Chaptef 1V
Measure and Forcing

The measure-theoretic analysis of I} sets begun in Section 6.I1 is continued. It is
shown that every II} set of positive measure has a hyperarithmetic member.
Forcing over the hyperarithmetic hierarchy is developed in order to construct a
minimal hyperdegree and to prove Louveau’s separation theorem.

1. Measure-Theoretic Uniformity

The goal of this section is to show .# (w$*, T') is a model of A} comprehension for
almost all .. It follows that w$* = T for almost all 7. Recall the notions of ordinal
rank (subsection 4.1.IIT) and full ordinal rank (subsection 4.4.III) for formulas of
Z(wf¥, T). Define the number quantifier rank of a formula # to be the number of
occurrences of (Ex),(y),...in £.

Let # be a ranked sentence of Z(w$*, T'). By Lemma 4.6.1I the set

{TI#(f", T)EF}

is Al, hence Borel and measurable according to subsection 6.1.II. Denote its
measure by p(% ), the probability that & is true. The next task is to show the graph
of p(#), as F ranges over ranked sentences, is IT}.

1.1 Proposition. Let & (X*) be a ranked formula whose only free variable is X*. Let
%.(x) (i < n) be formulas of rank at most o whose only free variable is x. Then

\/ #(39,(x))

is logically equivalent to a sentence of full ordinal rank less than that of
(EX*) & (X*).

Proof. Put \</ Z (X9;(x)) into prenex normal form without changing the pattern

of set quantifiers. Then contract like quantifiers as in the proof of Theorem1.5 of
Chapter 1. The result will have at least one less occurrence of (EX?) than does
(EX*)#(X*). 0O
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1.2 Proposition. Let & (x) be a ranked formula whose only free variable is x. Then
'V Z (i) is logically equivalent to a formula of the same full ordinal rank but lower

number quantifier rank.
1.3 Theorem. The predicate p(F ) >r, restricted to ranked & and rational r, is T1}.

Proof. An application of Theorem 1.6(i).1. similar to that made in the proof of
Lemma 4.5.111. There exists a £} formula 4(X) such that

1) pP(F)oreo(X)[AX)-<F,r)eX].

The only conceptual difficulty arises from the impossibility of computing
p(% & #) from p(%4), p(+#). The difficulty is avoided by resort to prenex normal
form. This logical trick is equivalent to construing a Borel set as a monotone union
(or intersection) of Borel sets of lower rank.

Consider (EX*)F(X*). Let 4;(x) (i < w) be an effective enumeration of all
formulas of rank at most « whose sole free variable is x.

p((EX*)# (X*)) = sup p( \S/ F (£9,(x)))-
Hence p((EX*)# (X*)) > r is equivalent to

(O)(En)[p(\ Z (%%:(x))) =1~ 3],
where 0 ranges over the positive rationals. By Proposition 1.2, the needed reduction
in full ordinal rank has occurred.
A(X) in full is the conjunction of (2) through (6).

(2) & is quantifierless & p(F)>r->(F,r)eX.

() be0 & (5)(En)[< \/ F(3%(x)r—5 >ex]—> C(EXPYF(XP), rYeX.

i<n

i<n

@) beO & (n)[< ?(ﬁgi(x)),r>eX:|—><(X"").¢(X”"),r>eX.

5) (5)(En)[< \/ F (i), r— 5>EX:|-—> ((Ex)F (x), rYeX.

i<n

(6) (n)[< A\ 5"(1),r>eX]—><(x)5"(x),r>eX.

i<n

(1) is proved by induction on the full ordinal rank and number quantifier rank
of F. O
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1.4 Lemma. Let & (x, Y) be a formula of £ (w$*, ) whose only unranked set
variable is the free variable Y. Assume p((x)(EY)% (x, Y))=r. Then for some
a< o, p((x)EY*)F (x, Y)>r.

Proof. Recall (1) from the proof of Theorem 1.3.1. The assumption yields

1) (m)(5)(Ea)aeo[p<(EY'“')< A 9“—(ﬂ,(Y'“')n))>2r—5]-

n<m

According to Theorem 1.3 the matrix of (1) is IT}. It follows from Theorem 2.6.11
that a can be regarded as a hyperarithmetic function of m and §. Spector’s
boundedness theorem (5.6.I) implies

(m)(d)[la(m, 6)| < a]

for some a < wf*. Consequently

(M)[p<(EY") A 9"(L!,(Y“).,)> > r],

n<m

and so

p(X)(EY®)F (x, Y*)>r., O
1.5 Theorem. If F is an instance of the A} comprehension theorem, then p(¥ ) = 1.
Proof. Let A(x, Y)and B(x, Z) be arithmetic, and let K be the set of all T'such that
(x) (EY)A(x, Y)(Z)B(x, Z)]
holds in . (w$¥, T). Thus for each TeK,
M (x)(EY)[A(x, Y) v ~ B(x, Y)]
holds in . (w$¥, T). By Lemma 1.4, for almost every T that satisfies (1), there is an
o < w$¥ such that
(x)(EY*)[A(x, Y*)V ~ B(x, Y*)]
holds in . (w$*, T). But then for almost all TeK,
(EX)(x)[xeX —(EY)A(x, Y)]
holds in # (w$*, T). The “X” is X(EY*)A(x, Y*). O

1.6 Corollary (Sacks 1969, Tanaka 1968). For almost all T, M (w$*,T) = HYP(T)
and o7 = wfX.
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Proof. Lemma 4.16.III. O

The next proposition says that & (w§¥, T) is closed under formation of hyper-
arithmetic conjunctions.

1.7 Proposition. Let & ; (i < w) be a hyperarithmetic sequence of ranked sentences.
Then there exists a ranked sentence F such that for all T,

Mo, TVEF iff ([ M(T, T)EF ]
Proof. By Lemma 4.6.I11, the set of all T such that
(1 () [ M (55, T)EF ]

is A}, hence hyperarithmetic according to subsection 5.6.II. It suffices to show: for
each beO there is a formula % (x) of £ (w$¥, T) such that

neHT & M (0S¥, T)E F (n)

for all n and T. This last is managed by the same recursion on <, used in the proof
of Lemma 4.7.111 to show H, is representable by a formula of & (w$¥, T). The
recursion step relies on a relativization of Corollary 44.11to 7. O

1.8 Lemma. Let & be a ranked sentence and 6 a positive rational. Then there exists

a ranked sentence % such that

() p(F & ~%)<9,and

(i) {T| M (0S¥, T)EG} is a closed subset of {T| M (w5*, T)EF }.

Proof. Let P(#,0,%) be the conjunction of (i) and (ii). It follows from Lemma

4.5.111 and Theorem 1.3 that P(.%, d, %) is I1}. (“Closedness” is IT}.)
(F)(O)(E¥)P(F,0,%) is proved by induction on the full ordinal rank and

logical complexity of %.

Suppose F is (Y*)Z (Y*). Let %;(x) (i < w) be an effective enumeration of all
formulas of rank at most o whose sole free variable is x. By induction

. o
(Er)P( .59, 57,0 ).
By Lemma 2.6.11 there is a hyperarithmetic sequence #; (i < @) such that
: R 0
(i) P g"l(xgi(x)),zm, H; ).

Let # be equivalent to the conjunction of the #;’s as provided by Proposition 1.7.
Then P(Z, 6, ).
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Suppose Z is (EY*)# ,(Y*?). The countable additivity of p implies there is an n
such that

i<n

o
(1 p( Vv %(%(x») 2 p(F) 5.

By Proposition 1.1 the finite disjunction occurring in (1) is equivalent to a formula
of lower full ordinal rank than 4. Hence by induction there is an # such that

P<.\</ F,(3%,(x)), g yf).

Again, P(#,6,#). O

1.9-1.11 Exercises

1.9. Show the measure of a hyperarithmetic set of reals is a hyperarithmetic real.

1.10. Show the measure of a IT] set A4 of reals is the supremum of the measures of
the hyperarithmetic subsets of A.

1.11. Show the predicate, u(A4) > 6, is I1}, where A4 ranges over I1} sets and 6 over
rationals.

2. Measure-Theoretic Basis Theorems

The main result of this section is: if A4 is a IT} set of positive measure, then A has a
hyperarithmetic member. In addition the concept of measure-theoretic bounding is
formulated and proved for the hyperarithmetic hierarchy.

2.1 Lemma. Suppose & is ranked. If p(F)>0; then M (w$%, T)EF for some
TeHYP.

Proof. By Lemma 1.8 & can be replaced by a “closed subset” ¢ such that
p(%) > 0. Define 5#,(n < w)

ned if p(g & \# & neﬂ')>0,
H, is
n¢ J otherwise.

It follows from Theorem 1.3 that T'= {n|, is n€ 7 } is hyperarithmetic. Since ¥
is “closed”, # (0$*, T)F%. O
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2.2 Theorem (Sacks 1969, Tanaka 1968). If P(X) is I1} and X P(X) has positive
measure, then P(X) has a hyperarithmetic solution.

Proof. The relativization of Theorem 3.5.III to X yields an arithmetic predicate
A(X, Y) such that

P(X)o(EY)y  xA(X, Y).
By Corollary 1.6
P(T)e M (0%, TE(EY)A(T, Y)
for almost all T. Consequently P((EY)A(Z, Y))>0, and by the countable

additivity of p, p(EY*)A(Z, Y*)) > 0 for some o < w§*. By Lemma 2.1 there is
an HeHYP such that

M(0SK, H) = (EY) (T, Y).
Since 4 (w$*, H) = HYP, P(H) holds. [

2.3 Measure-Theoretic Bounding. Assume P(T,x,y) is II!. It follows from
Kreisel’s uniformization theorem (2.3.I1) relativized to T, that

) (x)(BY)P(T, x, ) = (Ef),. 1(x)(EY), </ P(T; X, )

For almost all T the bounding function f of (1) can be taken to be hyperarithmetic,
that is

(2 (x)(Ey)P(T, x,y)— (Ef)feHYP(x)(EY)y sf(x)P( T, x,y).
Fix a rational 6 > 0. Suppose fe HYP is sought so that
(x)(Ey)y < f(x)P( Ta X, Y)

holds for all T, save those in a set of measure less than d, for which the left side of (2)
holds. Choose a rational m such that

0
m < p((x)(Ey)P(T, x, y)) <m+ 2.

Then

o
G (X)(EZ)[#((EY)ySZP(T,x,y))>m——2,‘—5]-

The matrix of (3) is I1} by Exercise 1.11. By Kreisel’s selection Lemma (2.6.II), z can
be taken to be f(x) for some hyperarithmetic f. Hence

0
“((x)(EY)ysf(x)P(T, X, Y))>m—§ O
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For a formulation of measure-theoretic bounding over a countable model of
ZF & V =L, see Sacks 1969.

2.4-2.6 Exercises

2.4. Suppose A€2® — HYP. Show { X|4 <, X } has measure 0.

2.5. Call T Al-random if T belongs to every A} set of measure 1. Define £} and IT}
randomness similarly. Show ITi-randomness is equivalent to A}-randomness,
but not to Xi-randomness.

2.6. Show X! dependent choice holds in #(T,,T,,T,,...) for almost all
(Ty, Ty, T,, ... ). The language ¥(J,4,J ., ,,...) and the structure
M(Ty, Ty, T, . .. ) are defined in virtually the same way as #(J ) and
A (J) were in Section 4.II1. The only difference occurs in the definition of
atomic formula, where (i < w) takes the place of 7.

3. Cohen Forcing

The method of Cohen forcing over the hyperarithmetic hierarchy was developed by
S. Feferman 1965. It has many applications, the simplest of which is the direct
construction of two hyperarithmetically incomparable reals, each recursive in
Kleene’s O.

A Cohen forcing condition is a consistent, finite conjunction of formulas of the
form me J or n¢ 7. It helps to think of them as nonempty subbasic open subsets
of 2¢. They are denoted by p, q, 1, . . ., ; Tep means T satisfies p, or T is a member
of p=2° p>q(pis extended by q) means (T)[Teq— Tep].

3.1 Cohen’s Forcing Relation ||-. Let # be a sentence of £ (w$*, 77), as defined in
subsection 4.1.II1. Define p |- & (p forces & ) by recursion on the full ordinal rank
and logical complexity of & as follows.

plknes iff (T)[Tep-neT].
plF(EX*) % (X?) iff plkZ(X%9(x))
for some %(x) of rank at most o.

pIF (EX)#(X) iff (Ex)[p |l (EX*)# (X*)].
plcF & % if plFFandpll4%.

p IF (Ex)# (x) iff (En)[p|F #(n)].
plF~#7 il (q)sg~LalFZ1.
plhty=t, iff  val(t,)=val(t,).
plFteT if val(t)=nandpltnes.

ty, t; and t are closed number theoretic terms as in the proof of Lemma 4.5.111.
Note that at the ground level, forcing and truth coincide. After that, forcing
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respects the logical connectives. If one clause of the definition can be said to give
the essence of forcing, it is the clause that defines the forcing of a negation.

One way to make sense out of the definition of Cohen forcing for ranked
sentence of Z (w$X, 7 ) is to consider how to approximate a hyperarithmetic set of
reals by an open set. At the ground level a subbasic open set is approximated by
itself. At higher levels the approximation is built up from approximations available
at lower levels. It turns out that U{p|p | %} is a good approximation of
{T| M (0%, T)EF }, and that U {p|p | ~ ~ F } is slightly better. Some calcu-
lation is needed to show that the latter open set is hyperarithmetic and regular, and
that the error of approximation is meager (cf. Exercise 3.10).

3.2 Lemma. The predicate p |- &, restricted is £} F s, is 1}.

Proof. Same as that of Lemma 4.5.IIL. The clauses of the definition of |}, when
F eX}, correspond to closure conditions whose conjunction is some X} formula
A(X, T). An induction on full ordinal rank and logical complexity shows
plFZ iff (X)[A(X,T)-<{p,Z,0>eX]
iff ~(X)[A(X,T)-<{p, %, 1>eX].

3.3 Genericity. T is generic (in the sense of Cohen) with respect to a sentence & if
there exists a p such that

Tep and [plFF orplk ~ZF1].

T is generic (over M (0F%)) if T is generic with respect to every sentence # of
ZL(o*, T
3.4 Proposition. (i) (p)(F)~{plFF &plF ~

(i) (p)(F)(EQ)ps, [qIFF v qH‘ ~F]

(ii)) (p)(@) (F)[pIFF &p=q-ql-F].

Proof. (i) and (ii) follow from the definition of p | ~ . (iii) is proved by induc-
tion on the full ordinal rank and logical complexity of #. O

It follows from Proposmon 3.4(ii) that generic T’s exist. Let Z; (i <w) be a list of
all sentences of £ (w$¥, 7). Choose p; (i< w) so that for all i,

pi=>pi+; and [piH_'g('-ivpiH_N'%]'

Since every sentence of the form neJ appears among the s, it must be that

() p;: has a unique member, call it T. Clearly 7 is generic. According to Exercise
i<ow

3.18, there exists a generic T hyperarithmetic in O.
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3.5 Lemma. Let T be generic. Then

MK, T)EF iff (Ep)[Tep & pl-#1]
for every sentence F of L (wSX,T).

Proof. By induction on the full ordinal rank and logical complexity of %.

Suppose F is 9, &%, and (0¥, T) k &. By induction there exist p; (i < z) such
that p; |- 94, and Tep,. Note that p, & p, is a forcing condition, because
Tep, N p,. By Proposition 3.4(iii) p, & p, |9, & %,.

Suppose F is (EX?*) # (X*) and p | #. Then p |- # (X% (x)) for some %(x) of
rank at most «. The full ordinal rank of J#(X%(x)) is less than that of #, so
M (0S¥, T)E # (%%(x)). Hence £ is true in A (0S¥, T).

Suppose A(w$¥, T)F ~ %. % is less complex than ~%, so there is no p such that
Tep and p | 4. But T is generic, so there is a p such that Tep and p | ~%.

Suppose Tep and plk ~%. For the sake of a contradiction suppose
M (0¥, T) F %. By induction there is a g such that Teq and q | 4. Then Lemma
3.4(iii) implies p & q|F % and p & q|F ~%, an impossibility according to
34(0). O

3.6 Theorem (Feferman 1965). If T is generic, then A} comprehension holds in
M(5%, T).

Proof. Suppose .#(wSK, T) satisfies

(X [(EY)A(x, Y) < (Z)B(x, Z)]
for some arithmetic 4 and B. Then
(1) (x)(EY) [A(x, Y) v B(x, Y)]

holds. Since T is generic, there is a p such that Te p and p |} (1). The definition of
| implies:

plF ~Ex)~EY) [A(x,Y) v B(x, Y)],

@p>q~[qIF (Ex) ~ (EY) [A(x,Y) v B(x, Y)]

@p>q ) ~[q 1 ~(EY) [A(n, Y) v ~B(n, Y],
() @y (M) (En)»,[r |F (EY) [A(n,y) v ~ B(n, Y)]].

The matrix of (2) is equivalent to
©) (Ea),eo [r I (EY™) [A(n, Y') v B(n, Y'“)]].

(3) is 1] by Lemma 3.2. Kreisel’s selection Lemma (2.6.I) yields r and a as
hyperarithmetic functions of g and n. By Spector’s boundedness theorem (5.6.I)
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there is a recursive upper bound y on |a(g, n)|. Thus
() (@) (En)g>, [r IF (EY?) [A(n, Y7) v ~B(n, Y")]],
and so p forces
4 (m(EY")[A(n, Y") v ~B(n, Y")]].

Since T is generic and a member of p, #(w$¥, T) satisfies (4). But then .#(w$X, T)
satisfies
(EX)(x)[xeX > (EY)A(x, Y)].

(The “X” is % EY")A(n,Y?). O

3.7 Theorem. Assume T is generic and (EX)% (X) has no unranked variables save
X If
MoF%, T)E (EX) F (X),

then M(wSX) E (EX) F (X).

Proof. Suppose p | (EX) % (X). Then p |} (F (X4(x)) for some %(x) of rank
a<w$¥. The relation p | ', restricted to sentences A~ of rank at most a, is A} by
Exercise 3.14. Recall the construction of a generic T following Proposition 3.4.
Repeat that construction with the &;’s replaced by a hyperarithmetic enumeration
of all formulas of rank at most a. Then the constructed set, call it H, can be taken to
be hyperarithmetic, since it can be defined by recursion on w relative to a
hyperarithmetic predicate. H obeys Lemma 3.5 with respect to all sentences of
rank at most a. Hep, since the construction of H can start with p. Hence
M0, H) E F (X% (x)). M(0S*, H) is M(0S*¥) by Lemma 4.16(i).I11. O

3.8 Corollary. If T is generic, then O is £} definable over M (w$¥, T).
Proof. By Lemma 3.5.111,

x€0 —(EY)ycuyp Ax, Y)
for some arithmetic 4. Theorem 3.7 implies

ne0 o M wf*, T)E(EY)A(n, Y). O

3.9 Category Versus Measure. There is an analogy between the results of Sections
3 and 2 based on a standard analogy between category and measure. Let 4 be a
subset of 2¢. (Recall the topology assigned to 2¢ in subsection 6.1.I1.) A4 is said to be
nowhere dense if it has an empty interior. A is said to be meager if it is contained in a
countable union of nowhere dense closed sets. Baire’s category theorem states: the
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complement of a meager set is dense. Consequently meager sets are thought to be
small and analogous to sets of measure 0.

It follows from Proposition 3.4(ii) that the set of T’s such that T is generic with
respect to a given sentence & is dense open, and the set of all generic T is co-
meager. Thus Theorem 3.6 is analogous to Theorem 1.5, and Exercise 3.11 to
Theorem 2.2.

3.10-3.18 Exercises

3.10. An open subset of 2% is said to be regular if it equals the interior of its closure.
Let A be a A] subset of 2°. Find a A} B such that B is regular open and
(A—B) v (B— A) is meager.

3.11. (Hinman, Thomason). Let 4 be a non-meager, I1! subset of 2° . Show A has
a hyperarithmetic element.

3.12. If T is generic, then T¢ HYP.

3.13. If T'is generic, then OT <, T,0. (07 is the hyperjump of T, defined in Section
7.11.)

3.14. Use 4.1(2).I1I and the proof of 3.2 to show p | &, restricted to # of rank at
most o, is Al when a < w§X.

3.15. Assume T is generic. Let T;(i<2) be {n|2n+ie T}. Show T; is generic. Show
Tot,Tyand T, £, T,.

3.16. (H. Friedman). Find a T which is generic with respect to all ranked sentences
(of Z(w$X, T)), but which is not generic.

3.17. (S. Feferman). Cohen forcing for £ (w$X, 9, 7, I, ...) is defined by
taking as forcing conditions consistent finite conjunctions of formulas of the
formme 7, n¢ 7, (i, j<w). Show M(T,, Ty, T, . . .) satisfies ] dependent
choice when (T, T;, T,, . .. is generic (cf. Exercise 2.6).

3.18. Show there exists a generic T <, 0.

3.19. Find a hyperarithmetic set that is not an arithmetic singleton.

4. Perfect Forcing

Let P, Q, R, . . . denote perfect subsets of 2 as in subsection 6.1.II1. In this section
Cohen’s forcing method is extended from finite conditions to perfect ones. The
resulting generic reals differ vastly from those of Section 3. In particular a real
generic in the sense of the present section has minimal hyperdegree. According to
Exercise 3.15, a real generic in the sense of subsection 3.3 lies above two hyper-
arithmetically incomparable reals.
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Let p, g, r, ... be sequence numbers that encode finite initial segments (of
characteristic functions) of subsets of w. As in subsection 6.1.III, a perfect subset of
2° can be encoded by the set of codes for the initial segments of its members. The
natural homeomorphism between 2 and a perfect set P gives rise to a standard
encoding of P denoted by 4;;|p;;(i<w &j<2').p;+1,,;and p;y g5 j+1 are incompar-
able extensions of p; ;.

P=X(() (Ej)j<2: (X €Pyj))-

P is hyperarithmetically encodable if 4;;|p;; is a hyperarithmetic function. From now
on P ambiguously denotes a hyperarithmetically encodable perfect set and its
standard code. Thus the set of all P’s is IT}.

4.1 The Perfect Forcing Relation. Let # be a sentence of £(w¥, 7) as defined in
subsection 4.1.ITI. The perfect forcing relation, P || &, is defined by six closure
conditions.

(1) If # is ranked and (X) [XeP - M (0S¥, X)F F ], then P |- #.

(2) If #(Y*)is unranked and P | # (£%(x)) for some %(x) of rank at most a,
then P | (EY®) # (Y°).

(3) If Pl (EY®).Z (Y*) for some a<w$¥, then P |- (EY)Z (Y).
(4) If # (x)is unranked and P |- & (n) for some n, then P |- (Ex) # (x).
(5) f# & % isunranked, P|-F % and P |- 9, then P |- # & 4.
(6) If # is unranked and (Q)poo~[Q |FZ], then P | ~ Z.
Clause (1) may seem unorthodox in that it treats all ranked sentences as if they
were at the ground level. (1) makes it easy to show that the perfect forcing relation,

restricted to ranked sentences, is I1}, but obscures the fact that

(F)(P) (EQ)pzo [QIF F or Q |k ~#1].
4.2 Lemma. The relation P |- &, restricted to X! #7s, is I},

Proof. Clause (3) of the definition of H makes it safe to assume % is ranked. Hence
1) PIFF oX)[XeP->MoS*, X)FEF]

The right side of (1) is I} by Lemma 4.5.1I. [

The next lemma establishes the so-called fusion (or splitting) property of perfect
forcing in the hyperarithmetic case.
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4.3 Lemma. Let %,(i <w) be a hyperarithmetic sequence of | sentences. Suppose

() (Qr=0(ER)=[R I #1.
Then (EQ)p=o()[Q I+ #.1.
Proof. By lemma 4.2 the predicate

Q2R &RIFZ,

is TI}. Kreisel’s uniformization theorem (2.6.II) implies R can be construed as a
partial IT} function of Q and i. R(Q, i) is iterated below to produce 1ij/Q; ;, a
hyperarithmetic function as in Exercise 4.16.

A hyperarithmetic family {Q; ;|i < w & j < 2'} is defined by recursion on i with
the aid of iQ|R(Q, i) and effective splitting.

Qo,o =P.
1) Qi+1,2;S0Q;; and ,Qivy 2541 S Qi ;.
2 Qi+1,2ani+1,2j+1 = .

Qi+1,2j”_9—'i and Qi+1.2j+1”_'97i'

LetQbe () |J Q. ; Then Qe HYP and Q < P. Q is perfect because of the splitting
i j<2i
in (1) and (2). Note that if X € Q, then for each i, there is a unique j such that X € Q; ;.
Fix i to check Q| ;. Let &, be (EX)%(x). Q is contained in U{Q; ;|j < 2'}, and
for each j < 2/,

Qi1 ;I F(EX)G(X*)

for some a; < w§*. Let « be sup a;. Then QIH(EX*),(X*). O

j<2i

Lemma 4.3 is the central fact of perfect forcing over the hyperarithmetic
hierarchy. Its counterpart in the set theoretic case (Sacks 1967) is applied to show
aleph-one is preserved in generic extensions of L.

44 Lemma. (¥ )(P)(EQ)p2g[QIFZF or QI ~ F].

Proof. Suppose & is unranked. Then the lemma follows from clause (6) of the
definition of H.

Suppose & is ranked. Proceed by induction on the full ordinal rank and logical
complexity of & as defined in subsection 4.4.IIl. For example, suppose Z is
(EX*)s#(X°). Let 4(x) (i < w) be an effective enumeration of all formulas of rank
at most a whose sole free variable is x. First assume

)] (Ei)(EQ)p=o[Q 11 (X% (x))].
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Then Q|%. Now assume (1) fails. By induction
()(Q)p=20(ER)g=r(RIF ~ # (3%,(x))].
Lemma 4.3 yields

(EQ)p2o()[QIF ~ # (X% (x))].

But then Q|F ~#. O

Lemma 4.4 has roughly the same content as: each Aj set or its complement
contains a perfect Al set. Note that an uncountable A} set need not contain a
perfect A} set.

4.5 Perfect Genericity. Suppose T < w. T is said to be generic (in the sense of
perfect forcing) if for each sentence & of Z(w$¥, 7), there is a P such that Te P
and either P| % or P|F ~ #. It follows from Lemma 4.4 that generic T’s exist
inside every P. Let %, (i < w) be an enumeration of all sentences of £ (w$*, 7).
Define P(i < w) so that P, =P, P,2 P;,, , and

P lFF or P lF~%.
Then N{P;|i < w} = {T} and T is generic.

The next proposition is a technicality needed for the proof of the truth lemma
(4.8).

4.6. Proposition. Suppose T is generic with respect to all ranked sentences, and
TeP n Q. Then there exists an R such that TeR < Pn Q.

Proof. The statement T € P is equivalent to
OEPLi <2 & Tepyl,

where 4;;|p;; is the standard hyperarithmetic code for P. It follows from Lemma
4.7.111. that there exists a ranked sentence ¢ such that

(T)[TeP e M(SK, T)EZ].

Let 5# be a ranked sentence that bears the same relation to Q that ¢ does to P.
By supposition .#(w$*, T) k% & . Since T is generic, there is an R such that
TeR, and
RIF9 & # or RIF~ (% & #).

If RIF ~ (% & ), then clause (1) of the definition of |l implies T¢ P Q.
Hence R|F9 & #.Andso RS PnQ. O
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4.7 Proposition. If P |- and P 2 Q, then Q|- #.

Proof. Clause (1) of the definition of H disposes of the matter if & is ranked. For
unranked & the proof proceeds by induction on the full ordinal rank and logical
complexity of #. [

4.8 Lemma. Suppose T is generic. Then
M TVEF  iff (EP)rep[PIFF]
for every sentence F of L (X, T).
Proof. Clause (1) of the definition of | takes care of ranked #’s. For unranked

Z’s the proof is by induction on logical complexity as in Lemma 3.5. The only
difficulty occurs when & is ¥ & . Suppose

Mo TVEG & H.

By induction there exist P and Q such that Te PN Q, P|-% and Q|| 5. Lemma
4.6 supplies an R = P n Q such that Te R. By Proposition4.7 R|F¥9 & #. O

4.9-4.15 Exercises

49. Let A be a A} subset of 2°. Find a perfect A} set P such that P < A4 or
Pc2°— A

4.10. Show there exists a generic T <,0.

4.11. Assume £ is }. Show
PIFF iff (X)[XeP - 4 (0S¥, X)EF].

4.12. If T is generic (in the sense of perfect forcing) and S =, 7, then S is generic.
(Refute this assertion for Cohen genericity.)

4.13. If T is generic, then T¢ HYP.

4.14. If T'is generic, then Kleene’s O is X! definable over #(w$*, T). (First show an
arithmetic predicate with a solution in .#(w$¥, T) has a hyperarithmetic
solution.)

4.15. Define ||, by using the perfect conditions of subsection 4.1 and the recursion
of subsection 3.1. For example P|l-; ~ # iff (Q)p2g ~ Q | # whether or
not & is ranked. Call T generic in the sense of ||, if for each sentence # of
PL(wfX, T), there is a P such that Te P and either P|}-, & or Pl ~ #.
Show T is generic in the sense of ||, iff T'is generic as defined in subsection
44,

4.16. Let g(0)=0, and g(n+1)~f(g(n)) for all n, where fis partial I1}. If g is total,
then g is A{ by 1.7.1.
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5. Minimal Hyperdegrees

T is said to be of minimal hyperdegree of T¢ HYP and (S)[S <,T— SeHYP
v T <,S] The existence of minimal Turing degrees was proved by Spector 1956.
The hyperdegree case combines Spector’s ideas with perfect forcing over the
hyperarithmetic hierarchy. The principal result of this section is that every perfectly
generic T is of minimal hyperdegree.

5.1. ./-Definability. Suppose I < w. I is said to be .#-definable if there is a
formula Z(x) of L(w$¥, ), in which J does not occur, such that

(mnele M () F F(n)].

I is said to be generically definable if there is a formula #(x) of L(w$*, 7) such
that
(m)nel o M (0%, T)EF (n)]

for all generic T (generic in the sense of perfect forcing).

5.2 Lemma. The following are equivalent
(i) I is arithmetic in O.

(ii) I is .#-definable.

(iii) 1 is generically definable.

Proof. By Theorems 3.5.111 and 4.8.1I1, there is an arithmetic A(x, Y) such that for
all n,
ne0 « M(¥)E(EY)A(n, Y).

It follows from the parenthetical remark in Exercise 4.14 that
ne0 o M, T)E(EY)A(n, Y).

for all generic T. Thus O is .#-definable and generically definable. Consequently
every set arithmetic in O is.
Suppose I is #-definable. Then Lemma 4.5.I11 implies I is arithmetic in O.
Finally suppose I is generically definable via the formula #(x). It suffices, by
Lemma 4.2, to see

nel(P)EQ)p=o[QIF#(n)]
in order to conclude I is arithmetic in O. First let ne I, T be generic, and T € P. Then
MT%, T)E F (n).

By Lemma 4.8 there is an R such that Te R and Rl % (n). Proposition 4.6
provides a Q = P N R such that Te Q. But then Q| % (n) by Proposition 4.7.
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Now let n¢ . Choose a generic T and a P such that
M, T)E ~ F(n),
TeP, and Pl ~ #(n). Then

~(EQ)P2Q[Q [+ F(n)]. (.

Let K be a set of P’s and Q’s, that is a set of hyperarithmetically encodable perfect
conditions. K is the set of indices of members of K. 2°- 3¢ is an index for P if be O,
{e}H* is total, and {e}"* (= Aij|p;;) is the standard code for P.

K is dense if (P)(EQ)[P 2 Q€ K].

5.3 Theorem. T is generic iff Te U{P|P e K} for every dense set K arithmetic in O.

Proof. Suppose T satisfies the density hypothesis. Fix #. The set
{PIPIF#F or PlF~%F}

is dense by Lemma 4.4, and arithmetic in O by Lemma 4.2. Hence T is generic with
respect to &.
Now suppose K is dense and arithmetic in O. By Lemma 5.2 there is an £ (x)
such that
neK'o MwsK, TYEZF (n)

for all generic T. Let H be the arithmetic formula of Theorem 4.2.11. Define ¥ by

(Ex)(EY)[F(x) & H((x)o, )
& (i)(Ej)j<2: (B2)({(x,)} (. )) = z = (¢ 4(2)))].

% says: (EP)[PeK & TeP]. (z is a sequence number that encodes an initial
segment of the characteristic function of .) In fact

) Teu{P|PeK} o Mo T)FY

holds for all generic 7. It need only be shown that the right side of (1) holds for all
generic T. If not, there is a P and a generic Te P such that P|- ~ 4. Since K is
dense, P 2 Q for some Q € K. Choose a generic T* e Q. It follows from (1) that

MK, THEY,

and so T*eR for some R that forces 4. By Proposition 4.6 thereisan S = Q " R
such that T*eS. S|¥ since R|F¥ and S|k ~%since S P. O

5.4 Theorem. If T is generic, then M (0S¥, T) satisfies A} comprehension.
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Proof. Similar to the proof of Theorem 3.6. It is enough to show: if #(w$X, T)E (x)
(EY)A(x, Y) for some arithmetic A4, then ./ (w$X, T)k (x)(EY*)A(x, Y) for some
a < wf¥. Let K be the set of all P such that

Pl ~(x)(EY)A(x, Y)
or (Eb),co[PIF(x)(EY"®)A(x, Y]
By Lemma 4.2 K is arithmetic in O. To see K is dense, fix P. If P contracts to some
Q that forces ~ (x)(EY)A(x, Y), then all is well. If not, then P contracts to some Q

that forces (x)(EY)A(x, Y). It follows, as in the derivation of (2) from (1) in the
proof of Theorem 3.6, that

(n)(R)g2r(ES)g=2slS IF(EY)A(n, Y)].
The fusion lemma (4.3) yields S = Q such that

MISIHEY)A(n, V)],
or in more detail,
()(Ec).co[SIFEY) A(n, YI)].

Kreisel’s selection Lemma (2.5.1T) implies ¢ can be constructed as a hyperarithmetic
function of n. Then Spector’s boundedness theorem (5.6.I) provides a recursive
bound a on c: |c(n)| < « for all n. Thus P 2 SeK.

By Theorem 5.3 T belongs to some member of K. [

Let %(x) be a ranked formula of £(w$*, 97) whose sole free variable is x. For
each T < w, define
g7 by {(n|#(of%, T)F%(n)}.

Thus for each T the ¥™’s are the members of .#(w$X, T).
The essential content of the next lemma is: let f:2° — 2° be A}; then there exists

a perfect A} A < 2° such that f, restricted to A, is either constant or 1-1.

5.5 Lemma. For each P and %(x) there are Q < P and H € HYP such that either (i)
or (ii) holds.

() (T)[TeQ - %7 = H].
(i) (T)[TeQ — T recursive in 47, H].

Proof. Case I: there is an R < P such that

(Qo)o,=r(Q1)g, cr(M) ~[Qo IF¥(n) and Q, Ik~ %(n)].

Define H by
neH«—»(EQ)QgR[Q H_g(ﬂ)]
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Observe that n¢H<—>(EQ)Q;R[QII— ~ %(n)]. It follows from Lemma 4.2 that
HeHYP. The fusion Lemma (4.3) supplies a @ = R such that for all n,

neH—-Q [F%(n)
and n¢H - Qll-~ %(n).

Then ¥T = H for all TeQ.
Case II: Case I fails. Hence

(R)p=r(EQo)g, = R(EQ1)g, < rR(EN[Qo [F¥(n) and Q, |-~ %(n)].

The present situation is similar to that found in the proof of Lemma 4.3. Q,, 0, and
n can be construed as partial I1} functions of R. They are applied in a recursion of
length w to obtain hyperarithmetic functions 4ij|Q;; and 4ij| f(i, j) such that:

Qoo=P, Qir1,2j0Qis1,2i+1=,

Qiv1,2;S0Q; and Qiyy 541 S Qijs

Qi+ 1,2j I+ %(fG,j)), and

Qi+1,2j+1 Ik~ Q(M))

Let Q be () {J Q. Q is hyperarithmetic and perfect.
i j<2i
Fix TeQ to see why T'is recursive in 47, H, where H is Q, f>. The idea is: 47 is
1-1 on Q, so T can be recovered from 47 with the help of Q and f. Let t(i) be the

unique j such that TeQ, ;. The construction of Q implies

tG+1)=2tG) if fG,t()e¥”
uG)+1 i [, )¢9

Thus ¢, hence T, is recursive in 47, Q, . O

5.6 Theorem (Gandy & Sacks 1967). If T is generic in the sense of perfect hyper-
arithmetic forcing, then T is of minimal hyperdegree.

Proof. By Exercise 4.13 T¢ HYP. Suppose X <,T. By Lemma 54 #(w$¥, T)
satisfies A} comprehension, and so by Lemma 4.16.IlI, X € #(w$¥, T). Thus
X = %7 for some ranked %(x). Let K be the set of all Q that satisfy (1) or (2) of
Lemma 5.5 for some hyperarithmetic H. Then K is dense, and K is arithmetic in O;
in fact K is I1]. Theorem 5.3 implies Te Q for some Q € K. Hence

XeHYP or T<,X. O
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5.7-5.9 Exercises

5.7. Suppose f:2° — 2°is A}. Find a perfect A} set 4 such that the restriction of f
to A is either constant or 1-1.

5.8 (Local Cohen Forcing). Let Q be a hyperarithmetically encodable, perfect
subset of 2°. The Cohen forcing method of Section 3 is localized to Q as
follows. In essence Q replaces 2°. pll, & is defined as in subsection 3.1 save
that p, g, r, . . . now encode finite initial segments of members of Q. Generic is
defined as in subsection 3.3, and it follows that all generic T’s belong to Q.
Recall the trick of the proof of Theorem 3.7. Use local Cohen forcing to give
proofs of Lemmas 4.4 and 5.5.

5.9. Try exercises 4.12 and 4.15 again.

6. Louveau Separation

The Kleene separation theorem for subsets of w states: if 4, B < w are X! and
disjoint, then there exists a A] C € w such that A < C and Cn B = (. It was
obtained as a corollary to a reduction theorem (3.7.1I) for I1} subsets of w. Kleene
separation for subsets of w® (Exercise 5.11.IT) is obtained similarly by relativizing
Theorem 3.7.I1 in the manner of Section S5.I1.

Let A and B be disjoint subsets of w®. As in subsection 5.4.I1, there are n, and ng
such that

(f)[feAden,e0’], and
(f)[feBongeO/].

Let fe Ay feA & |nlos < |nglos, and

feBy>feB & |nglos <nglos,

Lemma 2.1.I1, relativized to f, implies 4, and B, are I1!. By construction 4, < A4,
By B, AynBy = and A,uB, = AUB.

As in subsection 3.6.II, reduction for IT} implies separation for X}. Kleene
separation for subsets of w® is: if 4, B = w® are ] and disjoint, then there exists a
Al C such that 4 < C and BN C = (. Louveau separation is concerned with the
complexity of the separating set C. In order to make the notion of complexity
precise, a hierarchy of subsets of w® is defined. Let D < w®. D is subbasic if D is of
the form { f| f(m) = n}. D is clopen if D is a finite Boolean combination of subbasic
sets.

D eIl if D is clopen.
Delly if D is a countable intersection of complements of sets in
no<y = U{Hglé < y}'
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D is open if it is a union of clopen sets. D is Borel if it belongs to the least o-
algebra containing the open sets (cf. subsection 6.1.II). According to Exercise 6.10,
D is Borel iff D belongs to ITg,, . If D e IT;—I1% ,, then D is said to have rank y. One
measure of the complexity of D is its rank. Another is the way D is put together
from sets of rank less than D. The “putting together” is described by a code for D.
The code for a clopen set is obtained from a fixed, effective one-one correspondence
between I and {5"*!|n < w}. Each clopen set has a code of the form {5"*!}.
Suppose

D = n{w®—D,|m < 0},

Dell, D,elIl, (,<7),

and c,, is a code for D,,(m < w). Then {2"-3"|nec,,} is a code for D. According to
Exercises 6.7 and 6.8: if D has a Al code, then D e IT° WS> DisAliff Dhasa Al code. D
is said to be a IT)(A}) set if DeIIS and D has a A1 code.

6.1 Theorem (Louveau 1980). If A, B < w® are X}, and A is separable from B by a
IT; set, then A is separable from B by a II5(A}) set.

6.2 Corollary (Louveau 1980). If A < w® is A} and TI9, then A is TI(A}).

Corollary 6.2 is remarkable. It implies, for example, if 4 is A] and an intersection
of open sets, then A is the intersection of a Al sequence of A} open sets. The proof of
Theorem 6.1 is a combination of bounding arguments and forcing. The role of
forcing is to approximate certain sets by unions of forcing conditions in the manner
discussed at the end of subsection 3.1. The conditions are nonempty X} subsets of
w®. X} forcing was invented by Gandy circa 1964. One difficulty of X} forcing is
that X! conditions are not closed. A contracting sequence of £} conditions can
shrink down to nothing. Consequently it is necessary to pay close attention to the
existential witnesses that establish membership in X} sets.

A set is open in the Gandy topology for w® if it is a union of X} sets. The next
result says that the Baire category theorem holds for the Gandy topology. It is
needed for the “approximation” aspect of the proof of Louveau’s separation
theorem.

6.3 Theorem. Let w® have the Gandy topology. If O; (1 < i < w) is a sequence of

dense open sets, then (O, is dense. 0
i
oV

[ . .
Proof. Let P, P, P,, etc. denote nonempty X! subsets of , Fix P with the intent of
finding an feP N ﬂ 0;. Recall Seq and > from subsection 5.1.1. The construction
below defines P;, f and g;; (1 < i, j < ) such that:

(@ P=2P,2P;,,and P, < 0O,.
(b) fieSeq, £4(f) =1, and f; > fi. 4.
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<
(¢) g:;;€Seq, £4(g;;) =j, and g;; > g; j+1-
(d) Letf(i) = f; and g;(j) = g,;- g; is an existential witness to the membership of /
in P;.
It is immediate from (a)«d) that fe P~ [ P,.

Suppose Q is f (Eg)(x)R(f(x), g(x)) from some recursive R. Q(s, t), a notation
needed for the construction, is defined by:

JLfAs) = s & (Be)G(A®M) =t & (X)R(f(x), §(x))].

The construction proceeds ’51s fo%ows

(1) Choose P, < O, N P. P1 sts by density of 0,.

(2) Choose f; and g,, so that P,(f,,9,,) # &.

(3) Choose P, < P, (f1,911) N O,.

(4) Choose f, and g,, so that f; > f, and P,(f,,9,,) # &.

(5a) Note that P,(f>,9:1) N P,(f3,921) # &, because

Pi(f1,911) 2 P2(f2, 921)

(5b) Pi(f2 911) = U{P1(f2 X)Ig11 > x}.

(6) It follows from (5a)«(5b) that g,, can be chosen so that
Py(f2, 912) 0 Pa(f2, 921) # .

(7) Choose P53 = P1(f3,912) 0 P2(f2,921) N Os.

Steps (3)—(6) define stage 2 of the construction.

Stage i is similar and begins with the choice of P; inside

Pi(fic1:91,i-1)0P(fi1:92,i-2)0 ... O Pi_1(fio1,Gi-1,1) N O;.

Then f; and g;, are chosen so that f_; > f and P(f, g;;) # . Next, as in step (6),
g1 is chosen so that

Pi(f,91) 0 Py(fis92,i-2) 0 . .. OPi_1(fis gi=1,1) 0 Pil fi, 9i1) # .

Then in the same manner g, ;_, g3 ;-2 - - - » §i—1,2 are chosen in succession. [J

Louveau separation (Theorem 6.1) is proved by induction on y, referred to below
as the main induction. It is safe to assume y < off¥ by Exercise 5.11.II and Exercise
6.7 below. The proof of 6.1 is broken into three lemmas (6.4-6.6), each of which
makes use of the main induction.

Suppose H < w®. The y-closure of H, denoted by H?, is defined by:

x¢ H' > (EY)[xe Yell%,nXZ! & YnH =]

Note that y-closure is the usual notion of closure for subsets of w® with respect to
the topology generated by IT%, N X].

6.4 Lemma. If A, B< w® are X}, and A is separable from B by A’, then A is
separable from B by some TI}(A1) set.
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Proof. The hypothesis of the lemma yields
(1) X)xesEY)[XeYell%,nZ] & YNnA=F]

The Y of (1) is a 1%, set that separates the Z{ sets ¥ and 4. The main induction
implies that ¥ and A can be separated by a I1%,(A}) set. Thus the matrix of (1) can
be replaced by

?) XeYell2 (A]) & YnA=(.

Let C be the set of all hyperarithmetic codes for IT% (A}) sets. Cis IT{. Let Y, be the
set coded by ze C. (1) becomes

(3) (X)xep(EZ)zcc[xeY, & Y,nA=]

The predicates, ZeC & XeY,and ZeC & X ¢ Y., are I1] (as in Lemma 2.1.1T),
hence the matrix of (3) is I1}. It follows from Exercise 2.11.I1, a variant of Kreisel
selection (Lemma 2.6.11), that the Z of (3) can be taken to be a hyperarithmetic
function of X, call it m(X). Let

B, be {m(X)|X € B}, and
B, be {Z|ZeC & Y,nA= ).

Then B,eX}, B, = B, and B, eI1}. By Exercise 5.12.11, a variant of Exercise 3.9.11,
thereis a Al D such that B, = D < B,. (Note that Kleene separation for £} sets was
used to obtain D.)

Let Ebe U{Y,|ZeD}. Then BS E,EnA = J and (0® — E)ell)(A]). O

The proof of Lemma 6.4 was a bounding argument typical of hyperarithmetic
theory. The next lemma is an approximation result inspired by Gandy forcing. Let
o® have the Gandy topology as in Theorem 6.3. Suppose H < w®. As usual H is
said to be nowhere dense if the closure of H has an empty interior, and meager if H
is contained in a countable union of nowhere dense sets. Theorem 6.3 is equivalent
to: if H is meager and open, then H is empty.

6.5 Lemma. If y < wf¥ and H eI, then there exists an L such that L = L and
(H—L)u (L — H) is meager (in the sense of the Gandy topology).

Proof. By induction on y. Not to be confused with the main induction. Let H be
o” — U {H,|n < v}, where for each n, H,eII,_ for some y, < y. By induction there

is an L, such that

Lr=1L, and (H,—L,)u(L,— H,) is meager.
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Define L = —u{Y|Yell%,nX] & YN H is meager}.
H — L is meager, since a countable union of meager sets is meager.

L-H=u[(LnH,~AnL,)u(Ln(H,— L,))]. So the meagerness of L — H will

follow from that of LN L,. L n L, is closed. Suppose C is £} and C = L n L, with
the intent of showing C = (¥. Since Ce X}, the main induction implies (as in the
passage from (1) to (2) in the proof of Lemma 6.4):

C= —U{Y|Yell,, (A!) & YAC =g}

The set of codes for members of IT%, (A1) is a I} set of hyperarithmetic reals.
Consequently C™ is X1.

Crncl»=L,; so C"nHcL,nH<L,—H,.

Since L, — H,, is meager, C™ n H must also be meager. Clearly C™eII%,. It follows
from the definition of L that C’""n L = ¢J. Hence CN L = J and so C = (.
If Yell.,nXZ] and Y N H is meager, then YNnL=. SoL=2L’. O

6.6 Lemma. If A, B < o are Z1, and A is separable from B by a TI, set, then
A'NnB=(.

Proof. Suppose A < H and Hn B = ¢J for some H eIl. As was noted just before
Lemma 6.4, it is safe to assume y < w$¥. Lemma 6.5 provides an L such that L = L”
and (H— L)u (L — H) is meager. A < H, so A — L is meager. L is closed and A4 is
open, so A — L is open. By Theorem 6.3 A — L = (. Hence A’ < L' = L.

HNnB=, so LnNBismeager, and A’ B is meager. The main induc-
tion implies A” is open, as C’ was open in the proof of Lemma 6.5. Thus A’ N Bis a
meager, open set, hence empty. O

Louveau’s separation theorem (6.1) is an immediate consequence of Lemmas
6.4 and 6.6. The proof of 6.1 in outline is as follows. Suppose 4 and B are separated
by some H eIl for some y < w{*. H can be well approximated by some L with
the property that L' = L. In essence the complement of L is the union of all X!
forcing conditions of boldface rank less than y that force generic reals out of H. A
comparison of A” with L shows A" separates A and B. Baire’s category theorem for
the Gandy topology shows the error introduced by substituting L for H amounts
to nothing. A bounding argument, together with the Kleene separation result,
shows A” can be replaced by a IT)(A}) set. Induction on y is used throughout to
replace “YeIl%,NZ1” by “Yell%,(A})”. The effect is, in 6.4, to make the matrix
of (1) IT}, and, in 6.5-6.6, to show the d-closure of a X! set is ! (6 < y). Less
precisely, the effect of the induction on y is to show: with respect to the forcing of
rank y sentences with X} conditions of rank less than y, there is no difference
between lightface and boldface conditions.
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6.7-6.11 Exercises

6.7. If DelT;, and D has a A} code, then D €IIjcx.

6.8. Suppose DeIly, . Show DeA] iff D has a A{ code.

6.9. Find a X] set D < @* such that Delljex — 17 ox.
6.10. D is Borel iff DelI, .

6.11. Use Gandy forcing, as Harrington did, to prove Silver’s theorem: Let E be a
1} equivalence relation whose field is w®. Suppose there are uncountably
many E-equivalence classes; show there are continuum many.





