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Local asymptotic minimax risk bounds in

a locally asymptotically mixture of normal

experiments under asymmetric loss

Debasis Bhattacharya1 and A. K. Basu2

Visva-Bharati University and Calcutta University

Abstract: Local asymptotic minimax risk bounds in a locally asymptotically
mixture of normal family of distributions have been investigated under asym-
metric loss functions and the asymptotic distribution of the optimal estimator
that attains the bound has been obtained.

1. Introduction

There are two broad issues in the asymptotic theory of inference: (i) the problem
of finding the limiting distributions of various statistics to be used for the pur-
pose of estimation, tests of hypotheses, construction of confidence regions etc., and
(ii) problems associated with questions such as: how good are the estimation and
testing procedures based on the statistics under consideration and how to define
‘optimality’, etc. Le Cam [12] observed that the satisfactory answers to the above
questions involve the study of the asymptotic behavior of the likelihood ratios. Le
Cam [12] introduced the concept of ‘Limit Experiment’, which states that if one is
interested in studying asymptotic properties such as local asymptotic minimaxity
and admissibility for a given sequence of experiments, it is enough to prove the
result for the limit of the experiment. Then the corresponding limiting result for
the sequence of experiments will follow.

One of the many approaches which are used in asymptotic theory to judge the
performance of an estimator is to measure the risk of estimation under an appro-
priate loss function. The idea of comparing estimators by comparing the associated
risks was considered by Wald [19, 20]. Later this idea has been discussed by Hájek
[8], Ibragimov and Has’minskii [9] and others. The concept of studying asymptotic
efficiency based on large deviations has been recommended by Basu [4] and Ba-
hadur [1, 2]. In the above context it is an interesting problem to obtain a lower
bound for the risk in a wide class of competing estimators and then find an estima-
tor which attains the bound. Le Cam [11] obtained several basic results concerning
asymptotic properties of risk functions for LAN family of distributions. Jeganathan
[10], Basawa and Scott [5], and Le Cam and Yang [13] have extended the results
of Le Cam for Locally Asymptotically Mixture of Normal (LAMN) experiments.
Basu and Bhattacharya [3] further extended the result for Locally Asymptotically
Quadratic (LAQ) family of distributions. A symmetric loss structure (for example,
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squared error loss) has been used to derive the results in the above mentioned ref-
erences. But there are situations where the loss can be different for equal amounts
of over-estimation and under-estimation, e. g., there exists a natural imbalance in
the economic results of estimation errors of the same magnitude and of opposite
signs. In such cases symmetric losses may not be appropriate. In this context Bhat-
tacharya et al. [7], Levine and Bhattacharya [15], Rojo [16], Zellner [21] and Varian
[18] may be referred to. In these works the authors have used an asymmetric loss,
known as the LINEX loss function. Let ∆ = θ̂ − θ, a �= 0 and b > 0. The LINEX
loss is then defined as:

l(∆)=b[exp(a∆) − a∆ − 1].(1.1)

Other types of asymmetric loss functions that can be found in the literature are as
follows:

l(∆) =
{

C1∆, for ∆ ≥ 0
−C2∆, for ∆ < 0, C1, C2 are constants,

or

l(∆) =
{

λw(θ)L(∆), for ∆ ≥ 0, (over-estimation)
w(θ)L(∆), for ∆ < 0, (under-estimation),

where ‘L’ is typically a symmetric loss function, λ is an additional loss (in percent-
age) due to over-estimation, and w(θ) is a weight function.

The problem of finding the lower bound for the risk with asymmetric loss func-
tions under the assumption of LAN was discussed by Lepskii [14] and Takagi [17].
In the present work we consider an asymmetric loss function and obtain the local
asymptotic minimax risk bounds in a LAMN family of distributions.

The paper is organized as follows: Section 2 introduces the preliminaries and the
relevant assumptions required to develop the main result. Section 3 is dedicated to
the derivation of the main result. Section 4 contains the concluding remarks and
directions for future research.

2. Preliminaries

Let X1, . . . , Xn be n random variables defined on the probability space (X ,A, Pθ)
and taking values in (S,S), where S is the Borel subset of a Euclidean space and
S is the σ-field of Borel subsets of S. Let the parameter space be Θ, where Θ is
an open subset of R1. It is assumed that the joint probability law of any finite
set of such random variables has some known functional form except for the un-
known parameter θ involved in the distribution. Let An be the σ-field generated
by X1, . . . , Xn and let Pθ,n be the restriction of Pθ to An. Let θ0 be the true value
of θ and let θn = θ0 + δnh (h ∈ R1), where δn → 0 as n → ∞. The sequence δn

may depend on θ but is independent of the observations. It is further assumed that,
for each n ≥ 1, the probability measures Pθo,n and Pθn,n are mutually absolutely
continuous for all θ0 and θn. Then the sequence of likelihood ratios is defined as

Ln(Xn; θ0, θn) = Ln(θ0, θn) =
dPθn,n

dPθ0,n
,

where Xn = (X1, . . . , Xn) and the corresponding log-likelihood ratios are defined
as

Λn(θ0, θn) = log Ln(θ0, θn) = log
dPθn,n

dPθ0,n
.
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Throughout the paper the following notation is used: φy(µ, σ2) represents the nor-
mal density with mean µ and variance σ2; the symbol ‘=⇒’ denotes convergence
in distribution, and the symbol ‘→’ denotes convergence in Pθ0,n probability.

Now let the sequence of statistical experiments En = {Xn,An, Pθ,n}n≥1 be a
locally asymptotically mixture of normals (LAMN) at θ0 ∈ Θ. For the definition of
a LAMN experiment the reader is referred to Bhattacharya and Roussas [6]. Then
there exist random variables Zn and Wn (Wn > 0 a.s.) such that

Λn(θ0, θn) = log
dPθ0+δnh,n

dPθ0,n
− hZn +

1
2
h2Wn → 0,(2.1)

and

(Zn, Wn) ⇒ (Z, W ) under Pθ0,n,(2.2)

where Z = W 1/2G, G and W are independently distributed, W > 0 a.s. and
G ∼ N(0, 1). Moreover, the distribution of W does not depend on the parameter h
(Le Cam and Yang [13]).

The following examples illustrate the different quantities appearing in equations
(2.1) and (2.2) and in the subsequent derivations.

Example 2.1 (An explosive autoregressive process of first order). Let the
random variables Xj , j = 1, 2, . . . satisfy a first order autoregressive model defined
by

(2.3) Xj = θXj−1 + εj , X0 = 0, |θ| > 1,

where εj ’s are i.i.d. N(0, 1) random variables. We consider the explosive case where
|θ| > 1. For this model we can write

fj(θ) = f(xj |x1, . . . , xj−1; θ) ∝ e−
1
2 (xj−θxj−1)

2
.

Let θ0 be the true value of θ. It can be shown that for the model described in
(2.3) we can select the sequence of norming constants δn = (θ2

0−1)
θn
0

so that (2.1) and
(2.2) hold. Clearly δn → 0 as n → ∞. We can also obtain Wn(θ0), Zn(θ0) and their
asymptotic distributions, as n → ∞, as follows:

Wn(θ0) =
(θ2

0 − 1)2

θ2n
0

n∑
j=1

X2
j−1 ⇒ W as n → ∞, where W ∼ χ2

1 and

Gn(θ0) = (
n∑

j=1

X2
j−1)

− 1
2 (

n∑
j=1

Xj−1εj) = (
n∑

j=1

X2
j−1)

1
2 (θ̂n − θ) ⇒ G,

where G ∼ N(0, 1) and θ̂n is the m.l.e. of θ. Also

Zn(θ0) = W
1
2

n (θ0)Gn(θ0) =
(θ2

0 − 1)
θn
0

(
n∑

j=1

Xj−1εj) ⇒ W
1
2 G = Z,

where W is independent of G. It also holds that

(Zn(θ0), Wn(θ0)) ⇒ (Z, W ).

Hence Z|W ∼ N(0, W ). In general Z is a mixture of normal distributions with W
as the mixing variable.
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Example 2.2 (A super-critical Galton–Watson branching process). Let
{X0 =1, X1, . . . , Xn} denote successive generation sizes in a super-critical Galton–
Watson process with geometric offspring distribution given by

(2.4) P (X1 = j) = θ−1(1 − θ−1)j−1, j = 1, 2, . . . , 1 < θ < ∞.

Here E(X1) = θ and V (X1) = σ2(θ) = θ(θ − 1). For this model we can write

fj(θ) = f(xj |x1, . . . , xj−1; θ) = (1 − 1
θ
)xj−xj−1(

1
θ
)xj−1 .

Let θ0 be the true value of θ. Here δn can be chosen as
√

θ0(θ0−1)

θ
n/2
0

. For this model

the random variables Wn(θ0), Zn(θ0) and their asymptotic distributions are:

Wn(θ0) =
(θ0 − 1)

θn
0

n∑
j=1

Xj−1 ⇒ W as n → ∞,

where W is an exponential random variable with unit mean. Here

Gn(θ0) = [θ0(θ0 − 1)]−
1
2 (

n∑
j=1

Xj−1)−
1
2

n∑
j=1

(Xj − θ0Xj−1) ⇒ G,

where G ∼ N(0, 1), and for W independent of G,

Zn(θ0) = W
1
2

n (θ0)Gn(θ0) ⇒ W
1
2 G.

It also holds that
(Zn(θ0), Wn(θ0)) ⇒ (W

1
2 G, W ).

The decision problem considered here is the risk in the estimation of a parameter
θεR1 using an asymmetric loss function l(.). Throughout the rest of the manuscript
the following assumptions apply:

A1 l(z) ≥ 0 for all z, z = θ̂ − θ
A2 l(z) is non increasing for z < 0, non-decreasing for z > 0 and l(0) = 0.
A3

∫ ∞

−∞
∫ ∞

0
l(w− 1

2 z)e−
1
2 cwz2

g(w)dwdz < ∞ for any c > 0, where g(w) is the
p.d.f. of the random variable W .

A4
∫ ∞

−∞
∫ ∞

0
w

1
2 z2l(w− 1

2 d − z)e−
1
2 cwz2

g(w)dwdz < ∞, for any c, d > 0.
Define la(y) = min(l(y), a), for 0 < a ≤ ∞. This truncated loss makes l(y)
bounded if it is not so.

A5 For given W = w > 0, h(β, w) =
∫ ∞
−∞ l(w− 1

2 β − y)φy(0, w−1)dy attains its
minimum at a unique β = β0(w), and Eβ0(W )) is finite.

A6 For given W = w > 0, any large a, b > 0 and any small λ > 0 the function
h̃(β, w) =

∫ √
b

−
√

b
la(w− 1

2 β − y)φy(0, ((1 + λ)w)−1)dy

attains its minimum at β̃(w) = β̃(a, b, λ, w), and Eβ̃(a, b, λ, W ) < ∞.
A7 lima→∞,b→∞,λ→0 β̃(a, b, λ, w) = β0(w).
A8 E(W− 1

2 ) < ∞.

Note the following:

1. Assumptions A3 and A4 are general assumptions made to ensure the finiteness
of the expected loss and other functions. Assumptions A5 and A6 are satisfied,
for example, by convex loss functions.
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2. If l(.) is symmetric, then β0(w) = 0 = β̃(a, b, λ, w).
3. If l(.) is unbounded, then the assumption A8 is replaced by A8′ as E(W−1 ×

Z
2
l(W− 1

2 Z)) < ∞.

Here we will consider a randomized estimator ξ(Z, W ) which can be written as
ξ(Z, W, U), where U is uniformly distributed on [0, 1] and independent of Z and
W . The introduction of randomized estimators is justified since the loss function
l(.) may not be convex.

3. Main result

Under the set of assumptions and notations stated in Section 2 we can have the fol-
lowing generalization of Hájek’s result for LAMN experiments under an asymmetric
loss structure.

Lemma 3.1. Let l(.) satisfy assumptions A1 – A7 and let Z|W be a normal random
variable with mean θ

√
w+β0(w) and variance 1. Further let W be a random variable

with p.d.f. g(w), then for any ε > 0 there is an α = α(ε) > 0 and a prior density
π(θ) so that for any estimator ξ(Z, W, U) satisfying

(3.1) P
θ=0(|ξ(Z, W, U) − W− 1

2 Z| > ε) > ε

the Bayes risk R(π, ξ) is

R(π, ξ) =
∫

π(θ)R(θ, ξ)dθ

=
∫

π(θ)E(la(ξ(Z, W, U) − θ)|θ)dθ(3.2)

≥
∫

l(w− 1
2 β0(w) − y)φy(0, w−1)g(w)dydw + α.

Proof. Let the prior distribution of θ be given by π(θ) = πσ(θ) = (2π)−
1
2 σ−1e−

θ2

2σ2 ,
σ > 0, where the variance σ2, which depends on ε as defined in (3.1), will be
appropriately chosen later. As σ2 −→ ∞, the prior distribution becomes diffuse.
The joint distribution of Z, W and θ is given by

(3.3) f(z|w)g(w)π(θ) = (2π)−1σ−1e−
1
2 (z−(θw

1
2 +β0(w)))2− 1

2
θ2

σ2 g(w).

The posterior distribution of θ given (W, Z) is given by ψ(θ|w, z), where ψ(θ|w, z)

is N(w
1
2 (z−β0(w))

r(w,σ) , 1
r(w,σ) ) and the marginal joint distribution of (Z, W ) is given by

(3.4) f(z, w) = φz(β0(w), σ2r(w, σ))g(w),

where the function r(s, t) = s + 1/t2. Note that the Bayes’ estimator of θ is
W

1
2 (Z−β0(W ))

r(W,σ) and when the prior distribution is sufficiently diffused, the Bayes’

estimator becomes W− 1
2 (Z − β0(W )).

Now let ε > 0 be given and consider the following events:

|W
1
2 (Z − β0(W ))

r(W, σ)
| ≤ b −

√
b, |ξ(Z, W, U) − W− 1

2 Z| > ε,

|W− 1
2 (Z − β0(W ))| ≤ M,

1
m

=
1
σ2

(
2M

ε
− 1) ≤ W ≤ m.
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Then

|W− 1
2 (Z − β0(W )) − W

1
2 (Z − β0(W ))

r(W, σ)
| = |

W− 1
2 (Z−β0(W ))

σ2

r(W, σ)
|

(3.5)
≤ M

σ2r(W, σ)
=

M

σ2W + 1
≤ ε

2
.

Now, for any large a, b > 0, we have

∫ b

−b

la(ξ(z, w, u) − θ)ψ(θ|z, w)dθ

(3.6)

=
∫ b

−b

la(ξ(z, w, u) − y − w
1
2 (z − β0(w))

r(w, σ)
)φy(0,

1
r(w, σ)

)dy,

where y = θ − w
1
2 (z−β0(w))

r(w,σ) . Now, since θ|z, w ∼ N(w
1
2 (z−β0(w))

r(w,σ) , 1
r(w,σ) ), we have

y|z, w ∼ N(0, 1
r(w,σ) ). It can be seen that |ξ(z, w, u)−w

1
2 (z−β0(w))

r(w,σ) −w− 1
2 β0(w)| > ε

2 .

Hence due to the nature of the loss function, for a given w > 0, we can have, from
(3.6),

∫ b

−b

la(ξ(z, w, u) − w
1
2 (z − β0(w))

r(w, σ)
− y)φy(0,

1
r(w, σ)

)dy

≥
∫ √

b

−
√

b

la(w− 1
2 β0(w) − y)φy(0,

1
r(w, σ)

)dy

(3.7)

≥
∫ √

b

−
√

b

la(w− 1
2 β̃(a, b, λ, w) − y)φy(0,

1
r(w, σ)

)dy + δ

= h̃(β̃(a, b, λ, w)) + δ,

where δ > 0 depends only on ε but not on a, b, σ2 and (3.7) holds for sufficiently
large a, b, σ2 (here λ = 1

wσ2 → 0 as σ2 → ∞ and 1
m ≤ w ≤ m).

A simple calculation yields

h̃(β̃(a, b, λ, w))

=
∫ √

b

−
√

b

la(w− 1
2 β̃(a, b, λ, w) − y)φy(0,

1
r(w, σ)

)dy

(3.8)

≥
∫ √

b

−
√

b

la(w− 1
2 β̃(a, b, λ, w) − y)φy(0,

1
w

)(1 − y2

σ2
)dy

= h(β0(w)) −
∫ √

b

−
√

b

la(w− 1
2 β̃(a, b, λ, w) − y)

y2

σ2
φy(0,

1
w

)dy.



318 D. Bhattacharya and A. K. Basu

Hence

R(π(θ), ξ) =
∫ ∞

−∞
π(θ)R(θ, ξ)dθ

≥
∫ b

−b

π(θ)E(la(ξ(Z, W, U) − θ))dθ

=
∫ b

θ=−b

∫ 1

u=0

∫ ∞

w=0

∫ ∞

z=−∞
la(ξ(z, w, u) − θ)ψ(θ|z, w)f(z, w)dθdudwdz(3.9)

≥
∫

h(β0(w))g(w)dw × P (|W− 1
2 (Z − β0(W ))| ≥ b −

√
b) − k

σ2

+ δP{|ξ(Z, W, U)−W− 1
2 Z|>ε, |W− 1

2 (Z−β0(W ))|≤M,
1
m

≤W ≤m},

using (3.7), (3.8) and assumption A4, where k > 0 does not depend on a, b, σ2. Let

A = {(z, w, u) ∈ (−∞,∞) × (0,∞) × (0, 1) :|ξ(z, w, u) − w− 1
2 z| > ε,

|w− 1
2 (z − β0(w))| ≤ M,

1
m

≤ w ≤ m}.

Then P (A|θ = 0) > ε
2 for sufficiently large M due to (3.1). Now under θ = 0 the

joint density of Z and W is φz(β0(w), 1)g(w). The overall joint density of Z and W
is given in (3.4). The likelihood ratio of the two densities is given by

f(z, w)
f(z, w|θ = 0)

= σ−1r(w, σ)−
1
2 e

1
2 (z−β0(w))2 w

r(w,σ)

and the ratio is bounded below on {(z, w) : |w− 1
2 (z − β0(w))| ≤ M, 1

m ≤ w ≤ m}
by σ−1r(m, σ)−

1
2 = 1

(mσ2+1)
1
2
. Finally we have

(3.10) P (A) =
∫ 1

u=0

∫
A

f(z, w, u)dzdwdu ≥ 1
(mσ2 + 1)

1
2

ε

2
.

Hence for sufficiently large m and M , from (3.9), we have

R(π(θ), ξ) ≥
∫

h(β0(w))g(w)dw[1 − α

2h(β0(w))
] − k

σ2
+ δ

ε

2
1

(mσ2 + 1)
1
2
,

assuming P [|W− 1
2 (Z − β0(W ))| ≤ b −

√
b] ≥ 1 − α

2h(β0(w)) . That is,

R(π(θ), ξ) ≥
∫

h(β0(w))g(w)dw − α

2
− k

σ2
+ δ

ε

2
1

(mσ2 + 1)
1
2
.

Putting δ ε
2 (mσ2 + 1)−1/2 − k

σ2 = 3α
2 we find R(π(θ), ξ) ≥

∫
h(β0(w))g(w)dw + α.

Hence the proof of the result is complete.

Theorem 3.1. Suppose that the sequence of experiments {En} satisfies LAMN
conditions at θ ∈ Θ and the loss function l(.) meets the assumptions A1–A8 stated
in Section 2. Then for any sequence of estimators {Tn} of θ based on X1, . . . , Xn

the lower bound of the risk of {Tn} is given by

lim
δ→0

lim inf
n→∞

sup
|θ−t|<δ

Eθ{l(δ−1
n (Tn − θ))} ≥

∫
l(β0(w) − y)φy(0, w−1)g(w)dydw
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Furthermore, if the lower bound is attained, then

δ−1
n (Tn − θ)) − W

1
2

n (Zn − β0(W ))
r(Wn, σ)

→ 0

or, as σ2 → ∞
δ−1
n (Tn − θ) − W

− 1
2

n (Zn − β0(W )) → 0.

Proof. Since the upper bound of values of a function over a set is at least its mean
value on that set, we may write, for sufficiently large n,

sup
|θ−t|<δ

Eθ{l(δ−1
n (Tn − θ))} ≥

∫ b

−b

π(h)E{la(δ−1
n (Tn − t) − h)|θ = t + δnh}dh,

whatever the values of constants a, b and the prior density π(h) may be. Now, let
Z|w, θ = t + δnh ∼ N(θw

1
2 + β0(w), 1). Then we can fix some δ > 0 and choose a, b

and π(.) in such a way that
∫ b

−b

π(h)E{la(ξ(Z, W, U) − h)|t + δnh}dh

≥
∫

l(β0(w) − y)φy(0, w−1)g(w)dydw − δ,

for any estimator ξ(Z, W, U).
Next we use Lemmas 3.3 and 3.4 of Takagi [17], where we set

Sn = δ−1
n (Tn − t), ∆n,t = W

− 1
2

n (Zn − β0(W )), and
Sn(∆n,t = x, U = u) = inf{y : P (Sn ≤ y|∆n,t = x) ≥ u}.

Let Fn,h = distribution of Sn under Pn,h, F ∗
n,h = distribution of Sn(∆n,t, U) =

ξn(Zn, W, U) under Pn,h, where U ∼ Uniform (0, 1) and is independent of ∆n,t; Gn,h

is the distribution of ∆n,t and G∗
n,h is the distribution of ∆t = W

1
2 (Z − β0(W )).

As a consequence of this we have (Takagi [17], p.44)

lim
n→∞

||Fn,h − F ∗
n,h|| = 0 and lim

n→∞
||Gn,h − G∗

n,h|| = 0.

Now for any estimator ξn(Zn, Wn, U) = Sn(∆n,t, U) and for every hεR1 we have

|E[la(δ−1
n (Tn − t) − h)|t + δnh] − E[la(Sn(∆n,t, U) − h)|t + δnh]| −→ 0

and

|E[la(Sn(∆n,t, U) − h)|t + δnh] − E[la(ξn(Z, W, U) − h)|t + δnh]| −→ 0.

Finally
∫ b

−b

π(h)E{l(δ−1
n (Tn − t) − h)|θ = t + δnh}dh

≥
∫ b

−b

π(h)E{la(ξn(Z, W, U) − h)|t + δnh}dh

≥
∫

l(β0(w) − y)φy(0, w−1)g(w)dydw, for n ≥ n(a, b, δn, π)

which proves the result.
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Example 3.1. Consider the LINEX loss function as defined by (1.1). It can be seen
that l(
) satisfies all the assumptions A1–A7 stated in Section 2. Here a simple
calculation will yield

h(β, w) = b(eaw− 1
2 (β+ 1

2
a

w1/2 ) − aw− 1
2 β − 1),

and h(β, w) attains its minimum at β0(w) = −1
2

a
w1/2 and h(β0, w) = − b

2
a2

w .

4. Concluding remarks

From the results discussed in Le Cam and Yang [13] and Jeganathan [10] it is clear
that under symmetric loss structure the results derived in Theorem 3.1 hold with
respect to the estimator W

− 1
2

n (θ0)Zn(θ0) and its asymptotic counterpart W− 1
2 Z.

Here due to the presence of asymmetry in the loss structure the results derived in
Theorem 3.1 hold with respect to the estimator W

− 1
2

n (θ0)(Zn(θ0)−β0(W ))+β0(W )
and W− 1

2 (Z − β0(W )) + β0(W ).

Now W
− 1

2
n (θ0)(Zn(θ0) − β0(W )) ⇒ W− 1

2 (Z − β0(W )). Hence the asymptotic
bias of the estimator under asymmetric loss would be E(W− 1

2 (θ0)(Z − β0(W )) +
β0(W ) − θ) = E(θ + β0(W ) − θ) = E(β0(W )).

Consider the model described in Example 2.1. Under the LINEX loss we have
β0(w) = −a

2
1

w1/2 (vide Example 3.1). Here the asymptotic bias of the estimator
would be E(β0(W )) = −a

2E(W− 1
2 ), which is finite due to Assumption A8.

The results obtained in this paper can be extended in the following two direc-
tions: (1) To investigate the case when the experiment is Locally Asymptotically
Quadratic (LAQ), and (2) To find the asymptotic minimax lower bound for a
sequential estimation scheme under the conditions of LAN, LAMN and LAQ con-
sidering asymmetric loss function.
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