figure also suggests that if no sampling
bias exists in the data, the patients in group AML low-risk have the most favorable
prognosis (dashed line), while the AML high-risk group has the least favorable
prognosis (dash-dotted line).

Now we use the new method to estimate from the above data by considering the
possible selection bias. Here, six different estimates of θ can be obtained by TBE
and WKE and by using the three different cross-validation methods in (12)–(14).
Sometimes, we will not get exactly the same value by these six different methods.
Which one shall we use? Simulation studies were performed for this purpose. We
first generate data sets similar to the data of the three groups – with similar distribu-
tions and same proportion of data points censored. Second, these three data sets are
resampled under selection functions w′(t, θ) with different θ values (θ = 0.5, 1, 1.5)
and the sample sizes are taken to be identical to the sample sizes of the data of
groups ALL, AML low-risk and AML high-risk. Finally, θ’s were estimated from
those simulated samples with the new estimators (six different combinations). The
above procedure was repeated 100 times for each fixed θ value. We found that the
WKE with the CV3 criterion defined in (14) was the winner for all θ values. For
different applications, the conclusions may vary. The estimated selection functions
for these three groups are

w(t) ∝ t0.45 ALL;(16)
w(t) ∝ t0.89 AML low risk;(17)
w(t) ∝ t0.89 AML high risk.(18)
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These functions are plotted in Figure 8. From Figure 8, we can see that the biased
sampling scheme for group ALL is different from those of the other two groups.
In groups AML lower-risk and AML high-risk, patients with longer survival times
without the recurrence of leukemia are relatively more likely to be involved in
studies, θ = 0.89. The selection functions are close to the selection function of the
length biasing (dotted straight line, in which θ = 1). While the group ALL has a
relatively flatter selection function with larger survival times (θ = 0.45). Without
considering the selection bias, the actual risks will be under-estimated in all three
groups.

By considering the effects caused by the biased sampling, the new cumulative
failure probabilities for patients in the three groups are computed and are shown in
Figure 9. From Figure 9, we can find that the risks of the patients in group AML
high-risk are higher than those of the other two groups. This is consistent with the
result of Kaplan–Meier estimates. What differs from the K–M estimate is that the
risk of group AML low-risk is actually as high as that of group ALL at least in the
early stage.
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6. Discussion

Since our estimation procedure also allows for constant selection function, our semi-
parametric model for biased survival data is more general than the standard model.
So our estimates can be used as a general-purpose procedure for analyzing survival
data with a right censoring scheme that may or may not be subject to biased
sampling. If our estimates are much different from the standard estimates such as
the K–M estimate that ignores the selection bias, then the MAR assumption or no
biased sampling assumption may be invalid, and caution must be exercised in using
the standard estimate for biased survival data, which could be misleading.

In our simulation experiments, we considered w(t) ∝ tθ for a one-dimensional
θ. The resulting semi-parametric model is more general than the length-biased or
area-biased sampling models. The procedure should also work for other parametric
forms of w and/or for multidimensional θ as long as Model Assumption 2.1 is valid.
In practice, which family of w should we use? Some empirical experience may help
us in choosing such a family. Research on model selection of w is needed. In the
absent of either of these two aids, we recommend to start from a polynomial family
of w for some reasonable range of θ.

We used a kernel density estimate to estimate g in the TBE or fw in the WKE,
and the Kaplan–Meier estimate to account for censoring bias. Other nonparamet-
ric smoothing estimates of density, and nonparametric estimates other than the
Kaplan–Meier estimate of the survival function can in principle also be used in
building our new estimates for f and θ.

A full-fledged asymptotic analysis of our estimators is fairly difficult and is not
the objective of this paper. However, heuristically, if θ is known, it is conceivable
that the TBE and WKE are consistent to f . When θ is unknown, if the sieve
likelihood in (9) is a smooth function of θ, then the plug-in estimate of f by a good
estimate θ̂ can be shown to be consistent. Note that we do not really need θ̂ to
be consistent; all we need is that the resulting estimated selection function ŵ(t, θ̂)
is consistent to w(t, θ) up to a proportional constant at t = ti’s. See (1) and the
expressions of the WKE and the TBE. We conjecture that the plug-in estimate of
f by the pseudo mle of θ is consistent under the sieve identifiability condition. This
conjecture is supported by the general asymptotic property of sieve estimates (see,
e.g. Bickel et al. [1]) and is confirmed by simulation results shown in Table 1.
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