
Chapter II

Fragments and Combinatorics

Introduction. In the present chapter we shall elaborate proofs of various com-
binatorial principles in suitable fragments of arithmetic. In general, infinite
principles deal with graphs, functions etc. on infinite sets, finite principles
relate similarly to finite sets. We prove both some infinite and some finite
principles; furthermore, we show some infinite principles to be equivalent to
certain collection principles and some finite principles to be equivalent to cer-
tain consistency statements/Sections 1 and 2 deal with strengthenings of the
infinite and finite Ramsey theorem (they will be formulated at the beginning
of Sect. 1), in particular with various forms and instances of Paris-Harrington
principle. This principle is very famous since it has been the first example of
an arithmetical statement that has a clear combinatorial meaning, is true (in
N) and is unprovable in PA.

Instances of Paris-Harrington principle will form a hierarchy of formulas,
n-th of them will be proved in IΣn (n > 1). As said above, in this chap-
ter we deal with concrete proofs, not with unprovability; but unprovability
results immediately follow from the results of this chapter using Gδdel's in-
completeness theorems (elaborated in Chap. III). We shall mention this on
corresponding places in this chapter: (n+l)-th instance is unprovable in IΣn.

In Sect. 3 we shall deal with ordinals in fragments, introduce the notion of
α-large sets (α an ordinal) and investigate another hierarchy of combinatorial
statements, related to the first one. Results of this section will be used
in Chap. IV for a characterization of functions provably recursive in IΣn

(n > 1).

1. Ramsey's Theorems and Fragments

(a) Statement of Results

1.1 First we shall recall Ramsey's theorems in an informal formulation. If
X is a set of natural numbers, then [X]u is the set of all u-element subsets
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of X (or, equivalently, all increasing u-element sequences of elements of -X").
F : [X]u —> a (where a is a natural number) means that F is a mapping
whose domain is [X]u and whose range is included in { 0 , 1 , . . . , a — 1}. It is
customary to call u the arity of F and a the number of colours. F C I i s
homogeneous for F if F restricted to [Y]u is constant. The infinite Ramsey
theorem says that for each natural u and a and each F : [X]u —* α where X is
unbounded (i.e. infinite) there is an unbounded Y C X which is homogeneous
for F. It is customary to denote this by

)(α,-(ω)«) or (W)(u, - (ω)«J

the first ω symbolizing the unboundedness of X and the second unbounded-
ness of the homogeneous set.

1.2 For natural numbers, g,y,ιt,2,g, the symbol [x,y] —* (q)" means that if
X is the closed interval [x, y] of natural numbers, then each / : [X]u —• z has
a homogeneous set of cardinality q. The finite Ramsey theorem is

(V* ι g,«,*)(3y)([*,y]-•(«)«).

The symbol [x,y] —* (q)% means that each / as above has a homogeneous

set Y of cardinality q which is relatively large, i.e. min(F) < card(Y). Paris-
Harrington principle is

Evidently, this is a strengthening of the finite Ramsey theorem; Paris-
Harrington principle follows from the infinite Ramsey theorem using Kόnig's
lemma. (We shall discuss the proof below.)

1.3 Clearly, Paris-Harrington principle as well as the finite Ramsey theorem
is expressible by a formula of first order arithmetic; let us write PH(u,z)
for (Var, ?)(3y)([x, y] —• (<?)") (recall that u is the arity and z the number of

colours). Thus Paris-Harrington principle is (Vu,z)PH(u,z). Our sequence
of formulas that are "harder and harder to prove" is (Vz)PH(n, z) for n =
1,2,...

1.4 On the other hand, we cannot formalize the infinite Ramsey theorem in
first-order arithmetic as it stands since we cannot quantify over arbitrary sets
of natural numbers. But we can quantify over sets of restricted complexity,
e.g. over Δm sets (in IΣ\) or low Δm (in BΣm). Thus we may express
several partition relations saying that for each /\-definable and unbounded
X and for each A-definable F : [x]u -> z there is a ^-definable unbounded
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homogeneous set (where ΓΊ, Γ2 are Δm, low Δm or so). Denote such a formula

by

Recursive analysis of Ramsey's theorem consists in establishing truth of
assertions of this type. (Pioneering work was done by Jockusch). Our aim
is still more ambitious: we want to establish provability of such assertions
in suitable fragments of arithmetic. We are now ready to present the main
results of this section.

1.5 Theorem. For m,n > 1, BΣm+n proves

ω -* (ω)^ω(low An+l, low

i.e.: For each z, if X is low Δm+\ and unbounded and F is a low Δm+ι
mapping of [X]n into z (i.e. into {0,..., z - 1}) then F has a low Δm+ι
homogeneous unbounded set.

For a proof (using low basis theorem) see below. Note that the assertion is
meaningful in BΣm+ι and is expressible as a single formula using the coding
of low Δm+ι sets in BΣm+ι (see Chap. I, Sect. 2). Due to some obvious
inclusions, we have e.g. the following corollary: for ra,n > 1, BΣm+n proves

This assertion is weaker but is meaningful already in IΣ\ and is equivalent
over IΣ\ to BΣm+n.

1.6 Theorem. For m,n > 1, IΣ\ proves the following:

BΣm+n = ω -> (ω)n

<ω(Δm, Δm+1).

(Here BΣm+n is formulated as a single formula).

By Theorem 1.5, BΣm+n proves an infinite Ramsey type theorem on map-
pings of arity n and complexity low 4 m + i . We shall see that this theory also
proves a Ramsey type theorem on mappings of arity (n + 1) and complexity
low Δm+ι\ but it guarantees only a finite relatively large homogeneous set
and the number of colours must be standard.

1.7 Theorem. Let m,n > 1. (1) IΣm+n-i proves the following: If X is LLm

and unbounded and if F : [X]n -> z is iX m , then for each q there is a
relatively large homogeneous (finite) set having at least q elements. This can
be expressed by
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(2) For each fc, JZVw+n-l proves

also proves that infinite homogeneous sets of some complexity need
not exist. As an example we prove the following.

1.8 Theorem. For m > 1, IΣm+ι proves

(Thus there is a Δm F : [X]2 -> 2, X Δm, unbounded, with no Σm+ι
homogeneous unbounded set).

Note that a stronger result will be obtained in 1.28.

Let us summarize the above results for arity 2, 2 colours and Δ\ mappings.
We have the following:

BΣ3 \- ω -+ (ω)l(Δ\, low Δ3).

Now let us consider finite Ramsey type theorems.

1.9 Theorem. For n > 1,

(a) IΣn\-(Vx,z,q)(3y)([x,y)-:(q)ΐ)

(i.e.IΣn\-{Vz)PH(ή>Z)),

(b) for each k,

(i.e. for each fc, IΣn h PH(n + 1, fc) .

Remark. Results of Chaps. Ill and ΓV enable us to add the following:
First, all formulas in question are I?2.
Second, in Sect. 2 of the present chapter we prove a theorem implying that

IΣi proves (Vz)PH(n + 1, z) -> Con(IΣ^) (consistency), thus we may apply
GόdePs second incompleteness theorem (proved in IΠ.2.21) to deduce the
unprovability of (Wz)PH(n + 1, z) in IΣn. Thus we have a strictly increasing
hierarchy of Π<ι formulas.

1.10 Theorem. IΣλ proves (Vx,z,q,u)(3y)([x,y] -> (g)«).

This completes our list of results. In what follows we shall elaborate proofs.
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(b) Proofs (of 1.5,1.7,1.9)

1.11 Definitions (JΣΊ). Let F : [X]2 -> a be Δu X Δ1 unbounded. An
increasing sequence s of elements of X is prehomogeneous if for each i < j <
lh(s) the value F((s)i, (s)j) depends only on the first argument, i.e. for each
i < j < k < lh(s) we have ί1^),-, («),-) = F((β)u(s)k). H i < lh(s) - 1
then the colour of (s){ (in s) is the common value F((s)i(s)j) for i < j <
lh(s). If lh(s) > 0, u > max(s) and s ^ (u) is prehomogeneous, then the
maximal element of s has a colour in s ^ (u), namely F(max(s),u). Let
lh(s) > 1; s ^ (u) is a minimal prehomogeneous extension of s if s <~* (u) is
prehomogeneous and there is no υ between max(s) and u such that s ^ (v) is
prehomogeneous and max(θ) has the same colour in s ^ (u) as in s ^ (v). s
is hereditarily minimal prehomogenous (or h.m.p.h.) if s is prehomogeneous,
s = 0 or (5)0 = min-Y and for each i between 1 and lh(s) — 1, s \ (z + 1)
is a minimal prehomogeneous extension of s \ i is the initial segment of s of
length i).

1.12 Definition. (IΣi). A tree T is narrowly branching if there is a number c
such that each s € T has at most c immediate successors.

1.13 Lemma. (IΣi) Let F : [X]2 -> α be as in 1.11 and let T be the set of all
h.m.p.h. sequences. Then T is A\, and is an unbounded narrowly branching
tree.

Proof, Evidently, T is a A\ tree. It is narrowly branching since each s £ T
has at most a immediate successors. To prove that Γ is unbounded one easily
shows that for each x € X there is an s € Γ such that max(θ) = x. Indeed,
let so = min-X"; then (SQ,X) is trivially prehomogeneous and (so) is h.m.p.h.
Assume we have a h.m.p.h. sequence s such that s'^ (x) is prehomogeneous.
If s ^ (x) is not h.m.p.h., then there is a y < x such that s ^ (y) is h.m.p.h.
and the colour of max(s) in s ^ (y) is the same as the colour of max(s) in
s ^ (x)i then s ^ (y) ^ (x) is prehomogeneous. D

1.14 Lemma (1) (IΣ\). If T is a A\ narrowly branching unbounded tree, then
for each level x, the set {s € T \ lh(s) = x} is bounded.

(2) (B272). If T is as above then for each level x there is an s € T such
that lh(s) = z and the ^1 set T3 = {* G Γ | t D 3} is unbounded. Thus
{t I s ^ t G T} is an unbounded Z\χ narrowly branching tree.

Proof. (1) Associate with each s G Γ a sequence -ff(s) = s ; of the same length
defined as follows: 0; is 0 and if s ^ (u) G T then (s ^ (u))r = sr ^ (i) such
that s "-» (tz) is the i-th immediate successor of s in T. Note that H is Σ"i
and one-one on T. Now the set of all sequences t such that [lh(t) = a: and
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each member of t is < a] is bounded by some b\ by SΣ\

(3d)(Vt < b)[(βs e T)(H(s) = t) -+ (3s < d)(s e TkH{s) = t)].

Evidently, d is the desired bound.
(2) Given z, let c be a bound for all s € T of length x. Assume that all Ts

(s E T, lh(s) = x) are bounded. Then

(V* < c)(3q)[s € Tblh(s) = x -* (Vt G T)(ί 2 β -* t < g)].

By Bi?2 we obtain

(3g)(V* < c)[β € Γ & / Λ ( J ) = x -f (Vi € T)(t 3 ^ < < ί ) ]

thus
(3 g )(Vί€T)( ί<5),

a contradiction. D

1.15 Definitions (IΣχ). Now let F : [X]" -> α, it > 3, X A\ and unbounded,
F ^ i An increasing sequence 3 of elements of X is prehomogeneous if for
each t'i < ••• < iu < i u +l < lh(s) we have ^((θ),-,... ,(*)*«-!, OOiJ =
^(ί 3 )^! > j( s)t t t>n(5)i t t+i)» ί e the value does not depend on the last ar-
gument. If lh(s) > u — 1 and s <~> (q) is prehomogeneous, then the colour
of max(θ) in s ^ {q) is the finite mapping associating to each increasing
sequence »i < 12 < ••• < iw-2 < ^(s) - 1 the value ^((5)^, . . . ,(θ)i u - 2 ,
max(s), q).

The definition of a minimal prehomogeneous extension is as above; s is
h.m.p.h. if either lh(s) < u — 1 and s consists of the first lh(s) elements of
X or lh(s) > u, s begins by the first (u — 1) elements of X and for each i
between u — 1 and lh(s) — 1, s \ (i +1) is a minimal prehomogeneous extension
of 3 ϊ i.

1.16 Lemma (IΣΊ). Let F : [X]11 -• α be as in 1.15 and let T be the set of
all h.m.p.h. sequences. Then T is Λ\ and is an unbounded finitely branching
tree.

Proof. Generalize the proof of 1.13 (but drop narrow branching; finite branch-
ing is evident). D

1.17 Lemma ( 5 Γ m + i ) . Let u > 2 and let F : [X]u -» a be low An+i, X low
Zim+i and unbounded. Then the set of all h.m.p.h. sequences is a low Δm+ι
finitely branching unbounded tree.

Hint Relativize the above.

1.18 Lemma. BΣ2 H ω -+ ( ω ^ ^ Z o w ^ j f o w ^ ) * i e. if X is low ^2 un-
bounded and F : [X] -* a then there is an i < a such that F""1(i) is un-
bounded.
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Proof. Assume the contrary, i.e. (Vi < a)(3y)[(Vu)(F(u) = i -> u < y)].
Since F is low ^2, the formula in [....] is Δ2 and by BΣ2 we get (Ξy)(Vi <
α)[(Vu)2'1(ti) = i -> u < y], i.e. (5y)(Vu)(u G X -» u < y), which is
contradiction. D

1.19 Proof of Theorem 1.5. By induction on n. For n = 1 see 1.18 (and the
obvious relativization). Let F : [X]n —> a be as assumed. By 1.17 take the
tree T of all h.m.p.h. sequences; it is low Δm+ι and, by 1.3.10 (5) has a
low Δm+2 unbounded branch. The branch defines a low zlm+2 unbounded
prehomogeneous set Y and F defines on [F]1"1"1 a function G : [y]""""1 —> α; G
is low Δm+2 By the induction hypothesis, G has an unbounded homogeneous
set Z which is low Λdm_μi+n_i, i.e. low Δm+n. Z is homogeneous also for F.

D

1.20 Proof of Theorem 1.7. (1) The initial case for n = 1 is

IΣm\-(Vq)(Vz)(ω ^ (q)l(LLm));

due to relativization, LLm may be replaced by Δm. We also take m = 1,
i.e. we prove the following: if X G Δ\ is unbounded and F G Δ\ maps X
into (< z) then there is a relatively large set a of cardinality at least q such
that F is constant on α. But this is easy: By SΣ\ find a b € X such that for
each colour i < z, (3x € X)(F(x) = i) implies (3x < b)(x G X & ^ x ) = i).
Then let Jfo be the set of first (6 + 1) * 2 elements of X and let j be a colour
such that a = {x E XQ \ x has the colour j} has more than 6 elements. Since
min(α) < 6, a is the desired relatively large homogeneous set.

The induction step is now analogous to the induction step in 1.19 but
instead of low Δm+\ and low Δm+2 one works with LLm and LLm+\.

(2) First let us prove IΣ\ h ω -^ (q)\(LLι). It is enough to replace LL\

by Δ\ and then relativize.
Assume k standard to be given; we proceed in IΣχ. Let X G Δ\ be

unbounded, F : [X]2 -+ k, F e Δ^ q arbitrary. Let T be the tree of all
h.m.p.h. sequences; it is unbounded, fc-branching and Δ\. (See 1.13.) By
1.14 (1), for each x there is an upper bound b for all elements s E T o f length
lh(s) < x. By ZJ7i, there is a least such δ; call it H(x) and observe that H
is J70(27i).

Take our q and put G(x) = H(x)* (k + 1) and r = Gk+1(q). (Here we use
the fact that k is standard; we may iterate G (k + l)-many times.) Clearly,
T has elements of arbitrary length; fix an s G T such that lh(s) = r. For
i = 0,..., k + 1, let θj be the initial segment of s having the length Gx(q).
Thus if r t = lh(si) we get r, + 1 = G(r, ) = -ff(r, ) * (fc + 1). Assign colours
to elements of s in the usal way and let col(s{) be the set of colours of
elements of s, . Pick an i such that col(s{) = co/(s, + i ) and let Z be the set
of elements of θt +i The cardinality of X is -ff(r,) * (k + 1), therefore for
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some colour j , the set a = {x G Z \ x has the colour j} has a cardinality
bigger than H(r{). Now H(ri) is the maximum of elements on the level
r t , thus H(ri) > Si > max(θj) (maximum of elements of s, ). And since
col(s{) = col(si+ι) we get min(α) < max(s, ) < H(r{) < card(a). This proves
our claim. The induction step is as above. D

1.21 Proof of Theorem 1.9. (a) Assume that x, 2, q are such that for no y
we have [x,y] —» (9)?. Thus for each y there is a counter-exαmp/e-mapping
/ : [χ> y]n —* z with n o homogeneous relatively large set having at least q
elements. Assume we have fixed a Δ\ enumeration of [z,oo]n = |Jy>a;[:E?2/]n

by all numbers such that for each y, [x, y]n forms an initial segment of length
dy. Then each counterexample is coded by a sequence s of length dy such for
each i < dy, (s)i < z. The set of all counterexamples determines naturally a
Δ\ tree T which is Δ\ -estimated and unbounded; by the low basis theorem
(in IΣi) it has a LL\ unbounded branch. This branch naturally determines
a LL\ mapping F : [V]n —> z (where V is the set of all numbers) with no
relatively large homogeneous set having > q elements. But this contradicts
1.7 (1).

(b) Replace n by (n + 1), take k standard and apply 1.7. D

(c) Proofs (of 1.6,1.8,1.10)

It remains to prove theorems 1.6, 1.8 and 1.10. The proofs depend neither on
the above proofs nor on each other.

1.22 Remark. Observe that for m,k > 1, the following are equivalent over
IΣv

(since for a F : X -» a maximal homogeneous sets are just sets F" 1 ( i ) ,
i < a).

1.23 Lemma. For m > 1,

(*) IΣχ + ω -> (ωΫ^Δm, An) h B^m+1

Proof. By 1.2.23, J3I7m+i may be replaced by RΠm-i. The proof is by
induction on m. Let m = 1. Let θ be 77o and assume (Cx)(3y < a)θ(x,y).
Let &(x,y) = 0(z,y)&(Vy < y)-*θ(x,y') (minimal selector); then θf is i70,
and defines a function F(x) = i = θ'{x,y)ky < α. F is Πo, dom(F) is Πo

and unbounded; by ω -* (ω)l(Δι,Δχ) we get an i < a such that iΓ""1(i) is
unbounded, thus (Cx)θ(x,i). This proves
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Now assume (*) for m and prove it for m + 1. Thus assume ω —>
( u / ^ A n + l , An+l) Then ω -> (ω)ι

<ω(Δm,Δm\ therefore by the induc-
tion hypothesis we have BΣm+\. We want to prove RΠm. Let θ be Πm and
assume (Cx)(3y < a)θ. Define tf as above; by BΣm+ι θ' is An+1 and the
rest is as above. This proves the lemma. D

1.24. Till now we have investigated the combinatorial relation ω —* (ω)<w

(Δ{, Δj) (defined in 1.4, cf. 1.5). Denote this relation briefly by Arrow(n, i,j).
Let us now consider an apparently weaker partition relation, denoted by

ω ->° (ω)%(Δi,Δj) or briefly Arrow°(n,iJ)

(thus —> replaced by —>°) whose definition results from the definition of
Arrow(n,i,j) by assuming X to be just the whole universe V, thus:

For each Δ\ function F : [V]n —> z (where z is any number) there is a Δj
unbounded homogeneous set.

First consider the case n = 1. Evidently, in IΣm (m > 1) we have
J4TTOW(1, m,m) = Arrow®^(l,m,m), since each Δm unbounded set is iso-
morphic with V by a Δm mapping (cf. 1.2.65). We prove even more:

1.25 Lemma. IΣ\ proves the equivalence of Arrow(l,m,m) and
A rrow °(1,7n, m).

Proof. By induction on m, show IΣ\ + i4rrow°(l,m,m) h IΣ'yn. Assume
this for m and work in (IΣ\ + Arrow°(l,m + l,m +1)). By the induction
hypothesis we have IΣm^ thus j4rτΌw(l,m,m) and by 1.22, BΣm+\. Given a
non-empty Σm+\ set X such that x £ X = (3y)ί(x, y) for some /7m-formula
0, and an α E -X\ define F(5) = min{x < a \ (By < s)θ(x,y)} if this set is
non empty, = a + 1 otherwise.

By 5 Γ m + i , i = F(s) is ^\ m +i (and total) and by j4ra>w°(l,m + l,m-f 1),
there is an i < a + 2 such that iΓ~1(i) is unbounded. This i is min-X". This
proves LΣm+ι and hence Ii7 m +i. D

1.26 Lemma. For n > 2, m > 1, Jϋ7m proves the following:

i4rroti;0(n, m,n + m) implies Arrow®(n — 1, m + 1, n + m).

Hint: Let F : [V]""1 -• a be ^ m + i ; by the limit theorem 1.3.2 let F(z) =
HmsG(x,s) for a <Δm function G. We may assume G : [V]n -* 2r. An
unbounded homogeneous set for G is homogeneous for F as well.

1.27 Theorem. Over JΣΊ, the following are equivalent (n,πι > 1)
(i) BΣn+m
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(ii) Arrow(n, ra, ra + n), i.e.
ω -* (ω)%(ΔmίΔm+n)

(iii) Arrow°(n,m,m + n), i.e.

Proof. The only implication to be proved is (iii) —> (i); but for n = 1 it follows
by 1.25 and 1.23 and for n > 1 it follows using 1.26: Indeed assume (iii) for
some n > 1 (and all m - induction hypothesis) and let Arrow°(n + 1, ra, m +
n + 1). Then, in particular, j4rπ>wo(l,ra,ra + n + 1), thus i4rrow°(l,m,m)
and BΣm+ι\ hence we may apply 1.26 and get Arrow°(n, m + 1, n + m + 1)
hence BΣVi-f m+l by the induction hypothesis. •

Clearly, Theorem 1.6 follows. Proofs of 1.8 and 1.10 will be sketchy; the
reader may elaborate details as an exercise.

1.28 Theorem. For m > 1, BΣm+\ proves that there is a Δm mapping
F : [V]2 —» 2 (where V is the universe of all numbers) having no Σm+ι o.t.u.
set.

Hint: The proof in [Jockusch, 1972-JSL] (Theorem 3.1) formalizes easily and
gives a Δm mapping F : V^ —* 2 with no o.t.u. Δm+\ homogeneous set. By
1.3.24 F has no o.t.u. Σm^.\ homogeneous set.

1.29 Corollary. (1) For m > 1, IΣm+ι proves

(2) Theorem 1.8 follows.

Hint: IΣm+\ proves that a Σm+\ set is o.t.u. iff it is unbounded, see 1.3.23.

1.30. We sketch a proof of the finite Ramsey theorem. It uses the following
lemma:

(*) For each w,α, q > 1 there is a y such that for each x of cardinality y
and each / : [x]u —• a there is a prehomogenous sequence of length q.

Suppose that for given u,a,q (*) does not hold and consider the tree of
counterexamples like in 1.21. It is unbounded and Δ\ estimated; an infinite
LL\ branch determines an infinite LL\ mapping F : [V]u —> a with no
prehomogeneous sequence of length q. But this contradicts 1.15, 1.16.

Now let us prove the finite Ramsey theorem.
Let ph(u,a,q) be the minimal y satisfying (*); ph is Δ\ and total. Define

rms(u + 1, α, q) = ph(u + 1, α, rms(u, α, q)) .
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The function rms is Δι, total, and it is easy to show by induction on u
that for each x of cardinality τms(u,α, ςr) and each / : [x]u —> α there is a
homogeneous sequence s (of elements of x) such that lh(s) = q. D

2. Instances of the Paris-Harrington Principle
and Consistency Statements

(a) Introduction and Statement of Results

2.1 Introduction. In Sect. 1 we introduced the notion of a relatively large
finite set (X is relatively large if minX < |-XΓ|) and the "arrow" notation
[x, y] —> (q)% (for each / : [a;, y]u —• z there is a relatively large homogeneous

set having at least q elements). We put

the Paris-Harrington principle was defined as the statement (Vu,z)PH(u +
1,*). Write (PH) for the last statement and (PH)U for the formula (Wz)
PH(u + l)Z). Paris and Harrington showed that PA proves

(PH) ΞE Con iPA*+Tr(Πi))

where in Conm(...), PA9 stands for the natural Δ\ definition of PA and
7V(i7 ) means the set of all true 77*-sentences. It follows by GόdePs second
incompleteness theorem that (PH) is improvable in PA. As it was shown
above (1.9) for each n > 1,

IΣn I" ( « 0 n - i 0 e IΣn h (Vz)PH(ΰ, z))

and IΣn proves all numerical instances of (PίΓ)n, i.e. for each fc, IΣn I"

The question whether the formulas (PH)n are related to statements as-
suring the consistency of fragments of PA(+Tr(Πι)) is answered as follows
by Paris's beautiful refinement of the result of Paris and Harrington:

2.2 Theorem. IΣχ proves that, for each u > 1,

The proof of this result is the main content of the present section.
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2.3 Corollary. (1) For each n > 1, (PH)n is provable in IΣn+\ but not in

IΣn.
(2) IΣλ proves that (PH) = Con(PA + Tr(Πi)).
(1) follows by Gδdel's second incompleteness theorem, (2) is immediate

from 2.2 (and the compactness theorem).

2.4 Discussion. Both (PH)n and Con(IΣn+ Tr(Πn)) are Π2-statements; thus
we have a hierarchy of sentences (1) forming an increasing hierarchy (the n-th
of them is provable in IΣn+\ but not in IΣn), (2) being syntactically simple
(U2) and (3) having a well understood double meaning: (a) combinatorial
(mathematical), an instance of the Paris-Harrington principle, and (b) logical
(metamathematical) - claiming the consistency of IΣ^ + Trm(Π\), which is
a certain reflection principle for IΣ^ (as we shall see later).

Non-provabilities are negative results; but they follow immediately from
the positive result 2.1 via Gδdel's second incompleteness theorem so it is
natural to mention them here.

Let us now present our general plan of the proof. In subsection (b) we prove
some combinatorial facts related to (PH)U and as a by-product we find a
simplified formulation of (PH)U. In (c) we prove the implication Conm(IΣ^ +
ΪV (JTi)) -> {PH)U. We shall follow the corresponding proof of Con(PA +
Tr(Π\) —» (PH) due to Paris and Harrington. Paris's proof of the former
implication uses properties of α-large sets (α an ordinal) elaborated in the
next section. The subsections (d)-(e) contain a proof of (PH)U —* Con(IΣ^ +

), together with various auxiliary things possibly useful elsewhere.

(b) Some Combinatorics

Recall that PH(u,z) means

(V*,

Note the obvious monotonicities:

2.5 Lemma (/£Ί). If [x,y] -> (q)% and x1 < x, q' < q, z1 < z and y' > y then

We are going to prove two results:

2.6 Theorem. IΣχ proves that, for each u > 1,

(PH)U = (\/z)PH{u + 1, *) = (V*)(3y)([0, v]-?(« + 2)^ + 1 )

2.7 Theorem. IΣλ proves that for each u > 1, (Vs)(Ξy)([0,y] -• (ti +

implies that for each z there is a y such that for each / : [0, y]u+1 -+ z there
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is an H homogeneous for / and satisfying the following:

z<minH < 2 m i n ( f 0 < |fΓ|.

2.8 Remark. We are going to prove 2.7; our proof follows an analogous proof
from [Paris-Harrington]. Then we indicate how to prove 2.6 by the same
methods.

The following lemmas are proved in IΣ\:

2.9 Lemma. Let / : [0, b]e —> c. H C [0, b] is homogeneous for / iff each
(e + l)-element subset of H is.

2.10 Lemma. Let /; : [0,δ]e -> c, , i = 1,... ,fc and let /(x) = (/i(x),...,
/jfe(x)). Then / : [0, b]e —» Πci and H C [0,6] is homogeneous for / iff it is
homogeneous for each /t .

2.11 Lemma. Let / : [0, b]e -• c. Then there is an / ' : [0,6]e+1 -> c + 1 such
that a set H C [0,6], \H\ > e + 1, is homogeneous for / iff it is homogeneous
for /'.

Proof. For x G [0,δ]e + 1 put /'(x) = 0 iff x is homogeneous for /, /'(x) =
f(xo> ., xe-i) +1 otherwise. If H is homogeneous for / then clearly /'(x) =
0 for each x £ [ i ϊ ] ^ 1 . Conversely, let H be homogeneous for /'; we prove
that the value of / ' on [if]6"*"1 is 0, which implies that H is homogeneous for
/. Let x be the least (e + l)-tuple in H and /'(x) = i = 1 + f(xo,..., xe-l)-
Let y > xe+ι be another element of H; for each u G [x]e,

thus x is homogeneous for /, contrary to our assumption. D

2.12 Remark. One can construct an /' : [0, b]e+1 -» 1 + 2y/c by refining the
construction.

2.13 Lemma. For each 6, there is an / : [0, b]2 —> 8 such that, for each H
relatively large and homogeneous for /,

x, y G H and x < y implies 2X < y.

Proof. Let fo(x, y) = 0 if 2x < y, = 1 o.w.
/l(x, y) = 0 if x2 < y, = 1 o.w.
f2(xyy) = 0if2x <y, = 1 o.w.
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Let / combine all these in accordance with Lemma 2.10 and let H be
homogeneous and relatively large. Let a = minH < \H\, e = max JET, thus
2α < e, /0(α,e) = 0 and therefore /0(s,y) = 0 for each (z,y) G [JET]2.
Thus a2 < e, /i(α,δ) = 0 and therefore fi(x,y) = 0 for each (s,y) G [#] 2 .
Similarly, 2α < e and 2* < y for each (z, y) G [#] 2 . •

2.14 Lemma. For each 6, e there is an / : [0, b]e —> e + 6 such that, for each
if relatively large, homogeneous for / and and each (s,y) G [H]2 such that
x < y, we have 2* < y.

By Lemmas 2.13 and 2.11.

2.15 Lemma. For each 6, e, c there is an / : [0, b]e -> c + 1 such that for each
H homogeneous for / and such that |-ff| > e + 1 we have minif > c.

Proof. Let /(a?i,..., £e) = min(xi, c). D

2.16 Lemma. For each / : [α, δ]e -• c there is an / : [0, δ]e -> c(c + l)(e 4- 6)
such that if there is an if homogeneous for / and relatively large then there
is an H1 homogeneous for / such that

c < m i n i ϊ ' < 2 m i n i Γ < | # ' | .

Proof. Using Lemma 2.15 and Lemma 2.10, replace / by /o[O, b]e —¥ c(c + 1)
such that each H homogeneous for /o is homogeneous for / and satisfies
minfΓ > c. Let log a; be the maximal u such that 2U < x, let log(a;i,... ,xn)
be (log(zi),..., log(*n)). Define

/1(x) = /θ(log(x))forx€[0,6]e.

p : [0, b]e -^ e + 6 from Lemma 2.14

Let /(x) combine /χ,p and let H be relatively large, homogeneous for /. Then
H is homogeneous for /i, mini? > c and we have 2X < y for (rc,y) G [H]2.

Let H1 = {loga; | x G H}\ we have |̂ aΓ71 = |fΓ|, H' is homogeneous for /o,
mmH1 = log(minF), thus 2minH> < \H'\ as desired. D

2.17 Remark. Theorem 2.7 follows directly. To prove 2.6 assume (V*)(Ξy)([0, y]
-^ (u + 2)2+ 1) and let x, g, 2: be given; let J = 2. max(:r, q) and let y be such

that [0, y] -^ (u + 2)^ + 1 . Assume / : [x, y ] w + 1 -^ z; extend / arbitrarily to an

/θ : [0,y]w + 1 -• z and combine it with /1 : [0,y]w+1 -> max(a;,g) such that
each H homogeneous for f\ satisfies min(F) > x, g. Let / be the resulting
function and let H be homogeneous for /, H relatively large, \H\ > u + 1.
Then minίf > x,q und H is homogeneous for /.
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(c) Proof of Con*{IΣ'U + Tr{Π{)) -*• (PH)U (for u > 1)

2.18 Proof. Recall 1.9: there we proved that for each n > 1 and for each x > 1,
IΣn proves PJΓ(n + l,fc) (i.e. proves (Vx,g)(3y)([x,y] -+ (^)^+ 1). The proof
of this fact formalizes in IΣ\, as an easy inspection shows, so that we have
the following:

IΣχ h (V* > l)(Vtι > l)Pr}Σu(PH(u + 1,*)) (')

Now work in IΣ\ + Conm(IΣ* + ΪV(iTi)). The added axiom can be evidently
reformulated as saying that each Σ\ -sentence provable in IΣU is true (other-
wise its negation would be a true 27i-sentence inconsistent with IΣU). Now
take any a;, z,q and observe that, by ('), IΣ* proves (3y)([i,y] —» (g)"+ ),

which is a Σ' -sentence. Thus this sentence is true (in the sense of satisfaction
of Σ' -sentences). But then, by the "it's snowing"-it's snowing lemma, we get
(3y)([*,y) -> (q)u

z)] we have proved (Wz)PH(u + 1,z).

(d) Strong Indiscernibles

Recall the Σ1^-formulas introduced in Chap. I, Sect. 2 (e).

2.19 Definition. For each ^-formula φ having the form

(3w)(Vw)...v>o(χ,y)

let φ Γ be the Σ,,-formula

(3yi <

where v\,..., υn are variables not occurring in φ; they are called the desig-
nated variables of φ f. Let (Σ*n) \ denote the set of all φ \ for φ G Σ'n.

2.20 Observation. Definition 2.19 is meaningful in IΣ\\ thus in IΣ\ we have,
for each u, the Z\i-set of all (Σ'u f*)-formulas. Moreover, since (Σ'u f*)-for-
mulas are particular Σ>Q#-formulas and therefore we have a A\ satisfaction
for all (Σf

u f*)-formulas (with arbitrary u); we denote it occasionally by l=.

2.21 Definition (in IΣ\). A finite set B = {δj | i < λ} (increasing enumera-
tion) is a set of strong indiscernibles for (Σ'u f#)-formulas* if for each i < λ
we have the following:

For each (Σ'u t#)-formula* φ(x,v) (v designated), such that y>(x,v) < i,
each tuple p of possible meanings of x, all < 6, , and each pair b,b ; 6
(B \ [0, bi])u of increasing u-tuples of elements of B bigger than δj,
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(Remember that in the last equivalence, φ must be sufficiently small (< i),
the parameters p must be sufficiently small (< 6, ) and increasing ι/-tuples
b,b' of elements B sufficiently large (all elements > δ, ).

2.22 Example. Let u = 3, let ψ be

(3yi < vi)(Vy2 < v2)(3y3 < vz)ψ(xi,X2,y).

Assume </? < i; pi,P2 < fy; i < j < k < q; i < jf < k < q. Then (*) implies

t= (3yi < ii)(Vy2 < h)(3y3 < bq)φ(PuP2,y)

iff

2.23 Theorem. JΣΊ proves that, for each u, (PH)U implies the following: For
each v there is a set B of strong indiscernibles for (Σ'u f )-formulas such that

We prove this theorem in the present section. The next section is devoted
to a proof of the fact that, for each u, the conclusion of 2.23 (existence of
arbitrarily large sets of strong indiscernibles for (Σf

u f#)-formulas# implies
Con (II% + 2V(27J)).

For simplicity, we shall assume u = 3. But the method is perfectly general.

2.24 Conventions (only for this section). Define in IΣ\ as follows: let (3x <
v)φ(x, z) be a ΣQ-formula* such that v does not occur in φ\ let p be a tuple
of possible meanings of z. Then the element defined in [0, d\ by this formula
with parameters p is the minimal a < d such that t= φ(a, p) (if there is such
an a). Dually, the element defined in [0,d] by (Va; < υ)φ(xyz) is the minimal
a < d such that N -ιy>(α,p).

If d is a number and b C [0, d\ then defq(dy b) denotes the set of all elements
of [0, d\ defined by formulas* ψ of the above two forms such that ψ < q, with
parameters from 6. (In particular, you may use for ψ any (Σ'u f#)-formula# or
{Π'u f )-formula (u > 1) w.r.t. its first designated variable.)

Let β < 7 < 8 < d be given. An increasing sequence (aq \ q < v) of
elements less than β is a Paris sequence (for β,η,δ,d) if, for each q < v — 1,
(1) [aq+1,β] Π defq(d, [0,aq] U { 7 , ί } ) = 0,
(2) [03+1,7] Π defq(d, [0, α9] U {δ}) = 0,
(3) [aq+1,6}ndefg(d,[0,aq]) = l

2.25 Lemma (JΣΊ). A Paris sequence is a set of strong indiscernibles for
(Σ'3 D-faπaulaβ .
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Proof. Let φ(yr) = (3x)(Vy)(3z)φ(x,y,z,vr) where φ is Σ'Q\ assume (ψ f) <
i < j < k < q < i/, p < αt . Then the following is true (in the sense of N):

(φ 0(0,7ΛP) S (3* < /?)(Vy < 7)(3z < %(*,y,*,p) =
s (3* < O j )(Vy < 7)(3z < %>(*, y, z, p)

(since otherwise the smallest x such that (Vy < 7)(32: < ί)^?(x, y, 2r, p) would
be in [aj,β], i.e. in defi(d, [0, α, ] U {7, £}) Π [α, -j_i,^], which contradicts (1)),

Ξ (3rr < βi)(Vy <

(since if we let xo be such that xo 5ί α j and (Vy < a>k)(^z ̂
but not (Vy < Ί)(3Z < δ)(...), then the minimal y such that -»(3* < δ)
<p(so,y,2>P) would lie in [αj.,7], hence in ίe/ ; (d, [0,α; ] U {8}) Π
which contradicts (2))

= (3a? < a,j)(Vy < ak)(3z < aq)φ(

(otherwise let XQ < a.j be minimal such that

and take a yo < a^ such that

then the minimal z such that y>(xo>yo»̂ >p) would lie in [αg,£], thus in
defkζd, [0,αβ]) Π [βjfe+i,£], which contradicts (3)).

Thus

for all i < j < k satisfying our condition, which shows that the Paris sequence
(aq I q < u) is a sequence of strong indiscernibles for (£3 f)-formulas. D

To complete the proof of Theorem 2.23, it remains to prove the following

2.26 Lemma (IΣi). For each «, (PS)U implies the existence of a Paris
sequence of an arbitrary length.

Proof (for u = 3). Let the desired length v > 5 of a Paris sequence be given.
We assume (PH)^j and use 2.7. Take a sufficiently large c (w.r.t. v\ it turns
out that c = 2" is sufficient) and let d be such that for each / : [0, d]4 —> c
there is a homogeneous H such that c < πΐmH < 2τlάίίH < \H\.

For each a < β < 7 < 6 < d define (cf. (1) above)

α0 = 0

aq+ι = max[defq(d, [0, αg] U {7, δ}) Π [0, /?]] + 1
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Thus [aq+ι>β] Π defq(dι, [0, aq] U {7,6}) = 0. Observe that if aq < β then
aq < α ρ +i. We want to find a < β < 7 < δ < d such that the corresponding
sequence of α9 's satisfies the following for each q < v — 1.

(1 ;) aq+1 < α, i.e. [α, β] Π defq(d, [0, αg] U {7, δ}) = 0 ,

(2') (2), i.e. [/?,7] Π ie/g(d, [0, αJ U {7}) = 0,

(30 (3),i.e.[7,ί]Π(ie/g(d,[O,α ( 7]) = 0.

Define the function F : [0,J|4 -> c as follows: for each (α,/?,7,<S) G [0,d]4

let (ciq \ q < v) be the sequence defined above and put

F{a,β,Ί,δ) = (min9 < u)([atβ\ Π iefq(d,[0taq] U {

if there is such a q, else

= c/4 + (ming < v)([β,Ί] Π ie/g(d,[0,aq] U {7}) ^ 0)

if there is such a ρ, eiθe

= c/2 + (min g < u)([Ί,δ] n Je/,(d, [0,α,]) # 0))

if there is such a q, else

= 3c/4 + 1 •

Evidently, F : [0,d]4 —»- c; if we prove that there is a homogeneous H
such that the common value of F on [ i f] 4 is 3c/4 + 1, then each quadruple
(α, /?, 7, δ) £ H determines a Paris sequence of length v.

Now let H be homogeneous for F and such that c < minfί < 2 m i n f Γ <
|ffI; let {h{ \ i < e} be its increasing enumeration. First assume that the
common value of F on i ϊ 4 is q < c/4. Then for At < hj <h^ <hm from H
we have

and since [Λt , Ajjnde/^.xid, [0, aq-i]U{hk, hm}) = 0 and α g = l ^ ^
[0, α 9 _ i ] U {Λ)fe, Λ m } ) Π [0, hj]] -f 1, we get aq < Λ, . Note that aq depends on
hhihm but not on ftt ; we have F(ho,hj,hk,hm) = F(ho,hj,hk,hm) =

Λj, Λjfe, A m ) = g and we get α 9 < fto Hence for all i we have

[Λt Λ + l ] Π defq(d,[0,h0] U {Λ e «2,Ae-l} ) ^ 0.

But we have < q formulas each with < q free variables and ho + 3 parameters,
thus

\defq(d,[0,h0] U {Λ β -2,Λβ-i})l < ( ί + 1).(Λ O +S) g ^ ( ^ o + 3 ) ^ + 1 )

(since g < i/ < c < Λo) The last set must intersect each of (|jff| - 3)/2
disjoint intervals [h2i-i,h2i) (i = 1, . . . , e - 2). From 2h° < \H\ we get
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2Λ-2 < (2*o _ 3)/2 < (\H\ - 3)/2; thus if we can prove (Λo 4-
2*o-2 ̂  w e h a v e a contradiction. Now remember that we took c = 2". Thus
(fto+3)(<j+l) < (fto+3)" and (fco+3) > ft0 > c = 2". Hence it suffices to prove
that x > 2" implies xv < 2X""5. But evidently this is true for x = 2" if v > 5
and therefore true for each x > 2" (if î  > 5). Thus we get a contradiction
and have excluded the first possibility in the definition of F.

Similarly we eliminate the second and third possibility. Take the second.
We already know that aq < ho for each q (since the first case does not occur).
Assume F(h{, hj, ft*,, hm) = c/4 + q for all respective ft's. Thus

[ήj, h] Π defq(d, [0, aq] U {hm}) =0, thus

for all.; (as above), which leads to a contradiction. The third case is analo-
gous.

Thus the common value of F on [/Γ]4 is c/4 -f 1 and therefore for each
(α, /?, 7, δ) E [H]* the corresponding sequence of α's is a Paris sequence. This
completes the proof of Lemma 2.26 and of the Theorem 2.23. D

(e) Final Considerations

2.27 Recall Theorem 1.4.37; it will be used to complete the proof of (Vm > 2)
((PH)m-ι -> Con iLΠ'n^ U Tr(Π[ ))) in IΣχ. (We use m - 1 instead of
u and LΠ/

m_ι instead of IΣ!

m_^ to simplify our considerations.) Let So be a
finite set of closed instances of Sh^LΠ'^f U Tr(Π[%)); assuming (PJT)m_i
we shall construct a Λ\ -satisfaction l=; for 5Ό such that N; extends 1= (the
usual Λ\ satisfaction for ΣΌ-formulas) and t=' 5o By 1.4.37, this implies the
desired consistency. The satisfaction t=; is constructed using a sufficently long
set of strong {Σl

m_ι f*)-indiscernibles, guaranteed by 2.26. The definition
follows.

2.28 Definition (JΣλ). Let Φ be (Q i a ? 1 ) . . . (Qkxk)φ(x,y\ φ e Σo. Recall the
meaning of {Φ \ z)(x,y), namely

(Q*i < zί) .. (Qk

χk < zkM*> y)

Let A = {aq \ q < u} be a finite set in its increasing enumeration. (Φ \ aq —>)
obviously means the result of substituting aq, aq+ι... for z\, z*ι... into (Φ \
z ) i

Given ct ,d, assume that ςf is the least number such that
(1) (* \)<q,



130 II. Fragments and Combinatorics

(3) q + k < v.
If Qi = 3 put

ff (<- c -x.d) = (mine,- < aq+1ψ ( # « \ aq+2 ->)(*- ct ,d)].

In all other cases put /*(<— cfrd) = 0.
Thus we have interpreted all the function symbols of Sko(Φ) by A\ functions
(dependent on A). Similarly for a finite set of formulas instead just one. This
determines, in the usual way, a Δ\ satisfaction t=; for any finite set of formulas
of the form Sko(Φ) (cf. 1.4.14).

2.29 Theorem (IΣi) . Let m > 2 and (PJΓ)m_i. For each finite set S o of
closed instances of Sk^LΠ^^ U 2V(i7{*)) there is a v such that if A is a
set of strong indiscernibles for ( ^ _ 1 Γ)-formulas of the cardinality v and
t=' is the satisfaction for So given by definition 2.28, then 1=' So-

2.30 Corollary. Theorem 2.2 follows.

Elaboration.

2.31 Lemma (IΣi). If Φ is Σ'm_1 and A is a set of strong (Σ'm_ι f#^indis-
cernibles, then for any q satisfying 2.28 (l)-(3) we have

ff («- ci_i,d) = (mina < aq+1)[\= (*W \ aq+2 -»)(«- c. .d)].

(Obvious from the definition of strong indiscernibles.)

2.32 Lemma (IΣi). Let Φ be Σ ^ - l o r Πm-\ a n d l e t <K sίu) b e a dosed
instance of Sko(Φ). Let A be a set of strong ( - ^ - i Q-indiscernibles, N;

the corresponding satisfaction and let q satisfy 2.28 (l)-(3) for c = V(s),
d = V(a). (V is the interpretation of the term s).

Then

Proof. As in the proof of 1.4.37 prove

t=' (Φ t α ρ + 1 ( u ) -> (

It sufiices to show

(') 1=' (#(0 r α g + 1 ) ( ^ S i ) u) -* (<p(''+1) r α , + 1 ) ( ^ 3 i + 1 ) u).

But # W ( - X i , y ) is (
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Consider the following two cases:
Case 1. Qi+i = V. Since M s, + 1 < aq (by (2)), we have

*=' (#(0 Γ α , + 1 ) ( - SUM) -+ (Vz i + 1 < α g

(by indisceriiibility).

Case 2. Qi+ι = 3. Thus s, +i = i7^-^*- 5t , u). Similarly as above, but us-

ing also the definition of ff+1, we have 1=' (φM f αg+i)(<— s t ,u) -> (3xi+ι <

g i — 6t + i ,u) . This completes the proof. D

2.33 Proof of 2.29. Let a finite set 5 0 C m^(5Jbo(/7^_1

#U Tr(Π[•))) be given.
Let i/o be such that for each instance φ(sι,..., sj.) £ 5o of the Skolemization
of an axiom Φ β LΠ9

mmml

9 U Tr(Π[m) we have

(Φ \) < ι/0 andoi,...,Sfc < i/0

and let A = {aq \ q < UQ + 3m} be a set of strong (Σt

m_1 f#)-indiscernibles.
(As we shall see, if Φ G LΠf

m_1 then its "prenex normal form with bounded
kernel" has < 3m unbounded quantifiers.) Our aim is to show 1=' SQ for the
Δ\-satisfaction given by A.

(1) Let Φ e Tr{Π[), Φ = (Vx)ψ(x) where φ is bounded'. Let φ(s) € So;
then N ̂ (V(θ)), i.e. l=; φ(s).

(2) Now let IP be i - Φ, where Φ(a?i) is a i^.^-formula (3x2) - (Qm^m)
φ(x\,...,xm) Thus ίP is the following:

) V (Ξyi <

Hence an instance of Sko(φ) has the form

¥>(*) V (*i < 5i & -i<^(t) & ( π < *i -> v?(r)), in short, ^(s, t, r) .

(Precise conditions on the form of the terms s,t,r will be considered later.)
Let q be minimal such that (L-^Φ \)) < q and V(s), F(t), V(r) < aq.

We have two cases ̂
(a) t=' y>(s); then ^ί(s,t,r) and we are done.
(b) N; -»y?(s); then, by Lemma 2.32, we have 1=' (-iφ \ α g + i )(θi ) .

Let e be the least number such that 1= (->Φ f α9+i)(e); assume b = V(s)
(i.e. δi = y(3 i ) etc.).



132 II. Fragments and Combinatorics

(3) Claim. V(h) = e.
Indeed, for some h <q,

< ah) t= ψ(b) V .ci < h &(--<? \ α Λ + 1 ) (c χ )

<ci)($ra/»+m+l)(n)

< ah) t= (-Φ \ α^+iXc^&ίVzi < cχ)(Φ \

= e;

thus V(tι) = e.
(4) Now by Lemma 2.32, 1= (-yφ \ aq+χ)(tχ) implies t= - K ^ , ^ , . . . ,*'m)

where t\ is t{ for i = 1 or i even and is given by ~yφ for i odd, ί > 1. Our ti
are given by £-,#.

(5) C/αtm. For i = 1,..., m, t= ίt = ^ ; thus t= -»v?(t).
For i even and ί = 1 we trivially have (= t, = ίt ; for i odd, t > 1

we proceed by induction. Now ifi = iΓ'ΓΊφ(<— t t _i) and ί, = i ^ + 1 ( s , t t _i).
Assume b = V(s) and <— c^-i = F(<— ^ υ-l) = V(*— ^ _i) and compute:

Vci <

= (mine,- < αg)(-πΦ(l) \ aq+ι(<- ct )

Thus V(U) =
(6) Now take rχ; if 1= ri > t\ nothing need be proved. Thus assume

V{rχ) < V(tχ) = dχ\ then f= Φ f αg+i(*i), therefore t= <^((ri,... ,r^) where
r( = Γi for i odd and similarly to above we prove 1= rt = r( for i even. We
have proved

(7) Claim. Under the present assumption we have φ(r). Thus we have

proved V>(s,t,r), which completes the proof. D

3. Schwichtenberg-Wainer Hierarchy and a-large Sets

In the preceding two sections we studied instances of Paris-Harrington princi-
ple and showed (1) that the fc-th instance (-PIΓ)λϊ *S provable in IΣ^χ and (2)
that, provably in IΣχ, (PH)k is equivalent to Con9(IΣl + Tr9(Πι)). (Evi-
dently, (2) implies (1) since IΣ^i proves the above consistency, cf. 1.4.33-34,
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but the explicit proof of (PS)k in IΣ^i that we presented is of independent
interest.)

Now we are going to study a different but related combinatorial principle
and its instances. We shall call it (W) or the principle of a-large inυervals.
For background see bibliographical remarks; we shall present the principle
and and relate its instances to instances of Paris-Harrington principle. This
will be done in the following steps: (a) we introduce ordinals in IΣ\ and
derive their important properties, (b) we show which induction is sufficient
to get enough induction for ordinals, (c) we introduce and study α-large sets,
and (d) we define the principle (W) and relate instances of (W) to instances
of Paris-Harrington principle. Note that results of this section may be used
to get the characterization of functions provably total in IΣjg (and PA) using
model theoretic means; this will be done in Chap. IV.

(a) Ordinals in IΣ\

3.1. We are going to define in IΣ\ a A\ class ε linearly ordered by a A\
ordering ^ with a least element 0 and with a A\ operation Σ assigning to
each finite non-empty decreasing sequence μ\ . .. μx of elements of ε and each
sequence of non-zero numbers α i , . . . , ax of the same length an element of ε
denoted by X)JL]_ ωμiaι\ the ordering is related to Σ as follows:

x y

ιtiff

(1) there is an i < x,y such that μt φ V{ or αt* φ δj, and, for the least such
i, μι < V{ or (μ, = ι/, and α, < 6, ) or

(2) for each i < x, μa = i/, and α, = 6, .
Furthermore, ε is least A\-class containing 0 and closed under Σ.

This is what we expect from ordinals < ε; we have to show that this can
be achieved in IΣ\. (We also expect well-order; but, as we shall see, this costs
induction.) Thus let us make the following.

3.2 Definition. A regular tree is a set t of finite sequences of numbers such
that

(i) t contains with each s each initial segment of s, and
(ii) for each ij, s if s ^ (j) G t and i < j then s ^ (i) G t.

(Thus upper neighbours of s in t are s ^ (0), s ^ (1),..., s ^ {i) for some

A pre-ordinal is each regular tree t together with a mapping e (evaluation)
assigning to each non-empty s € t a non-zero number e(s). The height
of t is the maximum of lengths of elements of t. We define an operation
Σ applicable to each pair (μ, a) where μ is a non-empty sequence of pre-
ordinals and a is a sequence of positive numbers such that lh(μ) = lh{ά).
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The pre-ordinal (*,e) = Σiωμiai is defined as follows: let μt = (t, ,e t ) and
let t = UfslίW ~ 5 I s e **} U {0}, e((i».= αt , and for 0 ^ 3 G t t let
e((i) /-N 3) = e, (θ). (It is easily seen that this corresponds to joining the
evaluated trees μ i , . . . , μx over a new root and evaluating the old root of μ,
by αt .)

Now define total A\ functions OX}y, ̂ XίV as follows: 0o,y = {0}, Ox+ιiV =
{Σfω^αi I μi G e>*,y,μ, descending =$x,y, α, .< y}; ^*, y using the obvious
modifications of 3.1 (1), (2) above.

3.3 Pact. For each y, Ox%y is a total Δ\ function of x; OXiV C O x +i ι y >

Oa?,y C O J B ^ + I , analogously for ^a;>y. (Proofs in IΣ\ evident).

3.4 Definition.

*.v> *y = U

y y

= U σ*»i" ^ is U
χ,y

3.5 Fact. 0 y , ^ y , Ωx, ^'x, ε, ^ are Δ\.
(Evidently, they are Σ\\ but for μ = (ί, e) we have

μeθy-+μe OXiV for x = height(t)

μ G Ωx —* μ £ OX}V for y = max(rαn^e(e))

3.6 Eact. (1) ̂  linearly orders ε. (2) ε is the smallest A\ class X containing
0 and closed under sums Y^ωμiai (μi G X descending, α, positive). (3) For
each x, each non-empty Z\χ subset of Ox has a =<ί-least (i.e. ^a -least) element.

(To prove (2) show that each OXyV C X; to prove (3) observe that each
OXiy is a finite set and Ox+\ty is an end-extension of OXyy, i.e. each old
element precedes each new one.)

3.7 Definition. 0 is isolated', Σ f ωμ 'α, ^s isolated if μx = 0; otherwise it is a
limit ordinal (or simply a limit).

3.8 Fact, μ is a limit iff μ > 0 and has no predecessor.

3.9 Fact. Each μ G ε has a successor.

3.10 Definition. For a = £ * ωnai, β = Σ\ωUibi define a > 0 iff i/χ ^ μx

(μx is the least exponent in α, i/χ the greatest in β). Further we put a > 0
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if a φ 0. For a >> β define a + β as follows: α + 0 = α; furthermore,
if μx > v\ then α -{- /? is given by exponents μ i , . . . , μjc, &Ί,..., ι/y and
coefficients α i , . . . , ax, δ i , . . . , by; if μ E = v\ then it is given by exponents
μi,. . . ,μ x , *%..., i/y and coefficients α i , . . . , α x _ i , ( α x + δχ),δ z,... ,δ y .

(Thus e.g. (cΛ3 + ω2Λ) + (ω2.4 + ω°.7) = ω3.3 + α;2.8 + ω°.7.)

3.11 Lemma. Each limit ordinal a G ε can be uniquely written in the form
HD + ωμ.l where (HD G ε (head) and HD > ωμ.l) or HD is empty and is
disregarded. (Evident.)

3.12 Theorem. There is a Δ\ function {&}(x) defined for each α G ε and each
# satisfying the following:
(i) If α = /? + 1 then {a}(x) = /?; {0}(z) = 0;

if a is limit, a = HD + ωμ.l (μ > 1) then
HD + ωμ~1 if μ is isolated (μ — 1 is the predecessor);
HD + α ί'Ή3') if μ is limit.

For a: = 0 the member ωμ~^x is deleted, thus the result is HD.
(ii) a φ 0 implies {α}(#) < α;

<* G Ox,y and 2 < y implies {α}(^) G OXjy;
9̂ > a > 0 implies {β + a}(x) = β + {a}(x) and β > {α}(x).

Proof. For each y > 0, define the function Dy(a, x) = {ά)y(x) on <9y x (< y)
by the evident analogues of (i). Show that this is a A\ function with domain
Oy x (< y) and that for z > y, Dy is a restriction of Dz. (To this end, show
by induction on x that Dy \ (OXiV x (< y)) is a well-defined function with
range included in OXjy. Dy is Σ\ and its domain is Λ\\ thus Dy is -4χ.)

The last claim follows from the evident fact that, under given assumptions,
β + α is isolated iff a is isolated and if they are limit then for a = HD + ωμ

wehave/? + α = (/? + HD)+ωμ. D

3.13 Definition, a —> β means that there is a finite sequence s = (αo,. . . , Oίr)
X

such that αo = α, α r = β and, for i < r, αj+i = {α, }(:r). The sequence s is
called the witness of α —> /?.

x

3.14 Lemma. (1) α -> /? is Δ\. (2) If X C ε is Σ*i or J7i then so is Y = {α |

Proof. By induction on the length of the witness of a —• β show: if α G <9aj,y,

^ j a n d α ^ ^ then β G O ^ . Let F(a,z) = Oheighi{ot)iZ and G(α,2) =

the set of all decreasing sequences of elements of F(a, z). F, G are Δ\ and
defined for all a G ε and all z. The existential quantifier (Ξs) in the above
definition oi az —* β may be replaced by (3s G G(α, max(e, z*)) where z* is
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the maximal number from all the evaluations in a and z. This shows that
a —> β is Δ\. The proof of (2) is similar. •

3.15 Theorem (Properties of —>).
(1) a —> β —» 7 implies α —> 7

(2) If β > α > 0 and a -» 7 then β + α -> /? + 7

(3) α —• 0; more generally, if a > ω°.fc and z > k then α —> ω°.k

(4) x < y implies ωα.y —* ωa.x

(5) ω * + 1 -> ω* for each z > 0

(6) α -> β implies ωa —• ω^

(7) x < y implies {α}(y) -> {α}(x)

(8) x < y and a —> β impUes a —* β

(9) x > 1, α —> /3 and a > β implies a —• /? + 1
α x+l

(10) for α > 0 and x > 1, ωa -> ω ί α ^ - l ) . x

(11) a —* /3 implies {α}(x) —> {/3}(x);

if a > β and a —> /3 then {α}(x) —> j9.

Remark. Needless to say, ω α stands for ω°M, i.e. for the corresponding one-
element sum.

Proofs. (2) follows from the last claim in 3.12 (ii). (Inspect, by induction,
each number of the witnessing sequence.)

(3) Let k < z < x. Let α be the smallest element of Ox such that a >ω.k
and not a —> u;°.fc, then α > cj°.fc, {c*}(2r) < α, {α}(2r) £ Ox and one

shows by checking the defining properties in 3.12 that {ct}(z) > ω°.fc; thus

(4) By (3), ω α ( y - x ) -> 0; furthermore, ωa.x > u> α .(y-x). Thus, by (2),

ωQ.y —> ωα.x.

(5) CJ*"*"1 —* ωδ.z —> ω 5 (by (4)).

z z
(6) It is enough to show: if β = {α}(x) then ω α -» ωβ. First assume α a

limit: then {ωQ}(z) = ωία>(*) = ωβ. Now let α = 7 + 1, then β = 7 and, by
(5), α;α -^ α;^.

(7) Trivial for a isolated; assume a limit. Let x,y < z and a £ Oz\
we proceed by induction in Όz. Let a = iΓD + ω'*; then ω μ G O 2 . If JίD
is non-empty, then the induction assumption gives {u>μ}(y) —> {^j^x) and

the result follows by (2). Thus assume HD empty, a = ωμ. If μ is isolated
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then see (4); if it is a limit then {ωμ}(y) = ω^Ky) _+ ω{*K*) = {ω^x) by

the induction assumption (since μ, {μ}(y), {μ}(x) £ O2).
(8) Assume a 6 Oz, z > x,y, β = {a}(x) and use induction on a:

<* -f {«}(y) Y {<*}(*) by (7), thus {a}(y) -> {<*}(*) = β and a -> β.

(9) It suffices to assume {α}(x) = /? and to prove a —> β + 1 . To this end,

it suffices to prove the following for each fixed z and x + 1 < z, x > 1:
For each α G O*, if {α}(s) = /? then (β + 1) G O z and a -• ^ + 1. This

is proved by induction on a. The case of a being isolated is trivial; assume
a = JΓD +ω6. First assume J5Γ2? non-empty and put {ωδ}(x) = /?o Then
{α}(x) = ED + βo and, by the induction assumption, ωδ —* β$ + 1 and

2?+l

1 6 Oz. Thus α = JΓ2? +ω6 -^ ίΓI> + /30 + 1 = {«}(x) + 1 = β + 1 and
aj+l

one easily sees that β + 1 £ Oz (βo + 1 € Oz and the last exponent in HD is
strictly greater than the exponent of βo).

Assume HD empty, thus a = ω6. If 8 is μ + 1 then α —> {μ*}(rc + 1) =

=ω*.x+ω* -+ ω*.x + l (since, by (3), ω* -• 1), thus a -+ β + 1.

If δ is a limit then u/ -• α;{6K«+l) e O z (since a; + 1 < z); by (7) and (6)
2J+1

l) _, ω{δ}(χ) and __, m a y b e ^placed by -* (by (8) since 1 < a;).

By the induction hypothesis we get c ί̂̂ ϊί*"*"1) -^ α ί^ί*) + 1 which gives
s+1

α = ω6 -> ω^W + 1 = β + 1 as desired.
s+1

(10) Assuming α > 0 and re > 1 we prove ωα -»• u ^ K * - 1 ) ^ . Clearly,

α ~> {α}(x - 1) (and x - 1 > 1); by (9), α -^ {α}(aΓ- 1) + 1. Thus, by (6),
x—1 x

w e are d o n e .
X X

(11) This is a triviality: α = β implies {α}(x) = {β}(x) and α > β
and α —> β implies that the witnessing sequence is α, {α}(x),...,/?, thus
{α}(a;) -> 0. This gives {α}(x) -* {β}(x). •

x a;

3.16 Definition. For each μ E ε we put CJQ = μ, ω£ + 1 = ww»μ.

3.17 Remark.
(1) Evidently, if y > 1 and μ € Oy then ω£ € Oy for each x.
(2) If μ = ω°.n we shall write ω% instead of ω^.
(3) Evidently,

ώί —> α;?~* for w > 1 and 2: > 0

furthermore, for x > 0, and 2 > 0,
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(note that ω®. = ω\_λ for x > 0). The first relation is by 3.15 (5,6), the

second from ωι.\ -> ω°.z by (6).

(4) Also evidently, for each a G ε, and each x, a E Ωx iff a < ω\. (Prove
this ill-property of x by induction oni .)

(b) Transfinite Induction and Fragments

3.18 Theorem. For each m,k,n > 1, I27m+A;_i proves the following: each
non-empty Σm set of ordinals less than ω% has a least element in the
ordering =̂ .

Proof. By induction on fc. First, for each n, IΣm proves that each non-empty
Σm subset of (^4 u") has a least element: this can be proved by induction on n.
The case n = 1 is clear since IΣ\ proves that (< ω\) is Λ\ isomorphic with
the universe of all numbers with <. It also proves that ω% is Λ\ isomorphic
to the cartesian power of n copies of the universe ordered lexicographically.
Assume we have proved on IΣm the claim for n and let X C ω x x ω.

(n+1) times
Let a be the least number such that, for some n-tuple s, ((α) ^ s) € X. Such
an a exists since the condition is Σm. Let Y be the set of all such sequences
s; by the induction assumption, we can prove that Y has a least element SQ
in the lexicographic ordering. Thus (a) ^ SQ is least in X; this completes the
proof in IΣm.

Now assume we can prove the theorem for fc, n and (m -f 1); we show that
it holds for (fc +1), n and m. This will complete the whole proof. We proceed
in IΣk+m. Let X φ 0 be Σm, I C ( < ω£+ 1). Define a function F as follows:

F(0) is the minimal (μo^o) such that μo G (< ω£), αo > 0 and X
contains an element ωμoαo + ... . (Existence clear; minimality is understood
lexicographically, using -< and <.) Let F(x) = (μx,ax) be given; we define
F(x + 1).

F(x + 1) is the minimal (/iar+lϊαaj+l) such that μx+\ € (-< ω£), α^+i > 0
and X contains an element ωμ°ao -\ \-ωμxax + ωμx+γax+\ -\ if there is
such an element; otherwise F(x + 1) = F(x).

Clearly, such F is well-defined in IΣk+m (it 1S An+l) and the set Y =
{μx I x} is Σm+χ and non-empty; furthermore, Y C (=^ ω%). By the induction
hypothesis Y has a least element μ; μ is μy for some y. But this means that
the element Σϊ uμ*ax is the least element of X. Π

Remark. Let L(ω^,Σm) be the statement "each non-empty Σm subset of
(< ω£) has a least element". Thus we proved, for each m,k,n> 1,



3. Schwichtenberg-Wainer Hierarchy and α-large Sets 139

(c) α-large Sets in IΣ\

The notion of an α-large set is technically very useful and is also appealing
in its own right. In the next subsection (d) we shall show that it is naturally
related to the Schwichtenberg-Wainer hierarchy of functions.

3.19 Definition. Let A be a finite set and let (αo,... ,aq) be its increasing
enumeration; we define {<*}A for each ΌL E ε. If A = 0 then {c*}A = α;
otherwise we put

{α}(α0,..., aq) = {{a}(ao)}(av . . . , aq) .

(Clearly, this defines {a}A as a total A\ function.) A is a-large if {a}A = 0.

3.20 Remark. (1) A is z-large (i.e. αAz-large) if and only if card(A) > x.

(2) A is α -large (i.e. ω1.l-large) iff card(A) > min A.
(3) A = (αo?..., βg) is α-large iff A - (αo,..., α;) is {α}(αo,..., α;)-large.

(Evident.)

3.21 Theorem (1) If A is α-large, x < min A and α —* β then A is /3-large.

(2) If A = (αo,..., aq), B = (δo, > &r)> ̂  < ?", for i < o we have 6, < α,
and A is α-large then B is /3-large; (in particular) Ίi AC. B and A is α-large
then B is α-large.

(3) Let α > /? > 0. Then A is (α + /?)-large iff there are B, C such that
A = S U C, max 5 < min C, 5 is /3-large and C is α-large.

(4) Let α > 1, A = (αo,..., α^), αo > 2, αo = XQ < . . . < xao = «g (i e.
[αo,α9] is decomposed into αo intervals). If A is ω^-large, then there is an
i < αo such that (ZJ,ZJ+I] Π A is u>{a}(a°~~1)-large.

(Here

(5) If A = (αo,..., αg) is ω^-large, and αo, y > 1 then both (α, . . . , α9) and

( α 0 , . . . , αq-ι) are ω^""1-large.

Proofs. (1) By 3.15 (8), we may assume x = min A. Put α, = {α}(αo,...,
α - l ) , β% = {^}(αo,. ,αi-i); thus α 0 = α, β0 = 0, α ί + 1 = 0, α 0 -> y90.

By 3.15 (11), α\ —> /3χ thus αi —> /?i; similarly we get α, —• ft, thus
α 0 αi α,

«g+l -» ^+1> i e 0 = αg+1 > ^g+1 = 0.α,
(2) Let A = ( α o , . . . , α g ) , J5 = (6o,...,&r), r > q\ we have 6t <

αi for / < q. Let α2- = {α}(αo,...,αj«i), ft = {α}(60,... Λ - l ) , thus
αi + i = {αi}(αz ) and similarly for β. First, αi = {α}(αo) —> {«}(&o) =

βl (for α0 > 1 by 3.15 (7)), thus α x -> /?! by 3.15 (8). Now assume
α 0
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α i + i f βi+i, i + 1 < q. If βi+ι = 0 then {a}(B) = 0; if βi+1 > 0 then

o, + i -»• βi+i -» {βi+i}(ai+1) -+ {βi+1}(bi+i) = βi+2 and α, +i
α, +i α +i α, +i

by 3.15 (11) a a + 2 = {α, +i}(αt +i) -» A+2. Thus in any case {a]B = 0.
α<+i+

(3) Let α,/? > 0, α > /?. First assume A = (αo,... ,α g) to be (α + /?)-
large. Put λ; = {a + /?}(α0,...,α - i ) , ft = {/?}(α0,... ,α t - i ) . W e h a v e

= 0; thus, for some i, ft = 0. Let m be minimal such i. Then λ m = α,
( , , flm-l) = B is ^-large and ( α m , . . . , aq) = C is α-large.

Conversely, let A = B U C, maxB < minC, let £ be β-large, C α-large;
assume that B is the least possible. Then {β}(B) = 0, {α + β}(B) = α,

(4) By 3.15 (10), ωa -• wW(βo-l) t α o ; thus by 3.15 (11), {ωQ}(aQ) -+

w{α}(αo-l)ιfl()i if ^ = (αo,...,α g) is α Marge then A - (αo) is {u/*}(αo)-
large and therefore ωία^α°""1)αo-large. By (3) this means that A — (αo) may
be decomposed into Bi,...,J?α that are mutually disjoint and such that
maxB{ < mini?t +i and each B{ is cι/ίαKβo-l)-large. Thus if we have the
decomposition αo = XQ < < xαQ = α>q of [αo,α9], at least one half-closed
interval (rr,-, X{+i] must contain B{ and therefore is cj"tα^α°~1)-large.

(5) Evidently, (αχ,...,αg) is {ω£}(αo)-large; since ω% -• ω%~ we have
α 0

{ω^}(αo)'-+ ω^Γ1 (3.17); the result follows by (1). For (α 0 , . . . ,α g) use (2).

D

(d) Schwichtenberg-Wainer Hierarchy

3.22 We shall investigate the hierarchy of number theoretic functions defined
informally as follows:

fχ(x) = f{\\(χ)(x + 1) f°Γ λ limit.

Here α, λ vary over ordinals < e; fx(y) means x-th iteration of /, i.e. /°(y) =
y, fx+1(y) = f(fx(y)) This is a variant of the hierarchy investigated by
Schwichtenberg and Wainer and the second from two hierarchies investigated
by Solovay and Ketonen. We shall show that this hierarchy is Δ\ definable
in IΣ\ as a hierarchy of partial functions, show conditions sufficient to prove
that a given function fα is total and relate the hierarchy to α-large sets (cf.
Theorem 3.30).

3.23 Remark. (1) It is easy to show in IΣχ that if F is a total one-argument
A\ function then there is a unique total two-argument function G such that
G(x, y) = Fx(y) for each x, y.
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(2) Similarly, IΣ\ proves that if q is a finite one-argument function then
there is a finite two-argument function q' which is the maximal function such
that for each (x,y) G dom(q'), q\x,y) = qx(y). Easy proofs are left to the
reader.

(3) We shall work with finite two-argument functions defined for some
pairs (α, x) where a 6 ε and x is a number. If q is such a function then qa

will be the unique function such that for all x, qa(x) is defined iff q(a,x) is
defined and then qa(x) = q(a, x). (Needless to say, "qQ(x) is defined" means
x € domqa.)

3.24 Definition. Define a predicate WD(q, α,x,y) (read "q is a derivation of
f(x) = y" or, pedantically, "q is a derivation of the fact that the value of x in
the α-th function in the Schwichtenberg-Wainer hierarchy is y") as follows:
(1) q is a finite function, dom(q) C ε x ω;
(2) gβ(*) = V
(3) wherever qβ{z) is defined then

(i) if z > 0 then ^ ( 2 — 1) is defined,
(ii) if β = 7 + 1 then #^(2 + 1) is defined and equal to qβ(z),
(iii) if β is a limit then 9{/?}(̂ )(;2r + 1) is defined and equal to qβ(z).

3.25 Lemma. (1) WD is Zh. (2) If WD(q,a,x,y\ qβ{z) is defined and β -> 7

then g7(2) is defined. (3) WΦ(ςf,α,a:,y) and WΦ(ςr;,α, £,y') implies y = y;.

Proof (in JΓΣ?i) is easy. (1) Note that ε is ^\χ; all uis defined"-quantifiers can
be bounded by q. It remains to observe that "ti = / x (y)" is ^ 1 in /,u,x,y.

(2) Assume 7 = {£}(*). I f Z3 i s l i m i t t h e n u s e ( u i) ^ 0); i f Z3 i s A) + 1
then {i9}(^) = βo and use (ii) and (i). D

3.26 Lemma. Assume WD(q,a,x,y) and qβ(z) defined. Then
(1) qβ(z)>z + l
(2) w < z implies qβ{w) < qβ(z)
(3) z > 0, β -+ 7 and β φ 7 implies ^(2) > qΊ(z).

Proof. Prove simultaneously (1) & (2) & (3) by induction on β running over
all 7 such that qΊ φ 0. D

3.27 Corollary. Let PΓD(^,α,x,y), α E Oti,υ and y < v. Then the restriction
g' of q to (9^1, X (< y) satisfies

Proof Verify the conditions 3.23 (i), (ii), (iii) for q1 by induction on β E O«,t;
using 3.26 (1),(2). D

3.28 Definition, y = /α(z) iff (3q)WD(q,a,x,y).

[«> y)] = {̂  I * < « < y}; [(«»y)] = {̂  I x < z < Vh similarly [(x, y].
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3.29 Remark. (1) Clearly this defines a partial two-argument function. Ob-
serve that 3.27 implies that this function is Δ\.

Note also that by 3.26, the functions satisfy the following whenever defined:

( i ) / « ( * ) > * + 1 ,
(ii) w < z implies fa(w) < fa(z),
(iii) z>0,β -*Ίφβ implies fβ(z) > fΊ(z).
(2) Recall that, for k > 1 and any n, IΣk+ι h L(ω%,Σ2) Using this we

may prove in IΣk+λ that for each limit 7 -< ω£, 7 = supa.{7}(x). (This is a
U2 condition on 7; for its proof, L(ω%, Σ2) is sufficient: consider the least 7
not satisfying this.) Also observe that IΣk+ι proves that for each a •< β -< ω£
there is a z such that β —» α. (This again is Π<ι in /?.)

z

3.30 Theorem. For k > 0 and any n, IΣjfe+i proves the following:
(1) For each a ^ ωjjjf, / α is total.
(2) For each c* -< /? -< ω£, there is a z such that

(3) For each a -< ωjj and each re, /α(z) is the least y such that the interval
[z, i/)] is u;a-large.

Proof. (1) For Jfc = 0 this follows by applying n times Remark 3.23. For k > 0
observe that the statement in question is Π<ι so that JL(U>£,JC2) suffices to
prove it for all a -< ωjj? (using Remark 3.23).

(2) By 3.29 (2), take a z such that β -+ α; by 3.29 (1) (iii), this implies

fa(z) < fa(z)' Ίί w > z then, by 3.15 (8), we have β —• α and therefore

/«(") < //ϊ(tι ).

(3) We shall proceed by induction on a -< ω£; observe that assuming
totality of all / α , a -< ωĵ , the assertion in question is /7χ. The case a = 0 is
clear.

Claim. Assume the assertion of (3) for α; then for each y > 1 and each
#> fcϊ/αίz))] is the minimal (ωα.t/)-large interval beginning with x. Proof
by induction on y (the present assertion is Δ\ in y). For y = 1 this is our
assumption; assume the present assumption for y—1. Then [x, z)] is u>α.y-large
iff [/„(*),*)] is ωβ.(y - l)-large (by 3.21 (3)) iff * > fΓHfaix)) = /2(«).
This proves the claim.

Continuing the proof of (3), consider a + 1. For x = 0 we easily see that
/<*+l(0) = 1, and {ωα+1}(0) = 0, thus the one-element set (0) is ωα+1-large.
Thus assume x > 0 and use the claim: [x,z)] is ωα+1-large iff [x + 1,*)] is
u ̂ .x-large, iff z > ff(χ + 1) = / α +i(z).

It remains to consider a being limit. Then [x,z) is ωα-large iff [x + l,z)]
is ω^K'Ό-large iff 2 > /{αX^jί25 + 1) = fa(x). This completes the proof. D
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3.31 Remark. The reader may verify the following as an exercise:

3.32 Theorem. IΣ\ proves the following: for each a,x,z, z = fQ(x) iff z is
minimal such that [x, z)] is ωα-large.

(Observe that we do not claim that fa(x) exists, but we claim that if
it exists and equals z then [x^z)] is ωα-large and z is minimal with that
property; and if there is a z such that [x,z)] is ωα-large and z is minimal
with this property then fa(x) exists and equals z. Our proof is an inspection
of the proof of 3.30 (2).)

Proof. Let a € Oq and x,z < q > 1. We prove by induction on a E Oq the
following A\ property of a:

(*) (Vz < q)(yx < q)(z = fQ(x) iff z is minimal such that [x, z)] is ω^-large).

This is clear for a = 0. Assume (*) for α and let α + 1 G O y.
Claim. For all 1 < y < g, z < ςf, z = /α(^) iff ^ is minimal such that [x, z)]

is (ωα.y)-large. (See the proof of 3.30.)
We may assume x > 1. By the claim, [#, 2:)] is ωα+1-large iff [x + 1, z)] is

ωα.x-large iff z > f%(x + 1) = /α +χ(x) - as in 3.30. Similarly for a being
limit. D

3.33 Definition. Let (W)u be the formula

(Va,*)(ay)([sf y] i s ^u'large)

(the principle of ordinal-large intervals).

3.34 Facts. (1) (W)u is a iT2-formula.
(2) IΣX h (Vu)((W0y s (V*)(Vα -̂  ω ^ χ ) ( / α is total))
(3) For each fc > 0,1^4. ! h (WJfc and, for each n, J ^ + x h (Vx)(3y)([x, y]

is u;£+1-large).
((2) follows by Theorem 3.32.)

3.35 Corollary. IΣ\ proves the following:

{\/u)(Con{IΣu + 2V(2Γi)) -+ (W)u).

This follows from 3.30 (formalized in IΣ\) exactly as the analogous statement
in 2.17.

3.36 Theorem. For each fc, IΣ\ proves (PH)k = {W\\ thus it proves (W)j. =
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Comment. One implication (easy) is 3.35. For the converse, thanks to the
main result of Sect. 2 is enough to show in IΣ\ the following:

or, at least, to prove each instance of this.
Here we have two possibilities:
(a) Solovay and Ketonen proved that, for each k > 1, c > 2, b > a > 3,

if [α, 6] is ω£+5-large then [α, 6] -+ (k + 2)£+ 1. If one checks that their proof

works in IΣ\ (which we expect but have not checked) then the implication
(*) is proved.

(b) Paris has a model-theoretic proof of (W)j. —• (PH)^ (for any standard
k). We shall elaborate it in Chap. IV (see IV.3.37).

3.37 Problem. Find a reasonably simple proof of IΣ\ h (W)u -> (PS)U or, at
least, IΣX h (Vu)(W)u -• (\/u)(PH)u) or, alternatively, IΣχ h (Vu)(W)u ->
Con(PA + Tr(iTi)). Are details of Solovay-Ketonen's paper dispensable?




