
Chapter IV
Measure and Forcing

The measure-theoretic analysis of Π} sets begun in Section 6.II is continued. It is
shown that every Πj set of positive measure has a hyperarithmetic member.
Forcing over the hyperarithmetic hierarchy is developed in order to construct a
minimal hyperdegree and to prove Louveau's separation theorem.

1. Measure-Theoretic Uniformity

The goal of this section is to show J/(ω^κ, T) is a model of Δ} comprehension for
almost all T. It follows that ω^κ = ω[ for almost all T. Recall the notions of ordinal
rank (subsection 4.1.Ill) and full ordinal rank (subsection 4.4.III) for formulas of
j£?'(ω^κ, &). Define the number quantifier rank of a formula & to be the number of
occurrences of (Ex), (y\ . . . in 3F.

Let F be a ranked sentence of JS?(ω?κ, T). By Lemma 4.6.II the set

is Δ}, hence Borel and measurable according to subsection 6.1.II. Denote its
measure by p(^), the probability that & is true. The next task is to show the graph
of p{^\ as 9 ranges over ranked sentences, is Π}.

1.1 Proposition. Let ^(Xa)be a ranked formula whose only free variable is Xa. Let
^i(x) (i<n) be formulas of rank at most α whose only free variable is x. Then

V #W(χ))
i <n

is logically equivalent to a sentence of full ordinal rank less than that of

Proof Put V ^ ( x ^ x ) ) into prenex normal form without changing the pattern
i < n

of set quantifiers. Then contract like quantifiers as in the proof of Theoreml.5 of
Chapter I. The result will have at least one less occurrence of (EXα) than does

D



1. Measure-Theoretic Uniformity 89

1.2 Proposition. Let ̂ (x) be a ranked formula whose only free variable is x. Then

V ^ ( i ) is logically equivalent to a formula of the same full ordinal rank but lower
i<n

number quantifier rank.

1.3 Theorem. The predicate p(^)>r, restricted to ranked !F and rational r, is Π}.

Proof. An application of Theorem 1.6(i).I. similar to that made in the proof of
Lemma 4.5.III. There exists a Σ\ formula Λ(X) such that

(1) pW>m(I)[i(I)^<^r)6X].

The only conceptual difficulty arises from the impossibility of computing
p(& & Jf) from p{^S\ p(#?\ The difficulty is avoided by resort to prenex normal
form. This logical trick is equivalent to construing a Borel set as a monotone union
(or intersection) of Borel sets of lower rank.

Consider (EXa)F(Xa). Let 9t(x) (i < ω) be an effective enumeration of all
formulas of rank at most α whose sole free variable is x.

) = supp( V
n i<n

Hence p((EXα)^(ΛΓ2)) > r is equivalent to

(δ)(En)lp( V ^(x^i(x))) > r -
i

where δ ranges over the positive rationals. By Proposition 1.2, the needed reduction
in full ordinal rank has occurred.

A(X) in full is the conjunction of (2) through (6).

(2) & is quantifierless &p(J 2 Γ )>r-^<J 2 r ,r)eX.

(3) beO&(δ)(Έn)U \/

(4) beO & (n)\ / /\

(5) (δ)(En)l

(6) (nϊ

\/

(1) is proved by induction on the full ordinal rank and number quantifier rank

ofF. D
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1.4 Lemma. Let #"(x, Y) be a formula of J£?(ω^κ,^") whose only unranked set
variable is the free variable Y. Assume p((x)(E7)«f (x, Y))>r. Then for some

f x , Y)>r.

Proof Recall (1) from the proof of Theorem 1.3.1. The assumption yields

(1) (m)(δ)(Ea)aeOϊp((EγW)( /\ ^(n, ( Y^)H)\\ > r - δ\

According to Theorem 1.3 the matrix of (1) is Π}. It follows from Theorem 2.6.II
that a can be regarded as a hyperarithmetic function of m and δ. Spector's
boundedness theorem (5.6.1) implies

for some α < ω^ κ . Consequently

and so

p((x)(EΓ)^(x, Y*))>r, D

1.5 Theorem. If ̂  is an instance of the A\ comprehension theorem, then p{^) = 1.

Proof Let A(x9 Y) and B(x, Z) be arithmetic, and let K be the set of all Γsuch that

holds in Jί{ω^, T). Thus for each TeK,

(1)

holds in J({off, T). By Lemma 1.4, for almost every Γthat satisfies (1), there is an
α < ω^ κ such that

(x)(EY")lA(x,Y")V~B(x, rα)]

holds in ̂ ( ω ? κ , T). But then for almost all TeK9

(EX)(x)lxeX~(EY)A(x, 7)]

holds in ̂ ( ω ? κ , T). The "X" is x(EYa)A(x, Ya). D

1.6 Corollary (Sacks 1969, Tanaka 1968). For almost all T, M ( ω ^ κ , T) = HYP( T)
and ω[ = ω^κ.
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Proof. Lemma 4.16.IΠ. D

The next proposition says that i f (ω^ κ , T) is closed under formation of hyper-
arithmetic conjunctions.

1.7 Proposition. Let 3P\(ί <ω) be a hyper-arithmetic sequence of ranked sentences.
Then there exists a ranked sentence 3* such that for all T,

iff (0

Proof. By Lemma 4.6.III, the set of all T such that

(1) ?

is Δ}, hence hyperarithmetic according to subsection 5.6.Π. It suffices to show: for
each beO there is a formula J^(x) of J^(ω? κ , T) such that

for all n and T. This last is managed by the same recursion on < o used in the proof
of Lemma 4.7.III to show Hb is representable by a formula of i f (ω^ κ , T). The
recursion step relies on a relativization of Corollary 4.4.II to T. D

1.8 Lemma. Let 3F be a ranked sentence and δ a positive rational. Then there exists
a ranked sentence & such that

(0 p(^ & ~ ^ ) < ( 5 , and

(if) {T\M{ωQf, T)Vy}isa closed subset of{T\Jί(ωQf, T)!=#"}.

Proof Let P ( # \ δ, <$) be the conjunction of (i) and (ii). It follows from Lemma
4.5.III and Theorem 1.3 that P(^, δ, $) is Π}. ("Closedness" is Π}.)

(JZ Γ)(δ)(E^)P(JZ Γ,(5,^) is proved by induction on the full ordinal rank and
logical complexity of 2F.

Suppose & is ( 7 " ) ^ ( 7α). Let ̂ f (x) (i < w) be an effective enumeration of all
formulas of rank at most α whose sole free variable is x. By induction

By Lemma 2.6.II there is a hyperarithmetic sequence ffl{ {i < ω) such that

(0

Let Jt be equivalent to the conjunction of the j f 4's as provided by Proposition 1.7.



92 IV. Measure and Forcing

Suppose & is (EYa)&γ{ Ya). The countable additivity of p implies there is an n
such that

(i)

By Proposition 1.1 the finite disjunction occurring in (1) is equivalent to a formula
of lower full ordinal rank than 3F. Hence by induction there is an Jf such that

PI
\i<n

Again, P( ̂ 9δ9Jf). D

1.9-1.11 Exercises

1.9. Show the measure of a hyperarithmetic set of reals is a hyperarithmetic real.

1.10. Show the measure of a Πj set A of reals is the supremum of the measures of
the hyperarithmetic subsets of A.

1.11. Show the predicate, μ(A) > δ, is Π}, where A ranges over Π{ sets and δ over
rationals.

2. Measure-Theoretic Basis Theorems

The main result of this section is: if A is a Πj set of positive measure, then A has a
hyperarithmetic member. In addition the concept of measure-theoretic bounding is
formulated and proved for the hyperarithmetic hierarchy.

2.1 Lemma. Suppose ̂  is ranked. If p(£Γ)>0; then Jί{ω^,T)¥^ for some
Te HYP.

Proof By Lemma 1.8 !F can be replaced by a "closed subset" ^ such that
p(9) > 0. Define 3tfn{n < ω)

if pi <$ & [\^ei &

otherwise.

It follows from Theorem 1.3 that T= {n\ Jfn is ne$~} is hyperarithmetic. Since
is "closed", Jί(ω?κ, T)¥<$. D
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2.2 Theorem (Sacks 1969, Tanaka 1968). IfP(X) is U\ and XP(X) has positive
measure, then P(X) has a hyper arithmetic solution.

Proof. The relativization of Theorem 3.5.III to X yields an arithmetic predicate
A(X, 7) such that

By Corollary 1.6

^ 3T, Y)

for almost all T. Consequently F ( ( E Γ ) A ( J J ) ) > 0 , and by the countable
additivity of p, p({EYa)A{3~, Ya)) > 0 for some α < ω^κ. By Lemma 2.1 there is
an He HYP such that

Since Jf(d^9 H) = HYP, P(H) holds. D

2.3 Measure-Theoretic Bounding. Assume P(T, x, y) is Π}. It follows from
KreiseΓs uniformization theorem (2.3.II) relativized to Γ, that

(1) (x)(Ey)P( T9 x, y) -,(EΪ) f^ τ(x)(Ey) y< / ( x )P( Γ, x, y).

For almost all Γthe bounding function / of (1) can be taken to be hyperarithmetic,
that is

(2) (x)(Ey)P(T9x,y)^(EΪ)feHYP(x)(Ey)y^fix)P(T,x9y).

Fix a rational δ > 0. Suppose fe HYP is sought so that

holds for all Γ, save those in a set of measure less than δ, for which the left side of (2)
holds. Choose a rational m such that

m < μ((x)(Ey)P(Γ, x, y)) < m + - .

Then

(3)

The matrix of (3) is Πj by Exercise 1.11. By KreiseΓs selection Lemma (2.6.II), z can
be taken to be/(x) for some hyperarithmetic/ Hence

\x,y))>m--. D
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For a formulation of measure-theoretic bounding over a countable model of
ZF & V=L, see Sacks 1969.

2.4-2.6 Exercises

2.4. Suppose Λe2ω - HYP. Show {X\A <hX} has measure 0.

2.5. Call ΓΔ}-random if T belongs to every Δj set of measure 1. Define Σ} and Π}
randomness similarly. Show Π}-randomness is equivalent to Δ}-randomness,
but not to Σ}-randomness.

2.6. Show Σ} dependent choice holds in JV(T0,Tί,T2,...) for almost all
< To, Tί9T29... >. The language ^ ( ^ o * #Ί, P2>'-) a n d t h e structure
Jl(Tθ9TuT29...) are defined in virtually the same way as &{3Γ) and
Ji(3~) were in Section 4.III. The only difference occurs in the definition of
atomic formula, where &Ί(i < w) takes the place of <Γ.

3. Cohen Forcing

The method of Cohen forcing over the hyperarithmetic hierarchy was developed by
S. Feferman 1965. It has many applications, the simplest of which is the direct
construction of two hyperarithmetically incomparable reals, each recursive in
Kleene's 0.

A Cohen forcing condition is a consistent, finite conjunction of formulas of the
form m e ZΓ or n φ ZΓ. It helps to think of them as nonempty subbasic open subsets
of 2ω. They are denoted by p, q, r, . . . , Tep means T satisfies p, or T is a member
of p c 2ω. p > q (p is extended by q) means (T) [ Teq -> Tep].

3.1 Cohen's Forcing Relation I \-. Let & be a sentence of i f (ω^ κ , !Γ), as defined in
subsection 4.1.III. Define p \\- & (p forces &) by recursion on the full ordinal rank
and logical complexity of 3F as follows.

p Ih «e«f
p II (-C/-A J &* \J* )

for some <
n II- (¥ Y\<&{ Y\

p\\-SF & 9
plh(Ex)^(x)
p l h ~ ^
p l h ί χ = ί2

p l h ί e ^

iff
iff

§{x)
iff
iff
iff
iff
iff
iff

ί T) 1 i εp —• tts i \.
γ% I I <3f ίγ&(γ\\

of rank at most α.
(£α)[p Ih ( E I ^ J 5

p\\-^ and p\\-9.

(En)[p Ih &(n)\
(q) > ~[q\\- &~\

val(71) = val(ί2).

val(ί) = w and p Ih

tί9 t2 and t are closed number theoretic terms as in the proof of Lemma 4.5.III.
Note that at the ground level, forcing and truth coincide. After that, forcing
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respects the logical connectives. If one clause of the definition can be said to give
the essence of forcing, it is the clause that defines the forcing of a negation.

One way to make sense out of the definition of Cohen forcing for ranked
sentence of j£?(ω^κ, ZΓ) is to consider how to approximate a hyperarithmetic set of
reals by an open set. At the ground level a subbasic open set is approximated by
itself. At higher levels the approximation is built up from approximations available
at lower levels. It turns out that u{p |p lh«^ ' } is a good approximation of
{ T\M{ωQf, T) N & }, and that u {p|p 11 ~ J^ } is slightly better. Some calcu-
lation is needed to show that the latter open set is hyperarithmetic and regular, and
that the error of approximation is meager (cf. Exercise 3.10).

3.2 Lemma. The predicate p\\- P, restricted isΣ\ P's, is Π j .

Proof. Same as that of Lemma 4.5.III. The clauses of the definition of IK when
^ " G Σ J , correspond to closure conditions whose conjunction is some Σ} formula
A(X9 T). An induction on full ordinal rank and logical complexity shows

iff

3.3 Genericity. T is generic (in the sense of Cohen) with respect to a sentence 3F if
there exists a p such that

Tep and [p Ih & or p Ih ~ SF\

T is generic (over Jί(ω^)) if T is generic with respect to every sentence 3F of

3.4 Proposition. (i) (p) (&) ~ {p Ih & & p I h

(ii) ( p ) ( ^ ) ( E q ) ^ lq\\-P

(Hi) (p)(q) (F) lp tt-* &p 2

Proof, (i) and (ii) follow from the definition of p I \- ~ 3F. (iii) is proved by induc-
tion on the full ordinal rank and logical complexity of SF. D

It follows from Proposition 3.4(ii) that generic Γ's exist. Let P{ (i<ω) be a list of
all sentences of J^(ω^κ, y\ Choose pf (i<ω) so that for all i,

Pi > Pi+1 and [pi Ih Pt v pt Ih - FJ.

Since every sentence of the form n_e ZΓ appears among the ^ ' s , it must be that

P) Pi has a unique member, call it T. Clearly T is generic. According to Exercise
i<ω

3.18, there exists a generic T hyperarithmetic in 0.
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3.5 Lemma. Let T be generic. Then

Jί{ωQf,T)V& iff ( E p ) [ Γ e p &

for every sentence 3F of

Proof. By induction on the full ordinal rank and logical complexity of 3F.
Suppose J^ is ^ o & ^ i and Jί(ωcκ, T) 1= &. By induction there exist pt (i < z) such

that Pi\\-9i and Tept. Note that p0 & p1 is a forcing condition, because
Tep0 n P i . By Proposition 3.4(iii) p0 & p1\\r90 &91.

Suppose P is (EXα) j f (*α) and p I h J*\ Then p I h ^f (x&(x)) for some ^(x) of
rank at most α. The full ordinal rank of Jf(x^(x)) is less than that of J^, so
J({ωQf, T) N J^(x^(x)). Hence J^ is true in J((ωQf, T).

Suppose Jί{ω^y T)Y ~ <$. <3 is less complex than ^ ^, so there is no p such that
Tep and p\\-y. But Γis generic, so there is a p such that Tep and p Ih ~ ^ .

Suppose Γ e p and p\Y ^(S. For the sake of a contradiction suppose
Jί{ωQ^, T) 1= ^. By induction there is a q such that Γeg and q\\- $. Then Lemma
3.4(iii) implies p & q \\-& and p & q\\- ~<£, an impossibility according to
3.4(i). D

3.6 Theorem (Feferman 1965). // T is generic, then A{ comprehension holds in
Jί{ω<ϊ\ T).

Proof. Suppose M{ω^, T) satisfies

for some arithmetic A and B. Then

(1) (x)(EY)lA(x,Y)vB(x9Y)l

holds. Since Γis generic, there is a p such that Tep and p I \- (1). The definition of
Ih implies:

p Ih ~(Ex)~(E7) LΛ(x, Y) v B(x, F)],

[« I h (Ex) - (E7) [Λ(x, Y) v B(x, 7)]

) - [ ί Ih - ( E r ) [^(n, 7) v ~B(n, Γ)]],

(2) fa)p^ (n)(Er)^ r[r Ih (E7) [A(n,y) v

The matrix of (2) is equivalent to

(3) (Ea) f l e O [r Ih (E7' f l') [Λ(n, 7 | f l |) v B(n,

(3) is Πj by Lemma 3.2. KreiseΓs selection Lemma (2.6.II) yields r and a as
hyperarithmetic functions of q and n. By Spector's boundedness theorem (5.6.1)
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there is a recursive upper bound γ on \a(q, n)\. Thus

(n)(q)(Er)q^r [r Ih ( E n [Λ(n, Yy) v ~B(π, r")]] ,

and so p forces

(4) (π)(EΓ)μ(π, Yγ) v

Since Γis generic and a member of p, M(ωQf, T) satisfies (4). But then Jί(ωQf, T)
satisfies

(EX)(x)lxeX~(EY)A(x, 7)].

(The "JΓ is x(EYy)A(n, Yy)). D

3.7 Theorem. Assume T is generic and (EX) !F (X) has no unranked variables save

x.if

then M(ωcf) N (EX) & (X).

Proof. Suppose p \\-(EX)^(X). Then p \V(^(x^(x)) for some ^(x) of rank
α < ω^κ. The relation p IV JΓ, restricted to sentences X of rank at most α, is Δ} by
Exercise 3.14. Recall the construction of a generic T following Proposition 3.4.
Repeat that construction with the #/s replaced by a hyperarithmetic enumeration
of all formulas of rank at most α. Then the constructed set, call it H, can be taken to
be hyperarithmetic, since it can be defined by recursion on ω relative to a
hyperarithmetic predicate. H obeys Lemma 3.5 with respect to all sentences of
rank at most α. Hep, since the construction of H can start with p. Hence
^(ω<rκ, H) 1= &(j&(x)). Jί(ω<?, H) is Jί(ω™) by Lemma 4.16(ii).IΠ. D

3.8 Corollary. // T is generic, then 0 is Σ\ definable over Jt(ω^> T).

Proof. By Lemma 3.5.III,

xeO~(EY)YeliYPA(x,Y)

for some arithmetic A. Theorem 3.7 implies

Qf, T) N(EY)A(n, Y). D

3.9 Category Versus Measure. There is an analogy between the results of Sections
3 and 2 based on a standard analogy between category and measure. Let A be a
subset of 2ω. (Recall the topology assigned to 2ω in subsection 6.1.II.) A is said to be
nowhere dense if it has an empty interior. A is said to be meager if it is contained in a
countable union of nowhere dense closed sets. Baire's category theorem states: the
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complement of a meager set is dense. Consequently meager sets are thought to be
small and analogous to sets of measure 0.

It follows from Proposition 3.4(ii) that the set of Γ's such that Γis generic with
respect to a given sentence & is dense open, and the set of all generic T is co-
meager. Thus Theorem 3.6 is analogous to Theorem 1.5, and Exercise 3.11 to
Theorem 2.2.

3.10-3.18 Exercises

3.10. An open subset of 2ω is said to be regular if it equals the interior of its closure.
Let A be a Δ} subset of 2ω. Find a Δ} B such that B is regular open and
(A — B) v (B — A) is meager.

3.11. (Hinman, Thomason). Let A be a non-meager, Πj subset of 2ω . Show A has
a hyperarithmetic element.

3.12. If Γis generic, then Γ^HYP.

3.13. If Γis generic, then Oτ <h T,O. (Oτ is the hyperjump of T, defined in Section
7.Π.)

3.14. Use 4.1(2).IΠ and the proof of 3.2 to show p\\-&9 restricted to F of rank at
most α, is Δ} when α < ω^κ.

3.15. Assume Γis generic. Let r t ( i<2) be {n\2n + ie T}. Show T{ is generic. Show

3.16. (H. Friedman). Find a T which is generic with respect to all ranked sentences
(of j£?(ω^κ, T)\ but which is not generic.

3.17. (S. Feferman). Cohen forcing for £f(ω^κ

9^Ό9 3ΓU 3T2, . . .) is defined by
taking as forcing conditions consistent finite conjunctions of formulas of the
form me^nφ^j (ij<ω). Show J/(TO,TU Γ2, . . .) satisfies Σ} dependent
choice when < Γo, Tί9 Γ2, . . . > is generic (cf. Exercise 2.6).

3.18. Show there exists a generic T<hO.

3.19. Find a hyperarithmetic set that is not an arithmetic singleton.

4. Perfect Forcing

Let P9Q9R, . . . denote perfect subsets of 2ω as in subsection 6.1.III. In this section
Cohen's forcing method is extended from finite conditions to perfect ones. The
resulting generic reals differ vastly from those of Section 3. In particular a real
generic in the sense of the present section has minimal hyperdegree. According to
Exercise 3.15, a real generic in the sense of subsection 3.3 lies above two hyper-
arithmetically incomparable reals.
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Let p, q, r, . . . be sequence numbers that encode finite initial segments (of
characteristic functions) of subsets of ω. As in subsection 6.1.Ill, a perfect subset of
2ω can be encoded by the set of codes for the initial segments of its members. The
natural homeomorphism between 2ω and a perfect set P gives rise to a standard
encoding of P denoted by ktj \ ptj (ί<ω &j<2ι).pi+lf 2j and pi+ίt 2j +1 are incompar-
able extensions of pUj.

P = X{(i)(Ej)J<2t{Xepij)).

P is hyper arithmetically encodable if λ^p^ is a hyperarithmetic function. From now
on P ambiguously denotes a hyperarithmetically encodable perfect set and its
standard code. Thus the set of all P's is Π} .

4.1 The Perfect Forcing Relation. Let !F be a sentence of i f (ω^κ, F) as defined in
subsection 4.1.III. The perfect forcing relation, P Ih 3F, is defined by six closure
conditions.

(1) If & is ranked and (X) [ I e P - ^ J((ωQf, X) N &\ then P Ih P.

(2) If J^( Y") is unranked and P I h ^{x^(x)) for some %(x) of rank at most α,

(3) If P Ih (EYα) J F ( r α ) for some α<ω<rκ, then P Ih

(4) If ^(x) is unranked and P I h ^(n) for some n, then P I h (Ex)&(x).

(5) If J^ & ^ is unranked, P I h J^ and P I h #, then P I h #" & ^.

(6) If J^ is unranked and ( β ) P 2 Q - [ β I V&\ then P\\- ~&.

Clause (1) may seem unorthodox in that it treats all ranked sentences as if they
were at the ground level. (1) makes it easy to show that the perfect forcing relation,
restricted to ranked sentences, is Πj, but obscures the fact that

(J^)(P) (Eβ) P Ξ ? Q [ β Ih ^ or Q Ih ~P\

4.2 Lemma. The relation P \\-&, restricted to Σ} J^'s, is Π\.

Proof. Clause (3) of the definition of H makes it safe to assume 3F is ranked. Hence

(1) P Iĥ (̂AΓ) [iGP-^^ωf,!)^]

The right side of (1) is Π} by Lemma 4.5.Π. D

The next lemma establishes the so-called fusion (or splitting) property of perfect
forcing in the hyperarithmetic case.
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4.3 Lemma. Let ^(iKω) be a hyper-arithmetic sequence ofΣ\ sentences. Suppose

(0 (G)F-Q ( E R ) Q 2 Λ [ Λ

Proof. By lemma 4.2 the predicate

is Π}. KreiseΓs uniformization theorem (2.6.II) implies R can be construed as a
partial Π} function of β and ί. R(Q, i) is iterated below to produce λij/QUj, a
hyperarithmetic function as in Exercise 4.16.

A hyperarithmetic family {QUj \i < ω &j < 21} is defined by recursion on i with
the aid of λiQ\R(Q, ί) and effective splitting.

(1) Qi+i,2j £ Qu a n d ,Qi + l t 2 J + i £

(2) Ql+1.2jnQi+1.2J+l=0'

Qi+u2j\\-^i and β i +

Let Q be f| (J β { ; . Then Q e HYP and Q^P.Qis perfect because of the splitting
i j<2i

in (1) and (2). Note that if X e Q, then for each i, there is a unique) such that X e Qttj.
Fix i to check β I h ^ Let J^ be (EX)^(x). β is contained in u {Qitj\j < 21}, and

for each j < 2\

for some α. < ω ? κ . Let α be sup α. . Then β I h ίEX")^^) . D
J<2*

Lemma 4.3 is the central fact of perfect forcing over the hyperarithmetic
hierarchy. Its counterpart in the set theoretic case (Sacks 1967) is applied to show
aleph-one is preserved in generic extensions of L.

4.4 Lemma. (^)(P)(EQ)P^QlQ\\-& or Q\\-

Proof. Suppose 3F is unranked. Then the lemma follows from clause (6) of the
definition of H.

Suppose <F is ranked. Proceed by induction on the full ordinal rank and logical
complexity of SF as defined in subsection 4.4.III. For example, suppose !F is
(EXα) Jtf(Xa). Let %(x) (i < ω) be an effective enumeration of all formulas of rank
at most α whose sole free variable is x. First assume

(1)
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Then Q\\~1F. Now assume (1) fails. By induction

Lemma 4.3 yields

But then Q\\ J*\ D

Lemma 4.4 has roughly the same content as: each Δ\ set or its complement
contains a perfect Δj set. Note that an uncountable Δ} set need not contain a
perfect Δ} set.

4.5 Perfect Genericity. Suppose T^ω. T is said to be generic (in the sense of
perfect forcing) if for each sentence & of J?(ωf\ &\ there is a P such that TeP
and either PI\-& or P\\- ~ J*. It follows from Lemma 4.4 that generic Γ's exist
inside every P. Let J^ (i < ω) be an enumeration of all sentences of J£?(ω^κ, βΓ\
Define Pf(i < ω) so that Po = P9 P{ 2 P ί + 1 , and

ί + I i or P ί + 1 | | - - ^ i .

Then nίPjIi < ω} = {Γ} and Γis generic.
The next proposition is a technicality needed for the proof of the truth lemma

(4.8).

4.6. Proposition. Suppose T is generic with respect to all ranked sentences, and
. Then there exists an R such that

Proof. The statement Te P is equivalent to

2' &

where Ay|py is the standard hyperarithmetic code for P. It follows from Lemma
4.7.III. that there exists a ranked sentence 9 such that

Let / b e a ranked sentence that bears the same relation to Q that ^ does to P.
By supposition Jί{ωQf, T)\=<g & Jf. Since Γis generic, there is an R such that

TeR, and
& 3tf or R\\ (^ & Jf).

If R\\ (9 8c Jtf\ then clause (1) of the definition of Ih implies TφPnQ.
Hence R \ \-$ & MT. And so R c p n Q. D
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4.7 Proposition. If P I V& and P 2 β, ίfren βI h J*\

Proo/ Clause (1) of the definition of H disposes of the matter if <F is ranked. For
unranked $F the proof proceeds by induction on the full ordinal rank and logical
complexity of J*. D

4.8 Lemma. Suppose T is generic. Then

Jί{ω<?,T)¥& iff

for every sentence &? of

Proof. Clause (1) of the definition of I h takes care of ranked «F's. For unranked
J^'s the proof is by induction on logical complexity as in Lemma 3.5. The only
difficulty occurs when 3* is ^ & Jf. Suppose

M(pff,T)Vy & jf.

By induction there exist P and β such that TeP n β, PI h ^ and β I f-JT. Lemma
4.6 supplies an R c p n β such that Γe R. By Proposition 4.7 RI h ^ & Jf. •

4.9-4.15 Exercises

4.9. Let A be a Δ{ subset of 2ω. Find a perfect Δ} set P such that P c ^ or
P c 2ω - A

4.10. Show there exists a generic T <hO.

4.11. Assume #" is Σ}. Show

iff ? κ

4.12. If T is generic (in the sense of perfect forcing) and S =hT, then S is generic.
(Refute this assertion for Cohen genericity.)

4.13. If Γis generic, then Γ^HYP.

4.14. If Γis generic, then Kleene's 0 is Σ} definable over Jί(ω^κ, T). (First show an
arithmetic predicate with a solution in Jί(ω^, T) has a hyperarithmetic
solution.)

4.15. Define I h 1 by using the perfect conditions of subsection 4.1 and the recursion
of subsection 3.1. For example PI \- x ~ & iff (β)PΞ>Q ~ Q 11" 1 & whether or
not 3F is ranked. Call T generic in the sense of I h 1 if for each sentence ^ of
J2VrK, F\ there is a P such that Te P and either PI \- ί & or PI \-1 - &.
Show T is generic in the sense of I \-1 iff T is generic as defined in subsection
4.4.

4.16. Let 0(O) = O, and g{n+l)c*f[g(n)) for all n, where/is partial Π}. If g is total,
then g is Δ} by 1.7.1.
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5. Minimal Hyperdegrees

T is said to be of minimal hyperdegree of Γ^HYP and (S)[_S<hT-+ SeHYP
v T < fcS]. The existence of minimal Turing degrees was proved by Spector 1956.
The hyperdegree case combines Spector's ideas with perfect forcing over the
hyperarithmetic hierarchy. The principal result of this section is that every perfectly
generic T is of minimal hyperdegree.

5.1. ^-Definability. Suppose / c ω. I is said to be Jί-definable if there is a
formula &(x) of if(ω^ κ, ίΓ\ in which <r does not occur, such that

I is said to be generically definable ύ there is a formula #"(x) of J^(ω?κ, ZΓ) such
that

for all generic T (generic in the sense of perfect forcing).

5.2 Lemma. The following are equivalent
(i) I is arithmetic in O.

(ii) I is Jί-definable.
(Hi) I is generically definable.

Proof. By Theorems 3.5.III and 4.8.III, there is an arithmetic Λ(x, Y) such that for
allπ,

neθ<r+ M(ωQf)N(EY)A(n, Y).

It follows from the parenthetical remark in Exercise 4.14 that

f, T)\=(EY)A(n, Y).

for all generic T. Thus 0 is ^-definable and generically definable. Consequently
every set arithmetic in O is.

Suppose / is ^-definable. Then Lemma 4.5.III implies / is arithmetic in O.
Finally suppose / is generically definable via the formula £F(x). It suffices, by

Lemma 4.2, to see

in order to conclude / is arithmetic in O. First let n e /, Γbe generic, and Te P. Then

By Lemma 4.8 there is an R such that TeR and R\\-&(n). Proposition 4.6
provides aQ^PnR such that TeQ. But then Q \\-^(n) by Proposition 4.7.
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Now let n $ I. Choose a generic T and a P such that

Te P, and PI h - J^( n). Then

lh^(n)]. D

Let X be a set of P's and β's, that is a set of hyperarithmetically encodable perfect
conditions. Kι is the set of indices of members of K. 2b 3e is an index for P if b e 0,
{e} H b is total, and {e}Hb ( = λij\pi}) is the standard code for P.

K is dense if (P)(Eβ)[P =>

5.3 Theorem. Tis generic ijfTeκj{P\PeK) for every dense set K arithmetic in 0.

Proof. Suppose T satisfies the density hypothesis. Fix 3F. The set

{P\P\\-& or

is dense by Lemma 4.4, and arithmetic in O by Lemma 4.2. Hence Γis generic with
respect to # \

Now suppose K is dense and arithmetic in O. By Lemma 5.2 there is an !F{x)
such that

for all generic T. Let H be the arithmetic formula of Theorem 4.2.Π. Define ^ by

(Ex)(EF)[JF(x) & H((x)09 Y)

& (O(Ej)j<2i(Ez)({(xJΠU) = z =

& says: (EP)[PeK & Γ G P ] . (Z is a sequence number that encodes an initial
segment of the characteristic function of 3~.) In fact

(1) Tev{P\PeK}<r+Jt(co<iK, T)Y<#

holds for all generic T. It need only be shown that the right side of (1) holds for all
generic T. If not, there is a P and a generic TeP such that P\\- ~9. Since K is
dense, P Ώ. Q for some β e X . Choose a generic T*eQ. It follows from (1) that

^ ( ω ? κ , Γ*) N 9,

and so Γ* e R for some K that forces ^. By Proposition 4.6 there is an S ^ Q n Λ
such that Γ* GS. 51 h ^ since JRI h # and Sll * since S c p. Π

5.4 Theorem. // Γ is generic, then Jί(ω^, T) satisfies Δ{ comprehension.
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Proof. Similar to the proof of Theorem 3.6. It is enough to show: if Jί{ωQf, T) N (x)
(EY)A(x, Y) for some arithmetic A, then Jί{ω^, T)£(x)(EYa)A(x9 Y) for some
α < ω^κ. Let K be the set of all P such that

or

By Lemma 4.2 X is arithmetic in O. To see K is dense, fix P. If P contracts to some
Q that forces ~ (x)(EY)y4(x, 7), then all is well. If not, then P contracts to some Q
that forces (x)(EY)Λ(x, Y). It follows, as in the derivation of (2) from (1) in the
proof of Theorem 3.6, that

The fusion lemma (4.3) yields S ^ Q such that

(n)[

or in more detail,

KreisePs selection Lemma (2.5.II) implies c can be constructed as a hyperarithmetic
function of n. Then Spector's boundedness theorem (5.6.1) provides a recursive
bound α on c: \c{n)\ < α for all n. Thus P 2 S e X .

By Theorem 5.3 T belongs to some member of K. D

Let ^(x) be a ranked formula of if(ω^κ, ϊF) whose sole free variable is x. For
each T ^ ω, define

Ψ by { n μ r K κ , Γ)N^(n)}.

Thus for each Γ the ^Γ 's are the members of M(ωQf, T).
The essential content of the next lemma is: let /: 2ω -• 2ω be Δj; then there exists

a perfect Δ} A c 2ω such that /, restricted to X, is either constant or 1-1.

5.5 Lemma. For each P and ^(x) there areQ^P and He HYP such that either (ί)
or (ii) holds.

(0
(ii) (Γ)[Γeβ -* Γ recursive in Ψ\ H].

Proo/ Case I: there is an Λ ^ P such that

(βo)β o εΛ(βi)β l SΛ(π)-[βoll-^(?i) and

Define H by
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Observe that nφH<r+(EQ)Qς,R[Q\\- ~ # ( Λ ) ] . It follows from Lemma 4.2 that
H G HYP. The fusion Lemma (4.3) supplies a Q^ R such that for all n,

and nφH^>Q\\-~g(n).

Then Ψ = H for all TεQ.
Case II: Case I fails. Hence

and β x lh

The present situation is similar to that found in the proof of Lemma 4.3. β0, β x and
n can be construed as partial Π} functions of R. They are applied in a recursion of
length ω to obtain hyperarithmetic functions λijlQij and λij\f(ij) such that:

6i+i,2j ^ βy and β i + l t 2 i + i £ β o ,

δι+i.2jll-aί(/(y)), and

Let β be Q (J β y . β is hyperarithmetic and perfect.
i j<2{

Fix Te Q to see why Γis recursive in ^ Γ , H, where iί is <β,/>. The idea is: ^ τ is
1-1 on β, so T can be recovered from &τ with the help of β and /. Let ί(i) be the
unique; such that Γeβ i t J . The construction of β implies

= 2f(ί) if f(U

if f(i9t{i))φ9τ.

Thus ί, hence Γ, is recursive in ^ τ , β, / D

5.6 Theorem (Gandy & Sacks 1967). // Γ is generic in the sense of perfect hyper-
arithmetic forcing, then T is of minimal hyperdegree.

Proof By Exercise 4.13 Γ<£HYP. Suppose X <hT. By Lemma 5.4 Jί(ωcf, T)
satisfies Δ} comprehension, and so by Lemma 4.16.IΠ, I e J ( ω f κ , T). Thus
X = %τ for some ranked <3{x\ Let K be the set of all β that satisfy (1) or (2) of
Lemma 5.5 for some hyperarithmetic H. Then K is dense, and K is arithmetic in 0;
in fact K is Πj. Theorem 5.3 implies TeQ for some QeK. Hence

XeHYP or T<hX. D
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5.7-5.9 Exercises

5.7. Suppose / : 2ω -• 2ω is Δ}. Find a perfect Δ} set A such that the restriction of/
to A is either constant or 1-1.

5.8 (Local Cohen Forcing). Let Q be a hyperarithmetically encodable, perfect
subset of 2ω. The Cohen forcing method of Section 3 is localized to Q as
follows. In essence Q replaces 2ω. pW-Q^ is defined as in subsection 3.1 save
that p,q9r, . . . now encode finite initial segments of members of Q. Generic is
defined as in subsection 3.3, and it follows that all generic Γ's belong to Q.
Recall the trick of the proof of Theorem 3.7. Use local Cohen forcing to give
proofs of Lemmas 4.4 and 5.5.

5.9. Try exercises 4.12 and 4.15 again.

6. Louveau Separation

The Kleene separation theorem for subsets of ω states: if A, B £ ω are Σ} and
disjoint, then there exists a Δ} C ̂  ω such that A ̂  C and CnB = 0. It was
obtained as a corollary to a reduction theorem (3.7.II) for Π} subsets of ω. Kleene
separation for subsets of ωω (Exercise 5.11.11) is obtained similarly by relativizing
Theorem 3.7.II in the manner of Section 5.II.

Let A and B be disjoint subsets of ωω. As in subsection 5.4.II, there are nA and nB

such that

(f)ίfeA^nAe0fl and

LetfeA0++feA & \nA\of < \nB\of, and

& \nB\of<nA\of9

Lemma 2.1.II, relativized to/, implies Ao and Bo are Π}. By construction Ao £ A,
B0^B, AonBo = 0 and AouBo = AuB.

As in subsection 3.6.II, reduction for Π} implies separation for Σ}. Kleene
separation for subsets of ωω is: if A, B c ω

ω are Σ} and disjoint, then there exists a
Δ} C such that A ̂  C and BnC = 0. Louveau separation is concerned with the
complexity of the separating set C In order to make the notion of complexity
precise, a hierarchy of subsets of ωω is defined. Let D ̂  ωω. D is subbasίc if D is of
the form {/| /(m) = n}. D is clopen if D is a finite Boolean combination of subbasic
sets.

DeΏ°0 if D is clopen.
if D is a countable intersection of complements of sets in
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D is open if it is a union of clopen sets. D is Borel if it belongs to the least σ-
algebra containing the open sets (cf. subsection 6.1.II). According to Exercise 6.10,
D is Borel iff D belongs to Π ^ . If D e Π ° - I Γ < y , then D is said to have rank γ. One
measure of the complexity of D is its rank. Another is the way D is put together
from sets of rank less than D. The "putting together" is described by a code for D.
The code for a clopen set is obtained from a fixed, effective one-one correspondence
between U°o and {5n + 1\n< ω}. Each clopen set has a code of the form {5W + 1 } .
Suppose

D = n{ωω-Dm\m<ω},

DeΠ°, DmeU°γn (yn<y)9

and cm is a code for Dm(m < ω). Then {2m 3n\necm} is a code for D. According to
Exercises 6.7 and 6.8: if D has a Δ} code, then D e Π^cK; D is Δ} iff D has a A{ code. D
is said to be a Π (ΔJ) set if D e Π ; and D has a Δj'code.

6.1 Theorem (Louveau 1980). If A, B c ω

ω are Σ\, and A is separable from B by a
Πγ set, then A is separable from B by a H°(A{) set.

6.2 Corollary (Louveau 1980). If A <= ωω is ΔJ and U°γ, then A is Π;(Δ}).

Corollary 6.2 is remarkable. It implies, for example, if A is Δ} and an intersection
of open sets, then A is the intersection of a Δ} sequence of Δ} open sets. The proof of
Theorem 6.1 is a combination of bounding arguments and forcing. The role of
forcing is to approximate certain sets by unions of forcing conditions in the manner
discussed at the end of subsection 3.1. The conditions are nonempty Σ} subsets of
ωω. Σj forcing was invented by Gandy circa 1964. One difficulty of Σj forcing is
that Σ} conditions are not closed. A contracting sequence of Σ} conditions can
shrink down to nothing. Consequently it is necessary to pay close attention to the
existential witnesses that establish membership in Σ} sets.

A set is open in the Gandy topology for ωω if it is a union of Σ} sets. The next
result says that the Baire category theorem holds for the Gandy topology. It is
needed for the "approximation" aspect of the proof of Louveau's separation
theorem.

6.3 Theorem. Let ωω have the Gandy topology. If Oi (1 < i < ω) is a sequence of

dense open sets, then f] Ot is dense. ^j

Proof. Let P, P1,P2, etc. denote nonempty Σ} subsets of α^ Fix P with the intent of

finding an feP n f] Ot. Recall Seq and > from subsection 5.1.1. The construction

below defines Pi9f and gi} (1 <ίj < ω) such that:

(a) P^Pi^Pi+1 and Pt £ Of.
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(c) 0;, eSeq, tA[g£ =j, and gu > giJ+ι.
(d) Let/(ί) =fi and gt(j) = gi}. g{ is an existential witness to the membership of/

in/V

It is immediate from (a)-(d) that feP n Q P f.

Suppose Q is f(Έg)(x)R(f(x), g(x)) from some recursive #. Q(s, ί), a notation
needed for the construction, is defined by:

flfV*(s)) = s & (Eg)(g(/ά(t)) = t & (x)R(f(x\g(x)))l

The construction proceeds as follows.

(1) Choose P x c Oi n P. Pi exists by density of Ox.
(2) ChooseΛ and # u so that P^f^g^) Φ 0.

(3) Choose P 2 £ Λ (Λ, 0! i) n O2.
(4) Choose/2 and # 2 1 so that/x >/ 2 and P2(f2,g2γ)Φ 0.
(5a) Note that P 1 ( / 2 , ^ n ) n P 2 ( / 2 , ^ 2 1 ) # 0 , because

(5b) Px(f29 βll) = u{Px(f29 x)\gxl > x}.
(6) It follows from (5a)-(5b) that g12 can be chosen so that

(7) Choose P 3 ^ P 1 ( / 2 ^ 1 2 ) n P 2 ( / 2 ^ 2 1 ) n O 3 .
Steps (3)-(6) define stage 2 of the construction.
Stage ί is similar and begins with the choice of P f inside

Then/j and gn are chosen so that/_ x >jj and P^/, ̂ f l) Φ 0. Next, as in step (6),
gu is chosen so that

Then in the same manner 02,ί-i> 03,/-2> > 9i-i,i a r e chosen in succession. D

Louveau separation (Theorem 6.1) is proved by induction on y, referred to below
as the main induction. It is safe to assume γ < cJfκ by Exercise 5.11.11 and Exercise
6.7 below. The proof of 6.1 is broken into three lemmas (6.4-6.6), each of which
makes use of the main induction.

Suppose H ^ ωω. The y-closure of H, denoted by Hγ, is defined by:

xφHγ^(EY)lxeYen°<γnΣ\ & Γntf = 0].

Note that y-closure is the usual notion of closure for subsets of ωω with respect to
the topology generated by Π<y nΣj.

6.4 Lemma. // A, B ^ ωω are Σ}, and A is separable from B by Aγ, then A is
separable from B by some Π°(Δ}) set.
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Proof. The hypothesis of the lemma yields

(1) (X)XeB(EY)lXeYeΠ°<ynΣ\ &

The Y of (1) is a IΓ < y set that separates the Σ\ sets Y and A. The main induction
implies that Y and A can be separated by a Π<y(Δ}) set. Thus the matrix of (1) can
be replaced by

(2) XeYen°<y(A\) & YnA = 0.

Let C be the set of all hyperarithmetic codes for Π < γ (Δ}) sets. C is Π}. Let Yz be the
set coded by zeC. (1) becomes

(3) W x e a ( E Z ) Z e C [ x G 7 z & YznA = 0 l

The predicates, ZeC & XeYzandZeC & X φ Yc, are Π} (as in Lemma 2.1.II),
hence the matrix of (3) is Π}. It follows from Exercise 2.11.11, a variant of Kreisel
selection (Lemma 2.6.II), that the Z of (3) can be taken to be a hyperarithmetic
function of X, call it m(X). Let

Bobe{m(X)\XeB},<ind

B1 be {Z\ZeC & YznA = 0).

Then Bo e Σ \, Bo c β χ and B x e Π}. By Exercise 5.12.11, a variant of Exercise 3.9.II,
there is a Δ} D such that £ 0 c D c Bχ. (Note that Kleene separation for Σ} sets was
used to obtain D.)

Let E be u { 7 z | Z e D } . Then 5 <= £, £ n Λ = 0 and (ωω - £)eΠ;(Δj) . D

The proof of Lemma 6.4 was a bounding argument typical of hyperarithmetic
theory. The next lemma is an approximation result inspired by Gandy forcing. Let
ωω have the Gandy topology as in Theorem 6.3. Suppose H ̂  ωω. As usual H is
said to be nowhere dense if the closure of H has an empty interior, and meager if H
is contained in a countable union of nowhere dense sets. Theorem 6.3 is equivalent
to: if H is meager and open, then H is empty.

6.5 Lemma. Ifγ < ω^κ and HeΠ°, then there exists an L such that L = D and
(H — L) u (L — H) is meager (in the sense of the Gandy topology).

Proof By induction on γ. Not to be confused with the main induction. Let H be

ωω — u {Hn\n < ω}, where for each n, HneH°yn for some γn < y. By induction there
n

is an Ln such that

Dn

n = Ln and {Hn - Ln) u (Ln - Hn) is meager.
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Define L= -v{Y\YeIΓ<γnΣ\ & YnH is meager}.
H — L is meager, since a countable union of meager sets is meager.

L — H = κj[(LcλHnc\Ln)u(In(Hn — Ln))~\. So the meagerness of L — H will
n

follow from that of L π Ln. L π Ln is closed. Suppose C is Σ} and C ^ LnLn with
the intent of showing C = 0. Since CeΣ}, the main induction implies (as in the
passage from (1) to (2) in the proof of Lemma 6.4):

C ' » = - u { r | Γ e Π β

< y ι ι ( Δ 1

1 ) & YnC = 0}.

The set of codes for members of Π°<yn(Δ}) is a Π} set of hyperarithmetic reals.
Consequently Cyn is Σ\.

so

Since Ln - Hn is meager, Cyn n H must also be meager. Clearly Cyn e Π < r It follows
from the definition of L that CynnL = 0. Hence CnL = 0 and so C = 0.

If YeU°<yn Σ{ and F n H is meager, then 7 n L = 0. So L 2 ZΛ D

6.6 Lemma. If A, B ^ ωω are Σ}, and A is separable from B by a IΓ< y set, then

Proof Suppose A ^ H and H nB = 0 for some // e Π .̂ As was noted just before
Lemma 6.4, it is safe to assume γ < ω^κ. Lemma 6.5 provides an L such that L = Lγ

and (H — L) u (L — H) is meager. A ^ H, so A — L is meager. L is closed and 4̂ is
open, so A — L is open. By Theorem 6.3 A — L = 0. Hence Ay ^ D = L.

HnB = 0, so L n β is meager, and v4y n β is meager. The main induc-
tion implies Ay is open, as C7n was open in the proof of Lemma 6.5. Thus Ay n B is a
meager, open set, hence empty. D

Louveau's separation theorem (6.1) is an immediate consequence of Lemmas
6.4 and 6.6. The proof of 6.1 in outline is as follows. Suppose A and B are separated
by some Heϊl°γ foî some γ < ω^κ. H can be well approximated by some L with
the property that Ly = L. In essence the complement of L is the union of all Σj
forcing conditions of boldface rank less than γ that force generic reals out of H. A
comparison oϊAy with L shows Ay separates A and B. Baire's category theorem for
the Gandy topology shows the error introduced by substituting L for H amounts
to nothing. A bounding argument, together with the Kleene separation result,
shows Ay can be replaced by a Πy(Δj) set. Induction on γ is used throughout to
replace uYeΠo

<7nΣ\n by "ΓGΠ°<y(Δ})". The effect is, in 6.4, to make the matrix
of (1) Π}, and, in 6.5-6.6, to show the enclosure of a Σ} set is Σ{ (δ < y). Less
precisely, the effect of the induction on y is to show: with respect to the forcing of
rank y sentences with Σj conditions of rank less than y, there is no difference
between lightface and boldface conditions.
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6.7-6.11 Exercises

6.7. If Deli°ωι and D has a Δ} code, then DeΠ°ωα.

6.8. Suppose DeΠ°ωι. Show DeA\ iff D has a A{ code.

6.9. Find a Σ} set D c ω

ω such that DeΠ°ωcκ - Π°<ωcκ.

6.10. 2) is

6.11. Use Gandy forcing, as Harrington did, to prove Silver's theorem: Let £ be a
Πj equivalence relation whose field is ωω. Suppose there are uncountably
many ^-equivalence classes; show there are continuum many.




