
5. Stability

In this chapter we state and prove the basic definitions and theorems relevant
to all stable theories. The first section contains the most fundamental mate-
rial. Here a freeness relation (see Definition 3.3.1) called forking independence
is developed which agrees with Morley rank independence on a t.t. theory.
Many of the theorems proved earlier for t.t. theories can be generalized to
stable theories, the class of theories on which forking independence exists.

Sections 5.1 to 5.3 contain material which anyone working in stable the-
ories must know. The first-time reader should feel free to skip the proofs in
Section 5.5, although it is important to know the statements of the results
found there. The forking independence relation is analyzed more deeply in
Section 5.6. A class of types (namely those having weight 1) is isolated on
which a well-behaved dimension theory exists.

5.1 Stability

Here we define a broad class of theories (called the stable theories) on
which there is a freeness relation satisfying the conditions specified in Defi-
nition 3.3.1. As with t.t. theories, the freeness relation is defined via a rank
(more accurately, a family of ranks). Intuitively, each of these ranks could be
described as "Morley rank relative to a finite set of formulas". The overall
goal of the section is to develop the relevant ranks and notion of freeness,
prove the definability of types in stable theories and relate its existence to
the number of types over sets.

Remember: Every complete theory discussed is assumed to have built-in
imaginaries.

5.1.1 Ranks and Definability

Writing the formula φ in the form φ(x, y) indicates that the free variables in
φ are in xy, x should be regarded as a sequence of free variables in the usual
sense, but y is a placeholder for a sequence of parameters. For example, a
general quadratic polynomial in x can be written as φ(x, abc) = ax2 + bx + c,
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where α, b and c range over the possible coefficients. We call x the object
variables and y the parameter variables in φ. When Δ is a set of formulas we
write Δ = Δ(x) when the object variables of any φ G Δ are in x. Following
the conventions previously adopted for theories with built-in imaginaries, we
will usually drop the bars from the variables and just write, e.g., Δ = Δ(x).

When Δ = Δ{x) is a set of formulas and A is a set we call the type p over
A a Δ—type if each formula in p is of the form φ(x, a) or -*φ(x, α) for some
a e A and φ(x, y) G A A Δ—type p is called complete if for all a G A and
φ(x, y) G Δ, φ(x, a) or -*φ(x, a) is in p. When Δ = {</?}, for some formula <p,
a Δ—type is called a φ—type. Let S^(A) denote the set of complete Δ—types
over A, Sφ(A) = S{φ}(A). When p is a type over A in the variable x, p \ Δ
denotes the Δ—type

{ φ{x, a) ep: φ{x, y) G Δ } U { -.<p(a;, a) e p : φ{x, y) G zA }.

Our notion of freeness will be defined with the following class of ranks.

Definition 5.1.1. Let T be a complete theory, Δ = Δ(x) a set of formulas
over 0 and S the elements of S((£) in the variable x. For φ a formula in x
and a an ordinal (or —1) the relation RA{Ψ) = #? is defined as follows by
recursion.

(1) RA(Ψ) — — 1 if φ is inconsistent;
(2) RΔ(φ) =aif

{p \ Δ: p G S, φ € p and ^ψ G p for all formulas

ψ with RΔ(Ψ) < a}

is finite and nonempty.

For p any type in x, RΔ{P) is defined to be

inf {RΔ(Ψ) φ is implied by p}.

(Thus, for p G S, RΔ(P) is inf {RΔ{Ψ) : φ €p}-) The relation RΔ(P) = ex
is read the Δ—rank of p is a. If there is no a with RΔ(P) — OL we write
RΔ(P) = oo and say that the Δ—rank of p does not exist.

By convention, we only write RΔ(P) when there is an x such that Δ =
Δ(x), Δ is a set of formulas over 0 and p is a type in x.

As with Morley rank, Δ—rank is preserved under conjugacy. The rank
RΔ(-) is what Shelah calls β ( - , 4 , N 0 ) (see [She90, p.21]).

The following is little more than a restatement of Lemma 3.3.1.

Lemma 5.1.1. Let T be a complete theory, Δ = Δ(x) a set of formulas over
0, p a type in x, S the set of elements of S(<£) in x and a an ordinal.

(i) If φ is a formula in x and Δ contains x = y, RΔ(Ψ) = 0 if and only
if φ is algebraic.
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(it) RΔ(P) = Oί if and only if there is a formula φ implied by p such that
{q \ Δ : q e S, φ G q and RΔ(Q) = OL} is finite, nonempty and equal to
{q\ Δ: qe S, qDp and R&{q) = α }.

(in) If RΔ(P) — OL there is a q e S such that qDp and RΔ(Q) = OL.
(iv) IfpeS and RΔ(P) = OL there is a ψ G p such that p \ Δ is the only

element of {q \ Δ : q G S, φ G q and RΔ(Q) > OL}.
(v) R Δ (p) > OL if and only if for all β < a and all φ implied by p,

{q \ Δ : q G 5, φ G q and RΔ(Q) > β} is infinite.
(vi)

RΔ(Ψ) is the least ordinal a such that (5.1)

{q\ Δ: q G 5, φ £ q and RΔ(P) > OL } is finite.

(viz) If Γ(x) D Δ(x), Rr(p) > RΔ(P)- When Γ is the set of all formulas
with object variable x, Rr(p) = MR(p). Thus MR(p) > RΔ(P)

Proof, (i) If φ is algebraic, then the set of complete Δ—types over € consistent
with φ is finite, hence RΔ{Ψ) = 0. Suppose φ is nonalgebraic, satisfied by the
distinct elements α̂ , i < ω. For each i < ω, {x = α̂ } extends to a complete
Δ—type Ti over C consistent with φ. Then { r̂  : i < ω } consists of infinitely
many contradictory Δ—types consistent with φ, proving that RΔ{Ψ) > 0.

Each of (i)-(vi) is proved like the corresponding part in Lemma 3.3.1. The
proof of part (vii) is assigned as Exercise 5.1.2.

We will tacitly assume that any finite set Δ(x) of formulas under consid-
eration contains x — y. This ensures that a formula has Δ—rank 0 exactly
when it is algebraic.

Definition 5.1.2. Let Δ be a set of formulas in x and p a type in x with
RΔ{P) = OL < oo. Then the Δ—multiplicity of p, denoted Mult^(p), is the
maximum m such that there are q\,..., qm G S(<£) with qι D p, RΔ(QΪ) = OL->

for 1 < i < m, and i Φ j =Φ qι \ Δ φ qj \ Δ. (Equivalently, the
Δ—multiplicity ofp is the maximal m such that there are m complete Δ—types
ri,''-->rm over £ such that RΔ(P U r̂ ) = RΔ(P), for 1 < i < m.) Let
(R.MλAt)Δ{P) denote the pair (ifo(p),Mult

Similar to the behavior of Morley rank and degree, for any set of for-
mulas Δ and any type p there is a formula φ implied by p such that
(ϋ,Mult)^(y?) = (i?,Mult)^(p). Repeating the argument in Remark 3.3.1,
when p is closed under finite conjunctions there is a φ G p such that

Notation. If Δ is a finite set of formulas, p is a type and X =
(R,M\ύt)Δ(X) = (β,

Definition 5.1.3. A complete theory T is called stable if for all p G S(€)
and all finite Δ, RΔ(P) < oo.
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For any finite set of formulas A and any formula </?, RΔ(Ψ) < MR(φ),
hence a totally transcendental theory is stable. Here are some more examples.

Example 5.1.1. Let L = {Ei : i < ω} and Γ be T^7, where To is the theory
in L saying that each Ei is an equivalence relation with only infinite classes,
Eo(x,y) is x = x and for every i > 0, i?i+i refines each ^—class into two
Ei+\— classes. Below, x denotes a variable in the sort of the equivalence re-
lations. Let A = {x = y,Eiχ,...,Ei.} where i\ < ... < ij. Given a formula
φ the number of nonalgebraic complete Δ—types over € consistent with φ
is equal to the number E^ — classes consistent with ψ. Thus RΛ(P) < 1 for
any p G S(<£) in the variable x. If Γ(x) is any finite set of formulas there is
some set Δ = {x = ?/, E^,..., Eij} such that every Γ—type is a Δ—type (by
elimination of quantifiers). Thus, for any p G S(<£), Rr(p) < l Again using
that T has elimination of quantifiers, for z a variable of any sort and Γ(z)
a finite set of formulas, Rr{z = z) < ω. This proves the stability of T. The
reader should notice that T is not totally transcendental.

Example 5.1.2. Alter the last example by requiring each Ei—class to be re-
fined into infinitely many Ei+\— classes. Suppose Δ = {x = y, ϋ?o, , Ei}.

Claim, (i) If j > i and a is an element, (fl,Mult)Δ(EJ(X,a)) = (1,1).
(ii) If j < i and a is an element, RA(EJ(X, a)) = i — j .

All nonalgebraic completions of Ej(x,a) over £ have the same Δ—type, so
(i) holds.

(ii) First let j = i - 1. Then Q = {q \ Δ : q e 5(C), £?i_i(x,α) 6
<7 and ~^φ £ q for all y? with RA(Ψ) < 2} is contained in {q \ Δ : q €
5(C), Ei_i(x,α) € g and --£7i(x,6) G g for all 6 G C } = P . Since |P| = 1,
Q has cardinality < |(£|, so i?^(^_i(x,α)) < 2. Since Ei-ι(x,a) is contained
in infinitely many elements of SΔ(£) of Δ—rank 1, i?^(^_i(x,α)) = 2.

The previous paragraph can be generalized to a downward induction
which proves (ii) for all j < i, proving the claim.

Since T is quantifier-eliminable the claim can be used to show that for
any formula φ{x) and finite set Γ there is a set A = {x = y,Eo,... ,Ei} such
that Rr(ψ) £ RΔ(Ψ) and RΔ(Ψ) ^ *• Thus, T is stable. Moreover, for every
i < ω, there is a finite Z\(x) such that RΔ(X = x) > i.

This example also shows that the A—rank of a formula depends quite
heavily on A. As A becomes larger the A—rank of x = x increases without
a finite bound.

Example 5.1.3. Let M be an infinite module over a ring R formulated in
the natural language for R—modules. We will show in Corollary 5.3.4 that
T = Th{M) is stable.

Definition 5.1.4. Let T be a stable theory.
(i) We say that p G S(A) does not fork over B C A if for all finite Δ,

RΔ(P) = RΔ(P ί B). When p does not fork over B, p is called a nonforking
extension of p \ B. The negation of nonforking is forking.



5.1 Stability 217

(it) A type q over A (perhaps incomplete) is said to fork over B C A if
every p G S(A) containing q forks over B.

(in) For A, B and C sets we say that A is forking independent from B
over C and write A X B if for all finite tuples a from A, tp(a/B U C) does

c
not fork over C. The negation of forking independent is forking dependent
and is denoted A J£ B. We usually shorten these terms to "independent" or

c
"dependent" since it is clear from context that we mean "forking independent"
"forking dependent".

Remark 5.1.1. In a t.t. theory we have already adopted "independent" to
mean Morley rank independent. We will show in Corollary 5.1.4 however that
Morley rank independence and forking independence are equivalent relations
in a t.t. theory, eliminating the apparent conflict. Below we also redefine other
terms (like "stationary") later showing the equivalence (in a t.t. theory) of
this property with the one defined earlier.

Remark 5.1.2. If T is stable and p G S(A) forks over B C A there is a
formula φ G p such that p \ B U {φ} forks over B. (Find a finite Δ such that
RΔ(P) < RΔ(P ί B) and a φ G p such that RΔ(P) = RA{Ψ)>)

Definition 5.1.5. A collection of sets Λ is called independent over B or
B—independent if each A £ Λ is independent from [j(Λ \ {̂ 4}) over B.

Remark 5.1.3. Conditions (1), (2), (3), (5) and (7) in the definition of a
freeness relation (Definition 3.3.1) hold for forking independence in a stable
theory.

Verifications. Finite character and monotonicity (1) are clear, as is transi-
tivity of independence (3). Since Δ—rank is invariant under automorphisms
of <£ so is independence (i.e., (5) holds). For any complete p and finite Δ
there is a φ G p with RΔ(P) = RΔ(Ψ)- Thus, there is a set B C dom(p) of
cardinality < \T\ such that p does not fork over B, proving (2). If Δ contains
the formula x — y and p G *?(£), then RA(P) — 0 if and only if p is algebraic.
Thus, b fi acl(A) implies that b depends on b over A; i.e., reflexivity (7) holds.

One part of (6) also holds: If p G S{A) and Δ is finite, { q \ Δ : q G
S(€) is a nonforking extension of p } is finite. Thus, the number of nonfork-
ing extensions of p in 5(£) is < 2'TL What is not clear is that every complete
type has at least one nonforking extension in S(£). This existence result as
well as symmetry (4) will require real effort to verify.

Lemma 5.1.2. Given a stable T and set A, any p G S(acl(A)) does not fork
over A.

Proof. See Exercise 5.1.3.

Definition 5.1.6. In a stable theory a complete type is called stationary if
it has a unique nonforking extension. When p is complete, does not fork over
A C dom{p) and p \ A is stationary we say that p is stationary over A.
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The following slightly extends Definition 3.3.7.

Definition 5.1.7. Let T be a complete theory, Δ = Δ(x) a set of formulas
and p G SΔ(B). Then p is definable over A if for all formulas φ(x,y) G A
there is a formula ψ(y) over A such that for all b G B,

φ(x,b) £p <=> \=Ψ(b)

Definability and nonforking are linked with

Theorem 5.1.1 (Definability Theorem). Let T be stable and p G
Then p does not fork over A if and only if p is definable over acl(A).

The definability of nonforking extensions will be proved first. The ana-
logue of this result for t.t. theories was proved using Morley sequences. There
is a similar proof in this setting, however the alternative argument given here
gives more insight into the properties of Δ—rank. Order lexicographically the
collection / = {(/?, fc) : β is an ordinal and 1 < k < ω }; i.e., (/?, k) < (7, I)
if β < 7 or β = 7 and k < I.

Lemma 5.1.3. Let T be a complete theory, Δ a finite set of formulas, a an
ordinal and m < ω.

(i) For any formula φ(x,y) there is a set of formulas Γ(y) such that for
all α, (i?, Mult)^((/?(a:,α)) > (α,ra) if and only if a realizes Γ.

(ii) Forφ(x) a formula over A with (fi,Mult)^(y?) = (α,ra) andδ(x,y) G
Δ there is a formula ψ(y) over A such that for all 6, |= ψ(b) if and only if
(R, M\ύt)Δ(φ(x) Λ δ(x, b)) = (α, m).

Proof. The proof of the following preliminary fact is left to the reader.

Claim. Given m > 1 and α an ordinal,

(R,Mu\t)Δ(φ{x)) > (α,m)

if and only if

there are mi, πi2 > 1 with mi + m^ = m, δ G Δ and b such that
(φ(x) Λδ(x,b)) > (α,mi) and
(φlx) A^δ(x,b)) > (α,m2).

Part (i) is proved by induction on the pairs (/?,&), where β is an or-
dinal and 1 < k < ω. The minimal element of the order / is (0,1) and
(R,M\ύt)Δ(φ(x,a)) > (0,1) exactly when |= 3xφ(x,a). Assume (i) holds for
all elements of / less than (a,m). For (/3,n) < (α,m) let ΓφiTl)(y) be a set
of formulas such that for all α, (R,Mu\t)Δ(φ(x,a)) > (/3,n) if and only if a
realizes Γφ^ny First suppose that m = 1. Note:
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(y?(x,α)) > (α, 1) if and only if

V/3 < α, Vn( (Λ,Mult)^(^(a:,α)) > (An) ).

Thus, (R, M\ύt)Δ(φ(x, a)) > (α, 1) if and only if α realizes {jβ<a,n<ω Γ(β,n) =
^(α,i) Supposing that m > 1 the claim yields mi, m2 > 1 with mi + nri2 =
m, <S 6 Â and 6 such that (i?,Mult)^(y?(a;, α) Λ δ(x,b)) > (α,mi) and
(i?, Mult)^((^(x,α) Λ -ι<5(z,&)) > (01,7712). Let ΓΊ and Γ2 be sets of formu-
las such that for all a and 6,

— (iϊ,Mult)^((^(x,α) Λ δ(x,b)) > (α,mχ) if and only if ab realizes Γ\{y,z)
and

— (JR, Mult)^(<^(#, α) Λ -u5(:r, 6)) > (α, 7722) if and only if ab realizes /̂ (̂ Λ ^)

Let

θ(mi,m2)(v) = {3z(/\Γ{(y,z) A /\n(y,z)) : Γ{ C A, Γ̂  C Γ2 finite },

a set of formulas which holds if and only if Γ\{y, z) U Γ^y, z) is consistent.
Let Γ(y) be a set of formulas such that a realizes Γ(y) if and only if for some
mi, 777,2 > 1 with mi +777,2 = m, α realizes θ(mi,m2)(2/) This type Γ satisfies
the requirements.

(ii) For all b and δ E Δ,

(R, Mult)^(^(a;) Λ δ(x, b)) = (α, m)

(If (i?,Mult)^((^(x) Λ ->δ(x,b)) < (α,l), then any r in P = {p \ Δ :
p G £(<£), ^ € p and RΔ(P) > ^} contains δ(x,b). Since |P | = m,
(Λ,Mult)^(y?(x) Λ δ(x,b)) = (α,m). The converse follows immediately from
the claim.)

By compactness and (i) there is a formula ψ(y) over A such that f=
^(6) if and only if RA{Ψ(X) Λ ->δ(x,b)) < a. Thus, |= ^(6) if and only if
(R, Mλύt)Δ(φ(x) A δ(x, b)) = (α, m).

Lemma 5.1.4. Let T be stable, Δ is a finite set of formulas and p G
such that RΔ(P U {7}) = RΔ{Ί) for some formula 7 over A. Then p is
definable over acl(A).

Proof Let q = pU{7}, a = RΔ{Q) and notice that Mult4(g) = 1. Let ξ(x) be
a formula implied by q such that (R, Mult)^\(g) = (R, Mult)^(ξ) = (α, 1). In
other words, p is the only po G 5 (̂<£) such that (Λ, Mult)^(poU{ξ}) = (α, 1).
By Lemma 5.1.3(ii), for any δ(x,y) G Δ there is a formula ^(y) such that
for all 6, |= φ(b) if and only if (R,M\ύt)Δ{ξ(x) A δ(x,b)) = (α,l). Thus,
ί(x, 6) G p if and only if (= ̂ (6).

It remains to show that ^ is equivalent to a formula over acl(A), By
Lemma 4.1.2, it suffices to show that φ is almost over A. Since RΔ(P^{Ί}) =
RΔ(Ί) a n ( i 7 1S o v e r 4̂, P = { ̂  ί 4̂ T is conjugate over A to g } is finite.
Furthermore, any formula conjugate over A to φ defines some element of P.
Since formulas defining the same Δ—type are equivalent, φ is almost over A.
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One direction of the Definability Theorem follows immediately:

Lemma 5.1.5. / / T is stable and p G S(€) does not fork over A, then p is
definable over acl(A).

Proving the other direction of the Definability Theorem, the Symmetry
Lemma and the existence of nonforking extensions all involve the order prop-
erty.

Definition 5.1.8. Let T be complete and φ(x, y) a formula. Then φ has the
order property if there are sets of elements {aι : i < ω } and {bι : i < ω}
such that \= φ(a,i,bj) if and only if i < j < ω. We say that T has the order
property if there is a formula of T with the order property.

It can be shown that T is stable if and only if T does not have the order
property. In fact, some authors take "T does not have the order property" to
be the definition of stable. One direction of the equivalence is

Lemma 5.1.6. A stable theory T does not have the order property.

Proof. Suppose that T is stable. For A finite, A a set and p in SΔ (A) there
is a formula φ implied by p such that RΛ(P) = RΔ{Ψ)- Furthermore, for any
such φ there are finitely many r G SΔ(A) with Ra(r U {φ}) = RΔ{Ψ)- A
formula implied by a A—type over A is implied by a finite A—type over A.
There are < \A\ + NQ finite A—types over A, so

|£a(Λ) |< |A | + K0. (5.2)

Now assume, towards a contradiction, that there are φ(x,y), {aι : i < ω}
and {bi : i < ω} such that |= φ{a^bj) if and only if i < j < ω. We will
contradict (5.2) for A = {φ}. Let (Y, <) be a dense linear order without
endpoints which has a dense subset X of cardinality K, < \Y\. (Note: K must
be infinite.) Let C = {c» : i G Y} and D = {dι : i G X } be sets of
constant symbols and Φ the set of sentences {φ(ci,dj) : % G Y, j G X and
i < j } U { -*φ(ci,dj) : i G Y, j G X and i > j }. Compactness proves the
consistency of Φ since for any finite Ψ C Φ the constants appearing in Ψ can
be interpreted by some of the α '̂s and 6/s to obtain a model of it. Thus,
without loss of generality, C and D are subsets of the universe. However, the
density of X forces each c* to have a different φ—type over Z), contradicting
(5.2) since \Y\ > \X\ > tt0. This proves the lemma.

Lemma 5.1.7. Let T be stable, φ(x,y) a formula over 0, and φf(y,x) the
formula φ with y as the object variable and x as the parameter variable. Sup-
pose thatp(x) G Sφ(<ε) andq(y) G Sφ'(€) are definable over A and consistent
with po, qo G £(^4), respectively. Then for all a realizing po wnd b realizing
qo, φ(x, b) Gp if and only if φf(y, a) G q; i.e.,

φ(x, b) G p if and only if φ(a, y) G q.
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Proof. Assume to the contrary there are a! realizing po and b' realizing go
such that -np(x,V) G p and φ{al\y) G q. By the definability over A of p and
g, for all a realizing p 0, φ(a,y) G q and similarly for realizations of g0. That
is,

Vα realizing p 0, \/b realizing go( -«p(x, b) G p and φ(a, y) G q ).

Define sets of elements { α* : i < ω } and { bi : i < ω } as follows. Assuming
that di and bi have been defined for i < k let α^ realize the restriction of p
to A U {(Li : i < k}U {bi : i < k} and bk realize the restriction of q to
AU{aii i<k}U{bi: i < k}. Then, (= φ{ai,bj) if and only if i < j . This
contradicts Lemma 5.1.6, to prove the lemma.

Lemma 5.1.8. Given A = acl(A), Δ a finite set of formulas and p G S(A),
there is at most one q G 5/\(ί) which is definable over A and consistent with
V-

Proof. Assume to the contrary that p is consistent with g, q' G SΔ(£), both
definable over A, and for some formula φ G Δ, φ(x,b) G q and -*φ(x, b) G q'.
Let ro(y) = tp(b/A). Let φ' be the formula φ with object variable y and
parameter variable x. Let r(y) G Sφ'(€) be such that Rφ>(r(y) U ro(2/)) =
Rφ>(ro(y)). By Lemma 5.1.4, r is definable over A. Applying Lemma 5.1.7 to
both q and g;,

— for all a realizing p, φ(a, y) G r and,
— for all α realizing p, -^(α, y) G r.

This contradiction proves the lemma

Prom here we can quickly prove the existence of nonforking extensions,
the other direction of the Definability Theorem and the Symmetry Lemma.

Corollary 5.1.1. If T is stable and p G S(A) there is a q G 5(C), q D p,
such that q does not fork over A.

Proof. Let p G S(A). Every extension of p in S(acl(A)) is a nonforking ex-
tension (by Lemma 5.1.2) so may as well assume that A = acl(A). For any
finite set of formulas Δ there is a q& G 5 (̂<£) with R/\{qA Up) = RΔ(P)-

By Lemma 5.1.4, q^ is definable over A, hence (by Lemma 5.1.8) q^ is the
unique complete.^—type over £ such that R&(qA Up) = i?zk(p) If Γ D Z\
are finite sets of formulas, qr contains a Δ—type which is definable over A,
hence qr D qΔ Thus, q = | J ^ q^ is a nonforking extension of p in S(<t).

Proof of the Definability Theorem (Theorem 5.1.1). One direction of the the-
orem was already proved in Lemma 5.1.5. Conversely, given p G S(A) suppose
q G S(€) extends p and is definable over acl(A). Let p' be the restriction of
q to acl(A). In the proof of Corollary 5.1.1 we show that p' has a unique
extension in S(€) which is definable over acl(A) and this extension does not
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fork over acl(A). Since p1 is a nonforking extension of p (by Lemma 5.1.2) we
have proved that q is a nonforking extension of p.

The symmetry of forking dependence follows easily from Lemma 5.1.7:

Corollary 5.1.2 (Symmetry Lemma). // T is stable then for all sets
A, B and C,

Proof. Assuming the lemma to be false there are elements a and b and a set
C such that a is independent from b over C, but b depends on a over C. These
same relations hold when we replace C by acl(C), so we may as take C to
be algebraically closed. Let qo(y) = tp(b/C) and φ(a,y) G tp(b/C U {a}) a
formula such that qo U {φ(a,y)} forks over C. Let p G S(€) be a nonforking
extension of tp(a/CU{b}) which by transitivity of independence also does not
fork over C. Let q G 5(<£) be a nonforking extension of q$. By Lemma 5.1.5
and the fact that C is algebraically closed, both p and q are definable over C.
Since φ{x,b) e p, Lemma 5.1.7 implies that φ(a,y) G ς, contradicting that g
does not fork over C.

This completes the proof of

Corollary 5.1.3. In a stable theory forking independence is a freeness rela-
tion.

The following corollaries all follow easily from the Definability Theorem
and a couple other key results above. Stating them rounds out our picture of
forking independence.

Corollary 5.1.4. Suppose that T is a t.t. theory. Then p G S(<t) does not
fork over A if and only if MR(p) = MR(p \ A). A type is stationary if and
only if it has Money degree 1.

Proof. Left to the reader in the exercises.

Corollary 5.1.5. Let T be stable.
(i) Every p G S(acl(A)) is stationary.
(ii) Ifpe S(€) is definable over A, then p does not fork over A.
(Hi) Ifpe S(€) is stationary over A, then p is definable- over A.

Proof, (i) This follows immediately from the Definability Theorem and
Lemma 5.1.8.

(ii) Assuming that p G S(<£) is definable over A, p does not fork over
acl(A) by the Definability Theorem. Since every q G S(acl(A)) does not fork
over A, p does not fork over A by the transitivity of independence.

(iii) Simply unraveling the definitions shows that if q G £(<£), / G Aut((£),
ψ is a formula over 0 and φ defines q \ φ, then f(φ) defines f(q) \ φ. If
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/ G Aut(C) fixes A then p and f(p) are both nonforking extensions of p \ A,
hence p = f(jρ). Thus, given a formula φ and φ which defines p \ φ, φ
is equivalent to f(φ) for any / G Aut(C) fixing A. By Lemma 3.3.8, φ is
equivalent to a formula over A

Remark 5.1.4- In a stable theory it is possible to find sets B D A and p G
S(B) which is definable over A but forks over A. (Compare this with (ii)
of the previous corollary.) However, when p G 5(M), M a model and p is
definable over A C M, p does not fork over A (see Exercise 5.1.7).

Remark 5.1.5. Let T be stable and p G 5(^4) stationary. Then for any finite
set of formulas Δ, Mult^Q?) = 1. (The proof is assigned as Exercise 5.1.8.)

Corollary 5.1.6. IfT is stable, then any p G S(A) is definable over A.

Proof. Let q G 5(C) be a nonforking extension of p. By the Corollary 5.1.1
there is a defining scheme for q, hence for p, consisting of formulas over ad (A).
By Lemma 3.3.11, p is definable over A.

As with t.t. theories, this definability of types yields

Corollary 5.1.7. Let T be stable and D a subset of € definable over A.
Then, for any k and H C Dk definable over £ there is a B C D such that H
is definable over A U B.

(The proof of the corollary is the same as that giving Proposition 3.3.3.)
A related property (stated for t.t. theories as Corollary 3.3.7) is:

Lemma 5.1.9. Let T be stable, M a model, φ a formula over A C M and
a a tuple form φ(€). Then tp(a/φ(M) U A) implies tp(a/M).

Proof. Let b be a tuple from M and p = ty(b/φ(M) U A). For φ{x,y) a
formula over 0, p<ψ is defined by some formula φ'{y) over φ(M) U A (by
Corollary 5.1.6). We claim that φ' also defines tp(b/φ(<t) U A). (Otherwise,
there is tuple c from φ(<£) such that f= ̂ (φ'(c) <-*• φ(b, c)). Since M is a model
there is such a c in M, a contradiction.)

Now let a! be a realization of tp(a/φ(M) U A), b, φ(x,y) and φ'{y) as
above. Then |= φ'(af) (since φ' G tp(a/φ(M)UA)), so f= φ(b,af), as required
to prove the lemma.

The following set of results refines our knowledge of the defining scheme
of a type.

Definition 5.1.9. Let T be stable.
(i) The stationary complete types p andq are called parallel, denoted p || g,

if they have the same nonforking extension in S(C). A stationary type p is
based on a set A if there is a q G S(A) parallel to p, in which case we let p\A
denote q.
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(ii) A type p is called a strong type over A if p G S(acl(A)). For any α,
tp(a/acl(A)) is called the strong type of a over A and is denoted stp(a/A),
simply writing stp(a) when A = 0.

Remark 5.1.6. (i) Unraveling the definitions, when p is a stationary complete
type and r G S(<£), the unique nonforking extension of p, is definable over A,
p\A = r \ A. Do not confuse | with \ .

(ii) At least in regard to terminology we identify types which have the
same set of realizations. If p G S(A) is stationary it has a unique extension
q in S(acl(A)), hence is equivalent to q. Thus any stationary type may be
called a strong type. Many of the properties we prove of strong types hold for
all types in a fixed parallelism class. Indeed, Hrushovski (in [Hru86]) defines
a strong type to be an equivalence class of types under parallelism.

In a t.t. theory when X is a degree 1 0—definable set, a G X and
MR(a/A) = MR(X) we say "α is generic over A" (see Definition 4.1.3).
When T is stable, p G S(A) is stationary and B D A, we say "α is generic
over A" if a realizes p and a is independent from B over A (in other words a
realizes p\B).

The following elegant notation for the defining scheme of a strong type
(due to Harrington and promoted by Hrushovski) greatly improves the read-
ability of some proofs.

Notation. Let T be stable, p G S(A) a strong type in the variable x,
q = p|C, φ(x, y) a formula over 0 and φ(y) the formula over A defining p \ φ.
If b is any element then |= ψ(b) if and only if φ(x,b) G q if and only if
|= φ(a, b) whenever a is a realization of p generic over b. We will denote ψ(y)
by (dpx)φ(x,y)i which is read "for generic x realizing p, φ(x,y) holds."

Suppose T is stable, p is stationary and based on A and a realizes p\A.
Equivalent ways of describing the relationships between φ, p and (dpx)φ(x, y)
are:

- If a 1 6, \= φ{a, b) ^ μ {dvx)φ(x, b).
A

- If |= φ(a, 6), then αX& <=> |= (dpx)φ(x, b).
A

- If |= (dpx)φ(x, fc), then α j . 6 <ί=> |= φ(a, b).
A

Since all formulas defining q \ φ are equivalent, (dpx)φ(x,y) is uniquely
determined and p' || p = » (dp>x)φ(x,£) = (dpx)φ(x,€). The variable of
the type is not always the first one appearing in the formula. We will write
(dry)φ(x, y) for the formula in x defining r.\ φ', where φ'{y, x) = φ(x, y) and
r = r(y).

Let p G S(A) be a type in a stable theory and X = p{£). Define an
equivalence relation ~ on X by: a ~ b if for all B D A such that a and
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b are both generic over JB, tp(a/B) = tp(b/B). Notice that a ~ b if and
only if tp(a/acl(A)) = tp(b/acl(A))\ i.e., the ~ -class of a is the locus
of a over ad (A). This equivalence relation is expressible entirely in terms
of A—definable equivalence relations as follows. Let FE(A) denote the set
of equivalence relations which are definable over A and have finitely many
classes. The elements of FE(A) are called finite equivalence relations over A.
Then,

Lemma 5.1.10. Let T be a complete theory. For all sets A and elements
α, b,

tp(a/acl(A)) = tp(b/acl(A))

if and only if f= E(a, 6), for all E G FE(A) (of the appropriate sort).

Proof. If E G FE(A) then the name e for the E—class of b is in acl(A)
and there is a formula η(x, e) defining this class. Thus, if tp(a/acl(A)) =
tp(b/acl(A)), f= £7(α,6), for all E G FE(A). Conversely, let φ(x,y) be a
formula over A such that 3xφ(x,y) is algebraic. The equivalence relation
E(x,x') defined by: siy{ψ{x1y) <-+ φ(x',y)), is in FE(A). Thus, assuming
that |= E(a,b) for all E in FE(A), tp{a/acl(A)) = tp(b/acl(A)). This proves
the lemma.

Corollary 5.1.8. Let T be stable.
(i) Suppose p G S(€) does not fork over A and a realizes p \ acl(A). Then

p ϊ A U {a} is stationary, hence p is definable over A U {a}.
(ii) Ifp, p' G S(€) are both nonforking extensions of some q G S(A), then

p and p' are conjugate over A.
(Hi) When a J/ b, there is a formula ψ{x, b) G tp(a/A U {b}) such that

A
any c satisfying ψ(x,b) depends on b over A.

Proof (i) Let q = p \ A U {a} and b be a realization of q. Then f= E(6, α),
for all E G FE(A), hence (by Lemma 5.1.10) tp(b/acl(A)) = tp(a/acl(A)).
Thus, q is stationary and p is definable over Au{α} (by Corollary 5.1.5(iii)).

(ii) Let a and a' be realizations of p \ acl(A) and p' \ acl(A), respectively.
Then p is the unique nonforking extension of q containing { E(x, a) : E G
FE(A) } and p1 is the unique nonforking extension of q containing { E(x, a') :
E G FE(A) }. Since a and a' both realize # there is an automorphism / of £
which pointwise fixes ̂ 4 and takes a to α;. Then /({ E(x, a) : E G

(iii) Let p = tp(b/A) and g = stp{b/A). By the Symmetry Lemma, 6
depends on α over A, so there is a formula φ(a, y) G tp(b/A U {α}) such that
p(τ/) U {φ(a,y)} forks over A. Since φ(a,y) is not in the unique nonforking
extension of q in S(<£), α cannot satisfy the formula (dqy)φ(x,y). By (i) ς is
based on A U {6}, hence {dqy)φ{x, y) is equivalent to a formula over A U {6}.
The formula ψ(x) = φ(x,b) A ->(dqy)φ(x,y) is a formula over A U {b} such
that |= φ{c) => cj^ 6, proving (iii).
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Recalling Definition 5.1.4(ii), a (possibly incomplete) type p over B forks
over A C B if whenever c realizes p, c depends on B over A. Part (iii) of the
corollary can be reworded as: If p G S(B) forks over A C B, there is a φ G p
which forks over A.

The following direct consequence of definability is called the Open Map-
ping Theorem because it asserts that a certain map between topologies is
open. The reader is referred to [Las86] or [Bal88] for an explanation.

Lemma 5.1.11 (Open Mapping Theorem). Suppose that T is stable,
B D A and φ(x) is a formula over B. Then there is a formula φ(x) over
A such that p G S(A) has a nonforking extension containing φ{x) if and only
ίfψep.

Proof Without loss of generality, B\A contains a single element b. Let q =
stp(b/A) as a type in y and φo(x) — (dqy)φ(x, y). Then, given a independent
from b over A, |= φo(a) <<=> \= φ(a,b). Let φo = φo(x,e), where φo(x,z) is
over A, e G acl(A) and 3xψo(x, z) isolates tp(e/A). Let φ{x) = 3zψo(x,z). If
a is independent from b and f= φ(a,b) then |= φ${a,e), so (= Φ{o). In other
words, φ(x) € tp(a/A). Now suppose p G S(A) and φ G p. ThenpU^o^, e')}
is consistent for some e'. Since 3xψo(x,z) isolates a complete type over A,
P U {̂ 0(̂ 5 e)} is consistent. Since e G acZ(A) there is a nonforking extension
p1 of p over acl(A) U {6} containing ψo(x, e). That is, for some a realizing p
which is independent from b over A, ^ ( ^ e ) . Thus, |= φ(a,b) as needed to
complete the proof.

Using this lemma we can generalize Lemma 3.3.10.

Corollary 5.1.9. Let T be stable, p G S(A) nonisolated and q D p is an
isolated complete type. Then q forks over A.

Proof. Suppose, to the contrary, that q G S(B) does not fork over A and
φ{x) isolates q. Let ψ e pbe such that r G S(A) has a nonforking extension
containing φ(x) if and only if ψ G r. Any p' G S(A) containing ψ has an
extension q' G S(B) containing φ. Since q is the only element of S(B) con-
taining φ, q \ A = p is the only element of S(A) containing φ\ i.e., φ isolates
p. This contradiction proves the corollary.

Canonical parameters were introduced for t.t. theories in Section 4.1.1.
The canonical parameter of a degree 1 type has much in common with the
name for a formula. Recall that Γ<pl denotes the name for the formula φ.
(Thus, for every automorphism / of £, f(φ(t)) = φ(€) if and only if / ( V ) =

M-)
Definition 5.1.10. Let T be stable and p be a stationary type in x. Let

D(p) = { ^(dPx)φ(x,y)^ : φ(x,y) is a formula over®}.

The canonical base of p, denoted Cb{p), is dcl(D(p)).
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Clearly, if p is a stationary type definable over A then Cb(p) C del (A).

Lemma 5.1.12 (Canonical Bases). Let T be stable and p a stationary
type.

(i) p is based on Cb(p).
(ii) If the stationary type q is parallel to p then Cb(p) = Cb(q).
(iii) If p G 5(C), Cb(p) is the largest set C such that for all f G Aut(<£),

f(p) = P tf an^ onMi if f fixes C pointwise.

Proof (i) Clearly p is definable over D(p), hence p is based on Cb(p).
(ii) For r = p\£ = q\C, D(p) = D(r) = D(q), so Cb(p) = Cb(q).
(iii) Let C be a maximal set such that for all / G Aut((£), f(p) = p if and

only if / fixes C pointwise. If / € Aut(<£) and f(p) = p then f{{dpx)φ{x, y)) =
(dpx)φ(x,y), for all φ. Hence / fixes Cb(p) = dcl(D(p)) pointwise and (since
C = dcl{C)) Cb(p) C C. To prove that C C Cb(p), suppose / <E Aut(C) fixes
Cb(p) pointwise. Since p is definable over Cb(p), f(p) = p, hence / fixes C.
Thus C C dcl(Cb(p)) = Cb(p), completing the proof.

Remark 5.1.7. (i) Some authors take the property proved in (iii) of the previ-
ous lemma as the definition of a canonical base. Indeed, most of the properties
we prove about canonical bases follow directly from this condition. Our def-
inition makes it clear that each stationary type has a canonical base.

(ii) In Exercise 5.1.18 the reader is asked to show that for p e S(€),
Cb{p) = dcl{C) if and only if for all / G Aut(€), f(p) = p if and only if /
fixes C pointwise.

Corollary 5.1.10. Let T be t.t., p a stationary type and c a canonical pa-
rameter of p. Then Cb{p) = dcl(c).

Remark 5.1.8. Requiring a canonical base to be definably closed guarantees
the maximality condition in Lemma 5.1.12(iii). When defining the canonical
parameter of a stationary type p in a t.t. theory we sacrificed this uniqueness
in favor of p having a canonical parameter which is an element of the universe.
Given an arbitrary stable theory and stationary p there may not be an element
c G Cb(p) such that dcl{c) = Cb(p). (Examples are given below.) See also
Exercise 5.1.11.

Example 5.1.4- To illustrate this notion we examine canonical bases in an
arbitrary theory of equivalence relations. Let L = {Ei : i G / } b e a collection
of binary relations, To a complete 1-sorted theory in L saying that each
Ei is an equivalence relation and let T — TQQ. Then T has elimination of
quantifiers regardless of the relationships between the E^s axiomatized in
To. Let p G S(<£) be a type in the same sort as the equivalence relations. By
the elimination of quantifiers p is implied by

{Ei(x,a) : i G / , a G € and Ei(x,a) €p}U

{-ιEi(x,ά) : i G /, a G € and -iEi(x,a) G p}.

The data needed to determine p is:
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(1) E(p) = {Ei : Ei(x,a) G p for some α}, and
(2) for Ei G £(p), the set βi(p) which is the Ei— class of the elements b
such that J?i(a;, b) G p.

(Given ρ G 5(C), if £Γ(ςr) = £(p) and e<(g) = βi(p), for all Ei G £(g), then
q = p.) How can this data be used to find the canonical base of p or sufficiently,
a set C such that f(p) =piί and only if f(C) = C, for all / G Aut(C)?

Cton. For all / G Aut(C), /(p) = p if and only if / pointwise fixes C(p) =
{ci : Ci is a name for ei(p), for ^ G £(p) }.

Clearly, if / G Aut(C) and /(p) = p then / pointwise fixes C(p). Suppose,
conversely, that / G Aut(C) pointwise fixes C(p). By (1) and (2), /(p) = p
if and only if £(p) = £(/(p)) and e*(p) = ^(/(p)). For any 0 G Aut(C),
S(g(p)) = 8(p). Let c* be the element of £ which is a name for the equivalence
class βi(p). We see, then, that

f(p) = P *=> e<(/(p)) = e,(p) ^ ^ / ( Q ) = cu for all ^

This proves the claim.
Thus, Cb(p) = dcl(C{p)).
Pick To to be the theory expressing that each Ei, ί < ω, has infinitely

many class, ϋ7i+i refines Ei and each Ei class contains infinitely many
Ei+ι— classes. The reader should find a p G S(<£) such that there is no
c G C6(p) with C6(p) = dcl(c).

Besides filling out our picture of the nonforking extensions of a complete
type the following illustrates how canonical bases are used in proofs.

Lemma 5.1.13. IfT is stable and p G 5(C), then p does not fork over A if
and only if p has < |C| conjugates over A.

Proof. Let Aut^(£) denote the set of automorphisms of (£ which fix A
pointwise. Given / G Aut(C), /(p) is the unique nonforking extension of
f(p\Cb(p)). Moreover, if /, g G Aut(C) and f(Cb(p)) = g(Cb(p)) then
f(p\Cb(p)) = g(p\Cb(p)). Thus, there is a one-to-one correspondence between
{ fip) : / e AutA(C) } and { f(Cb(p)) : / G AutΛ(C) }.

Suppose p does not fork over A. Then Cb(p) C acl(A), { f(Cb(p)) : f G
AutA(C)} has cardinality < 2 τ l < |C|, so { /(p) : / G AutΛ(€)} has cardi-
nality < |C|. If, on the other hand, {/(p) : / G Aut^ί^)} has unbounded
cardinality, then so does {/(C6(p)) : / G AutA(C)}. Thus C6(p) ^ αcZ(A)
and p must fork over A.

5.1.2 Stability and the Number of Types

We saw in the case of totally transcendental theories that there is a tight
connection between the number of complete types over sets and the existence
of ranks (a countable complete theory is t.t. if and only if it is No—stable).
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In this subsection we establish a similar connection for stable theories. The
main result is

Proposition 5.1.1. ForT a complete theory and Δ a finite set, the following
are equivalent.

(i) There is ape S{€) with RΔ(P) = oo.
(ii) There is ape S[t) with RΔ(P) > ω.
(iii) For every infinite cardinal λ there is a set A of cardinality λ such

that\SΔ(A)\ = 2x.
(iv) For some infinite set A, \SΔ(A)\ > \A\.

Proof. Fix T and Δ throughout the proof. Recall that Rφ denotes R{φ} when
φ is a single formula. Most of the work is contained in

Claim. Suppose there is a p e S(€) with RA(P) > u. Then for every infinite
cardinal λ there is a set A of cardinality λ such that |S^(J4) | = 2λ.

First note that RΔ(X = x) > ω. The proof of the claim involves the
following sets of formulas. (Remember: a2 is the set of functions from a into
2 = {0,1} and a>2 = \Jβ<a

 β2. Also, for φ a formula, φ° = φ and φ1 = ^φ.)

Let a be an ordinal and, for each 5 e α > 2 , let cs be a new constant
symbol. Given a formula φ, let Γ(φ,a) is {φ(xτ >cr\i)τ^ : r e
α 2 , i<a}.

An easy induction on a shows that Γ(φ,a) is consistent whenever Rψ{x —
x) > a.

Subclaim. There is a formula φ e Δ such that Rφ(x = x) > ω.

For m < ω let Wm be the collection of all sets of formulas W of the form

W = {φτμ(xr,aτμ)
τW : τ G m 2 , i < m }

for new constants aτμ and φτμ e Δ.

We also require that for all m < ω and for all σ, r G m 2, if σ \ i = r \ i
and φσ\i — φτμ then aσ\i = aτμ. As with the jΓ(y?,α)'s, i?z\(^ = x) > m
implies the consistency of some element of Wm. When m < ω every element
of Wm+i contains an element of Wm (after renaming the variables). There are
consistent elements of Wm for arbitrarily large finite m (since RA(X = x) >
ω). Since each Wm (for m < ω) is finite there is a consistent element of Wω.
This yields 2*° many Δ—types over some countable set A. A simple counting
argument (using the finiteness of Δ) produces a φ e Δ for which there are
2**° many φ—types over A. Since there are only countably many φ—types
over A with finite φ—rank, x = x must have infinite φ—rank, proving the
subclaim.

Fix & φ e Δ with i?^(x = x) > ω. By compactness, Γ(φ, K) is consistent
for all K. Thus, for any infinite λ there is a set A of cardinality λ (namely the
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elements which interpret the constants in Γ(φ,\)) such that |5/\(A)| = 2Λ.
This proves the claim.

Turning to the main body of the proof, notice that (i) => (ii) and (iii) =>
(iv) are trivial, while (ii) = > (iii) is a restatement of the claim. For (iv) = >
(i), suppose (i) does not hold and A is an infinite set. Any Δ—type over A
is contained in only finitely many elements of SA (A) of the same Δ—rank.
Furthermore, any element of SΔ (A) contains a finite Δ—type of the same
rank. Since there are \A\ many finite Δ—types over A, \SΔ(A)\ = \A\; i.e.,
(iv) fails. This proves the proposition.

Corollary 5.1.11. For T a complete theory, the following are equivalent.

(i) T is stable.
(ii) For all finite Δ and p e 5(C), RΔ(P) < ω.
(iii) For all finite Δ and all sets A, \SΔ(A)\ = \A\ + No.
(iv) For all sets A, \S(A)\ < \A\W.
(v) T is λ—stable for any λ such that λ = λ'τL
(vi) For some infinite λ, T is λ—stable.

Proof. The equivalence of (i), (ii) and (iii) follows immediately from the
proposition. Since any p G S(A) is simply the union of p \ φ, for φ a for-
mula, (iii) ==> (iv). Trivially, (iv) => (v) = > (vi). Finally, (ii) = > (iii) of
Proposition 5.1.1 shows that (vi) ==> (ii).

As stated earlier there are many definitions of the term "stable" in the
literature. The earliest definition was: T is stable if T is λ—stable for some
A > \T\. Corollary 5.1.11 proves the equivalence of this definition with the
one used here. Other standard definitions are:

(a) T is stable if T does not have the order property, and
(b) T is stable if for all sets A, every element of S(A) is definable over A.

The reader will prove the equivalence of (b) with our definition in the exer-
cises. We proved in Lemma 5.1.6 that when T is stable in our sense it does
not have the order property. The converse, which is significantly more diffi-
cult to prove, is in [She90, §1.2]. Another equivalent involving the so-called
fundamental order will be mentioned in Section 5.1.4. (See Theorem 5.1.2,
specifically.)

5.1.3 Morley Sequences and Indiscernibles

As in t.t. theories indiscernible sets can be constructed by taking successive
nonforking extensions of stationary types. The precise definition is

Definition 5.1.11. Let T be stable, p a stationary type and B a set on which
p is based. We call I a Morley sequence over B in p if I is a B—independent
set of realizations ofp\B.
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Remark 5.1.9. (i) Notice that being a Morley sequence is invariant under
parallelism: if p and q are stationary and parallel then a set is a Morley
sequence in p if it is a Morley sequence in q.

(ii) Let p G S(A) be a strongly minimal type. Then for B a set on which p
is based, / is a Morley sequence in p if it is a set of realizations of p\B which
is algebraically independent over B.

(iii) More generally, any Morley sequence in a t.t. theory as defined in
Definition 3.3.6 is a Morley sequence (by Corollary 5.1.4).

Lemma 5.1.14. Let T be stable and p a stationary type based on B.
(i) Given n < ω and a = (α 0 , . . . , an), b = (6 0,..., bn) independent se-

quences of realizations of p\B, tp{a/B) = tp(b/B). Moreover, tp(a/B) is
stationary.

(ii) A Morley sequence over B in p is an indiscernible set over B.

Proof. Since (ii) follows immediately from (i) we only need to prove the first
part, which is done by induction on n. Let o! = (αo> ?^n-i) and bf =
(&o, , bn-\). By induction there is an automorphism / fixing B and taking
a' to V. Since f(tp(an/B U a')) = p\(B U V) = tp(bn/B U V), tp{a/B) =
tp(b/B). The stationarity of tp(a/B) follows from:

- the first sentence in (i) is true when B is replaced by acl{B), and
— a complete type over an algebraically closed set is stationary.

Most of the properties established for indiscernibles in t.t. theories gener-
alize directly to stable theories. In fact, combining Lemma 3.3.5 and Corol-
lary 5.1.11 proves

Lemma 5.1.15. LetT be stable and (/, <) an infinite indiscernible sequence
over A. Then

(i) I is an indiscernible set over A.
(ii) For any formula φ(x, y) over A there is an n < ω such that for all α,

|{6 β I : h ¥>(M) II < n or \{bel:\= ^φ{a,b) }| < n.

We will see momentarily that for any indiscernible set / in a stable theory
all but a "small" subset J of / is a Morley sequence over J in some type. The
relevant stationary type is defined here:

Definition 5.1.12. Let T be stable, I an infinite set of indiscernibles and A
a set. The average type of / over A, denoted Av(I/A), consists of

{ φ(x) : φ is a formula over A and

|= φ{a) for all but finitely many a e I}.

Lemma 5.1.16. Let T be stable, I and infinite set of indiscernibles and A
a set. Then Av(I/A) exits and is complete.
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Proof. Left to the reader in Exercise 5.1.19.

Average types are quite easy to understand when dealing with Morley
sequences in a t.t. theory. Let T be t.t., p stationary, / a Morley sequence in
p over A and B D A. For any b G B there is a finite J C I such that / \ J is
a Morley sequence in p over A U {&} (by Corollary 3.3.1). Thus, the average
of / over any set B D A is p\B.

Remark 5.1.10. Recall that FE(A) denotes the set of finite equivalence re-
lations over A (in a fixed sort determined by context). Let / be an infinite
set of indiscernibles over A in a stable theory, a G / and E G FE(A). Then
E(x, a) G Aυ(I/A U {a}) since E has only finitely many classes and / is
infinite and indiscernible.

Arbitrary indiscernible sets are reduced to Morley sequences with the
following result.

Lemma 5.1.17. IfT is stable and I is an infinite set of indiscernibles, then
p = Av(I/<£) is based on any infinite J C I. Moreover, for any infinite J C I
I\J is a Morley sequence in p over J.

Proof. The following claim (whose proof is left to the reader) indicates how
to enlarge a set of indiscernibles without changing the average type.

Claim. If a realizes p \ J, then /o = /U{α} is indiscernible and Άυ(Io/<£) =

P-
By repeated applications of the claim we can assume, without loss of

generality, that |/| > |T | + . Let Abe & set of cardinality < \T\ over which p
does not fork. There is a set I' C / of cardinality < \T\ such that

— A is independent from / over /' and
— for any formula φ over A U i7, if |{ a G / : |= φ{a) }| is finite then {a € I:

\= φ(a)} c Γ.

Then any a G / \ Γ is independent from A over /' and tp(a/A U /') =
Av(I/AuΓ); i.e., p \ (AuΓ) = tp(a/AuΓ) and this type does not fork over
/'. That is to say, p does not fork over /'.

Now, let J be any infinite subset of /. For A a finite set of formulas
there is a φ(x, αo,. • •, an) G p, where αo,..., αn G /' are distinct, such that
RΔ(P) = RA{Ψ{^ ,OΌ ) - 5«n)) By the indiscernibility of /, for any distinct
bo,..., bn G J, φ(x, bo,...,bn) Ep and RΛ{P) = RΔ{Ψ(X, bo,..., bn)). Thus, p
does not fork over J. It remains to show that p \ J is stationary. Fix b G J and
J' = J\ {b}. Since J' is also infinite, p does not fork over J1. If E G FE(J'),
then E(x,b) G p by Remark 5.1.10. Thus, not only is tp(b/J') = p \ J', but
tp(b/acl(J')) = p \ acl(J'). By Corollary 5.1.8(i), p \ J is stationary, proving
that p is based on J. That / \ J is a Morley sequence in p over J follows
immediately.
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Corollary 5.1.12. Let T be stable, p G S(A) a stationary type and I a
Morley sequence in p. Then Aυ(I/(£) is parallel to p.

Proof. See Exercise 5.1.16.

When T is t.t. this lemma can be improved to:

Corollary 5.1.13. IfT is t.t. and I is an infinite set of indiscernibles, then
p = Av(I/£) is based on some finite J C /. Moreover, for any such J, / \ J
is a Morley sequence in p over J.

We stated in Remark 5.1.3 that for any p G S(C) (where T is stable) there
is a set A of cardinality < \T\ over which p does not fork. With the above
lemma this can be improved to

Corollary 5.1.14. ForT a stable theory and p G S(€) there is a countable
set A such that p is based on A.

Proof. Let B be any set over which p is based and / a countably infinite
Morley sequence over B in p. By Lemma 5.1.17, p is based on / .

Corollary 5.1.15. Let T be stable, p G S(C), I an infinite set of indis-
cernibles with Av(I/d) = p and A any set. Then for all φ(x,y), dpxφ(x,y)
is equivalent to a formula over I. In particular, p is definable over p \ A((£).

The final result connects average types to type diagrams.

Lemma 5.1.18. IfT is stable and I and J are infinite sets of indiscernibles
with the same average type over (£ then D(I) = D(J).

5.1.4 The Fundamental Order

Our intuition is that Morley rank in a t.t. theory and the Δ—ranks in stable
theories provide a measure of the complexity of types. The fundamental order
is an alternative such measure.

Definition 5.1.13. Let <£ be the universal domain of a complete theory T.
(i) Given B c A C €, p G S(A) a type in the variable υ and φ(v, w)

a formula over B, we say that φ{υ,w) is represented in p if there is an
a G A such that φ(v,a) G p. The representation class of p over B, XB(P)> is
{φ(υ,w) : φ is over B and φ is represented in p}. When B = 0 we write
X(P) forχB{p).

(ii) The fundamental order of £ is

O = {χ(p) : p G S(M) for M a model of Γ}

under the partial order < of reverse inclusion. That is, χ(jρ) < χ(q) if and
only ifχ(q) Cχ(p).
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(in) For M, N models of T and p G S(M), q G S(N), we wήte p < q
tf x(p) < X(Q) z n ^ e fundamental order. The relation < on the collection of
types over models is also called the fundamental order ofT.

(iv) For M C N models of T and p G 5(M), q G S(N) with p C q, we
call q an heir of p if XM{q) - XM(P)-

Remark 5.1.11. Let V = {p : p is a complete type over a model }.
(i) As usual when working with types over models we apply the definitions

and results to the elements of £(<£) as well.
(ii) The fundamental order over B is defined in the obvious way.
(iii) For p G S(M), M a model, there is a model i V c M o f cardinality

|Γ| such that χ{p) = χ(p \ N). Clearly, O has cardinality < 2' τ | . It does not
follow (immediately) that p is an heir of p \ N since that relation requires
χN(p) = XN(P Γ N). However, there is a chain of models iV0 C iVi C ... such
that for each i < ω, \Ni\ = |Γ| and every formula over Ni represented in p is
represented in p \ Ni+ι. Then p is an heir of p \ (\Ji<ω Ni).

(iv) p G V is minimal in the fundamental order if and only if v = w is
represented in p; i.e., p is realized in its domain.

(v) Given M c N models and p G 5(M), q G S(N) with p C q, q is an
heir of p if and only if whenever φ(v,w) over M is represented in q there is
an a G M such that φ(υ, a) G ς.

(vi) For any given complete theory there is a fundamental order corre-
sponding to each sort. For simplicity we usually assume the order is on the
sort of equality.

The representation class of p = tp(a/M) is one measure of the amount of
information p determines about a. When χ(p) < χ(q), then to some degree
p gives more information about a realization than does q. If q G S(N) is an
heir of p then all of the information contained in q (given by representation)
is already contained in p; i.e., all of the information in q is inherited from p.

Example 5.1.5. (i) Let T be the theory of one equivalence relation E with
infinitely many infinite classes and no finite classes. In the sort of equality the
fundamental order O contains 3 elements. The unique minimal class is the one
containing υ = w. There is a unique maximal class which can be described
as the one not containing E(υ,w). Strictly between these two classes in O is
the class containing E(υ, w) and not containing v = w.

(ii) Let (/, <) be a linear order and Ei a binary relation symbol for each
i e I. Let T be the theory expressing for z, j G I:

(a) Each Ei is an equivalence relation with infinitely many infinite
classes and no finite classes.

(b) If i < j Ei refines Ej and each Ej— class contains infinitely many
Ei— classes.

Then T is quantifier-eliminable and stable. For each cut J of I there is a
pj G 5(<£) such that pj represents Ej if and only if j £ J. There is a type
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po G 5(C) representing υ = w, hence every E{. There is also a p\ G S(<£)
not representing v = w or any Ej. Let JΓ be the set of cuts of / ordered by
inclusion, and let J\ be J with the addition of a minimal element. Then, the
fundamental order is isomorphic to J\.

(iii) Let K be the universal domain of algebraically closed fields of charac-
teristic 0. The fundamental order O on 2—types is described as follows. The
reader can verify that every representation class in O contains an element
of S2{K). The algebraic types in S2(K) are the minimal elements of O and
there are No many different representation classes of algebraic types. There
is a unique element of S2{K) having Morley rank 2. For strongly minimal
p, q e S2(K), χ(p) C χ(q) if and only if χ(p) = χ(q) if and only if p is
conjugate to q. There are No many strongly minimal elements of S2(K) up
to conjugacy. Thus, O has a unique maximal element, NQ many minimal ele-
ments and the remainder is a set of No many pairwise incomparable elements.

In each of the above (stable) examples, when M is a model and p G
p is an heir of p \ M if and only if p does not fork over M.

(iv) Let <£ be the universal domain of dense linear orders without end-
points. The fundamental order O on 1-types has one minimal element. A
nonminimal o e O is determined by whether it contains v < w and not v > w,
υ > w and not v < w, or both v < w and v > w.

Let M be a model, p_oo = {v < a : a G M } and p + o o = {v > a : a G
M}. The type p-oo has a unique heir in 5(£), namely {υ < a : a G £}.
Similarly, p + o o has a unique heir in £(<£). Let J be a cut of M such that
M \ J φ 0 and sup J does not exist in M. Let po = {υ > a : a £ J} U {υ <
a : α G M \ J } . Any nonalgebraic extension of po in S(<£) is an heir of po.
Thus, po has 2 | £ | many heirs in 5(C).

The first lemma connects the fundamental order with simple inclusion.

Lemma 5.1.19. Let O be the fundamental order of a complete theory and
o\ < 02 elements of O. Then, for i = 1,2 there is pi a complete type over a
model such that χ{pi) = Oi and pi D p2

Proof. The proof is omitted for brevity. The reader can find it in [LP79, 2.3].

Lemma 5.1.20. Let € be the universal domain of a complete theory, M an
Ko—saturated model andp G S(M). Then there is an heir of p in

Proof. It suffices to show that p has an heir in S(N) for an arbitrary model
N D M. Let q(v) be the set of formulas over N which contains p(v) and
-iφ(v,a) for any φ(υ,w) φ XM(P), and any a G N. In outline the consistency
of q(υ) is proved as follows. Let b G M, a G N, φo{v,wo),.. ,ψk{v,Wk) £
XM(P) and qo(υ) = p \ bU{-^φo(v, o), . . . , -»<p*(t;, a)}. Since M is H0~saturated
there is an elementary map / fixing b and φo(υ, w0), ...,ψk(v, Wk), and taking
a to a1 G M. Then /(g0) C p, so g is consistent.
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Any completion of q over N is an heir of p over JV, proving the lemma.

In a stable theory we get a stronger existence theorem for heirs.

Lemma 5.1.21. Let € be the universal domain of a stable theory, M a
model, p G S(M) and q G 5(£) an extension of p. Then q is an heir of
p if and only if q is a nonforking extension of p.

Proof. First suppose q is a nonforking extension of p. Let φ(υ, w) be a formula
over M represented in q. Let ψ(w) be a formula over M defining q \ φ. Since
φ is represented in q, ψ is consistent, hence ψ is satisfied by some element of
M. Thus q is an heir of p.

Conversely suppose q forks over M and φ(υ, a) G q witnesses this forking,
where φ(v, w) is over M. Let θ(w) be a formula over M which defines p \ φ.
Then θ has the property:

V6( p U {φ(y, b)} does not fork over M ^=> f= θ(b) ).

Thus, φ(υ, w) A ->θ(w) is represented in q but not represented in p, proving
that q is not an heir of p.

The fundamental order is tied to stability with

Theorem 5.1.2. The complete theory T is stable if and only if

(*) for all models M and p G S(M), p has at most one heir in S(€).

Proof. If T is stable, M is a model and p G S(M), then q G S(M) is an heir
of p if and only if q is a nonforking extension of p by Lemma 5.1.21.

Now suppose that (*) holds. Let M be an No— saturated model and λ =
\M\. Since any p G S(M) has an heir in S(<£) (by Lemma 5.1.20), when N
is a submodel of M, each p G S(N) has at most one heir in S(M). For each
p G S(M) there is (by Remark 5.1.11(iii)) a model N c M of cardinality |Γ|
such that p is an heir of p \ N. By (*) each element of S(M) is in one-to-one
correspondence (by the heir relation) to a type over a set of cardinality \T\.
Thus, \S(M)\ < λlτL For some choice of λ, λl τ = λ, hence Γ is stable (by
Corollary 5.1.11).

The fundamental order can be used in conjunction with the forking re-
lation to deepen our understanding of stable theories. See, for example,
[Bue85b] and [HLP+92].

Historical Notes. Globally speaking all of these results are due to Shelah
[She90]. In detail our development of stable theories follows the first section of
[Hru86], which is based on notes from a course by Harrington. Lemma 5.1.11
(the Open Mapping Theorem) is due to Lascar and Poizat [LP79], however
Corollary 5.1.9 is stated for superstable theories in [Las76]. The results in the
second subsection are explicitly due to Shelah and can be found in [She71].

The fundamental order was developed by Lascar and Poizat in [LP79].
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Exercise 5.1.1. Let T be the theory of a single equivalence relation E with
infinitely many infinite classes and no finite classes. Let A = {E(x, y),x = y}.
Prove that for all p G Si(C), MR{p) = RΔ(p).

Exercise 5.1.2. Show that when Γ(x) D Δ(x), Rr{φ) > RΔ(Ψ), for all
formulas φ. Also, when Γ is the set of all formulas with object variable x,
RΓ(p) = MR(p). Thus MR(p) > RΔ(p).

Exercise 5.1.3. Given a stable theory show that any p G S(acl(A)) does not
fork over A. (Prove this without using the existence of nonforking extensions,
whose proof depends on this property.)

Exercise 5.1.4. Prove Corollary 5.1.4.

Exercise 5.1.5. Suppose that T is a complete theory with the property that
for all A, every element of S(A) is definable over A. Prove that T is stable.
(HINT: Use Corollary 5.1.11.)

Exercise 5.1.6. Let T be stable, M a model and p G S(M). Let φ{x,y)
and φ(y) be formulas over M such that φ defines p \ φ. Show that φ defines
q \ φ, where q G S(€) is the nonforking extension of p.

Exercise 5.1.7. Prove: Given a stable theory, a model M and p G S(M), if
p is definable over A c M , then p does not fork over A.

Exercise 5.1.8. Prove Remark 5.1.5.

Exercise 5.1.9. Let p G S(A) be a stationary type in a stable theory, B D A,
and q G S(B) a forking extension of p. Show that q is also a forking extension
of p\C for C C B any set on which p is based.

Exercise 5.1.10. Prove that a countable stable theory has a saturated
model of cardinality «+ , when κ+ > κHo.

Exercise 5.1.11. Suppose that T is t.t., p is a stationary type and C =
Cb(p). Prove that there is a c G C such that C = dcl{c).

Exercise 5.1.12. Let T be the theory in the Example 5.1.1 and p G S(€) a
type in #, where x has the same sort as the equivalence relations. Describe
Cb(p).

Exercise 5.1.13. Prove: If T is stable and / is an infinite set of indiscernibles
over A, then α, b G / = > stp(a/A) = stp(b/A). Prove, in fact, that / is
indiscernible over acl(A).

Exercise 5.1.14. Give a quick proof of the Open Mapping Theorem when
A = acl(A).

Exercise 5.1.15. Prove the claim in the proof of Lemma 5.1.17.
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Exercise 5.1.16. Prove Corollary 5.1.12.

Exercise 5.1.17. Prove Corollary 5.1.15.

Exercise 5.1.18. Let T be stable and p G 5(C). Prove that Cb(p) = dcl(C)
if and only if for all / G Aut(C), /(p) = p if and only if / fixes C pointwise.

Exercise 5.1.19. Prove Lemma 5.1.16.

Exercise 5.1.20. Prove Lemma 5.1.18.

5.2 The Stability Spectrum and κ(T)

In Corollary 5.1.11 we proved that a complete theory T is stable if and only
if it is λ—stable for some infinite λ.

Definition 5.2.1. Let T be stable.
(i) The stability spectrum of T is { X : T is X—stable}.
(ii) The first stability cardinal of T, λ(T), is the minimum infinite cardinal

X such that T is X—stable.

For a stable theory T what are the possibilities for the stability spectrum?
We will see that the possibilities are controlled by λ(T) and another impor-
tant invariant of the theory, κ(T). Many subsequent results have hypotheses
involving these numbers.

The next lemma follows from Corollary 5.1.11.

Lemma 5.2.1. IfT is stable then \T\ < λ(Γ) < 2'TI.

The following invariant helps to measure the complexity of the forking
relation on a stable theory.

Definition 5.2.2. Let T be a stable theory. The invariant κ(T) is the least
infinite cardinal K, such that whenever {Ai'.i<κ}isa sequence of sets with
i < j < K = > Ai C Aj and p G S(\Ji<κ Ai), there is an i such that p \ Ai+ι
does not fork over Ai.

We let κr(T) denote the least regular cardinal > κ(T) (thus, κr(T) is
/c(Γ) or κ(T)+).

Remark 5.2.1. We leave it to the reader to see that κ(T) < |Γ | + . Thus, for
countable theories κ(T) can only be No or Hi. When T is t.t. κ(T) is No.

It is possible for κ(T) to be singular when T is uncountable, creating tech-
nical difficulties which require using κr(T) instead of «(T) in some settings.

Independence is further related to κ(T) in the following proposition
(whose proof is left to the exercises).



5.2 The Stability Spectrum and κ(T) 239

Proposition 5.2.1. Let T be stable.
(i) For all elements b and sets C there is A C C of cardinality < κ(T)

such that b X C.
A

(ii) For all sets B and C there is A C C such that B ̂  C and
A

- \A\ < κ(T) + \B\+ ifκ(T) is regular, and
- \A\ < κ(T) + \B\ otherwise.

For λ and n cardinals let λ</c = sup { Xμ : μ < K }. Let K-X be the set of
all functions / : α —• λ, where a < K (which is denoted lh(f)). Our eventual
goal is

Theorem 5.2.1 (Stability Spectrum). A stable theory T is λ—stable if
and only if X = λ(Γ) + X<κ^τl

The bulk of the proof is contained in

Lemma 5.2.2. IfT is stable and X < λ < / ί ( τ ) then T is not X-stable.

Proof. Typical of such problems, we will construct many types over a set of
cardinality λ by recursion. Let K be the least cardinal such that λ* > λ. Since
K < κ(T) there is a sequence of sets { A{ : i < K } and a p G S(\Ji<κ A{) such
that

- i < j < K =>* Ai C Aj, and
- p ί Ai+ι forks over Ai, for all i < K.

Without loss of generality, we can require that Ai+\ \Ai is a finite set α̂  and
As = [Ji<δ Ai, when 6 is a limit ordinal. Let Aκ = [ji<κ Ai and notice that
I Ac I = K < X. There is a tree of sets such that each branch is conjugate to
{Ai : i < K }, each node has λ many successors and these λ many successors
are independent over their predecessor. It is left to the reader to see that this
can be accomplished with the construction of a family of elementary maps
fξ, ξ e ^ λ , such that for all ξ, ζ e K-X,

(1) dom(fξ) = Aιh(ξ),

(2) ifCcξ,/ccΛ,
(3) if 6 = lh(ξ) is a limit ordinal, fξ = \Jβ<δ fξ\β> a n d
(4) if a = lh(ξ), Bξ = { fξ~i(Aa+i) : i < X } is independent over fξ(Aa)
and Bξ is independent from |J{ fη(Aa) : lh(η) = a } over fξ(Aa).

LetΦ = κX,F = {fξ: ξ G Φ} and A = \JξeΦ fξ(Aκ) (a set of cardinality

X<κ = λ). For ξ e Φ let pξ e S(A) be any nonforking extension of fξ(p) and

let P =

Claim, ξ φ ζ £ Φ => Pξ φ
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Let bξ and bζ realize pξ and pζ, respectively. Let a be the maximal ordinal
for which ξ \ a = ζ \ a = η and let C = fη(Aa). By (4) and the transitivity
of independence, fξ(Aa) is independent from fζ(Aκ) over C. Since bζ is inde-
pendent from A over fζ(Aκ), the transitivity of independence again implies
that bζ is independent from fξ(Aa) over C. However, bξ depends on fξ(Aa)
over C (since pξ = fξ{p)). Thus, pξ φ Pζ, as claimed.

We conclude that \P\ = λ*. Since \A\ = λ < λ*, Γ is not λ-stable.

Remark 5.2.2. It follows immediately from this lemma that λ(T) > κ(T).

Definition 5.2.3. Ifp e S(A) is a complete type in a stable theory we define
the multiplicity of p, Mult(p), to be

|{ q e S(<£) : qD p and q does not fork over A }|.

Let μ(T) be the supremum of { Mult(p) : p a complete type }.

As stated in Remark 5.1.3, Mult(p) < 2'TL A complete type is stationary
if and only if it has multiplicity 1.

Lemma 5.2.3. IfT is stable, μ(T) + κ(T) < λ(Γ).

Proof. By Remark 5.2.2, λ(T) > /c(Γ). Let p € S(A) be any complete type
and B C A a set of cardinality < κ(T) over which p does not fork. Then,
Mult(p) < the multiplicity of q = p \ B. Since κ(T) and \T\ are both < λ(T)
there is a model M D B of cardinality λ(Γ). Every nonforking extension of
q in S(€) is parallel to an element of S(M), so \S(M)\ > Mult(g). Since Γ is
λ(T)-stable, Mult(p) < Mult(4) < λ(T), as required.

To complete the proof of the Theorem 5.2.1 we need only prove

Lemma 5.2.4. // T is stable and λ > λ(T) is a cardinal such that λ =
X«τ\ thenT is λ-stable.

Proof. Let A be a set of cardinality λ. Any p G S(A) is a nonforking extension
of p \ B for some B C A of cardinality < κ(T). Furthermore, there are < μ(T)
elements of S(A) which are nonforking extensions of this type p \ B. Thus,

1*5(̂ )1 < (the number of subsets of A of cardinality < κ(T))

x(the number of types over a given set of cardinality < «(T))

xμ(T)

< λ<κ^ • λ(T) • μ(T)

= λ.

This proves that T is λ—stable.

This completes the proof of Theorem 5.2.1.
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Corollary 5.2.1. IfT is κ(T)-stable then κ(T) is regular.

Proof. Left as an exercise.

For countable theories the Stability Spectrum Theorem leads to a partic-
ularly simple partitioning of the stable theories.

Proposition 5.2.2. For a countable complete theory T one of the following
mutually exclusive conditions holds.

(1) T is λ—stable for all infinite λ.
(2) Γ is λ-stable if and only i/λ > 2n°.
(3) T is X-stable if and only i/λ = λ*°.
(4) T is unstable.

Proof. Suppose T is stable. If λ(Γ) = No; i.e., T is N0-stable, then T is
λ—stable for all infinite λ (by Proposition 3.3.1). Otherwise, there is a count-
able set A with S(A) uncountable. Since the only uncountable possibility for
|S(J4) | is 2*° (see Lemma 2.2.4) λ(Γ) is its maximum possible value = 2*°.
Since κ(T) < | T | + , No and Ki are the only two possibilities for κ(T) (when T
is countable and stable). If κ(T) = No and λ(T) = 2*°, then T is λ-stable if
and only if λ > 2*°. If κ(T) = Ni, then T is λ-stable if and only if λ = λ*°
(λ(T) is necessarily 2 °̂ in this case).

Examples in earlier sections show that all of these possibilities do occur.
There is no such clean division for uncountable theories, however, the exact
possibilities for λ(T) are given in [She90, III.5].

Definition 5.2.4. A stable theory T is called superstable if κ(T) = HQ.

The superstable theories form a major subclass of the stable theories
which will be studied extensively in Chapter 6. Notice that a stable theory T
is superstable exactly when T is λ—stable for all sufficiently large λ. Propo-
sition 5.2.2 partitions the countable stable theories into the categories: (a)
the No—stable theories, (b) the superstable theories which are not No—stable
(called the properly superstable theories) and (c) the stable theories which are
not superstable (called the properly stable theories).

The following illustrates how to distinguish quickly between ω—stable and
properly superstable countable theories.

Lemma 5.2.5. If T is a countable properly superstable theory, then either
T is not small or T has a complete type p over a finite set with infinite
multiplicity (hence multiplicity 2**°).

Proof. We are assuming that T is not ω—stable, hence there is a countable
model M with \S(M)\ = 2n°. First suppose that every element of S(M) is
based on a finite subset of M. Then each element of S(M) is the unique
nonforking extension of a type over a finite set, hence there are 2**° complete
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types over finite subsets of M proving that T is not small. On the other hand,
suppose q E S(M) is not based on a finite set. Let A C M be a finite set
over which q does not fork and let p = q \ A. Then p has infinite multiplicity
since otherwise there is a finite set A!, A C A! C ad (A), with q the unique
nonforking extension of q \ A'. That a type of infinite multiplicity (in a
countable stable theory) must have multiplicity 2̂ ° is left to the exercises.

Corollary 5.2.2. IfTis ω—categorical and superstable, then T is ω—stable.

Proof. Suppose to the contrary that T is ω—categorical and properly super-
stable. Certainly, an ω—categorical theory is small, so Lemma 5.2.5 yields a
complete type p G S(A), where A is finite, which has infinite multiplicity.
Recall Lemma 5.1.10 linking conjugacy over acl(A) with FE(A) = the set of
finite equivalence relations over A. There is a subset {Ei(x,y) : i < ω } of
FE(A) such that each Ei+\ refines Ei and |= Ei(a, 6), for all z, if and only if
tp(a/acl(A)) = tp(b/acl(A)). Let a realize p. Since p has infinite multiplicity,
pU{ Ei(x, α)Λ-iJ5i+i(z, a) } is consistent for infinitely many i. These infinitely
many types over A U {a} contradict the ω—categoricity of T.

Historical Notes. The original source for these results is [She71]. They are
also found in [She90].

Exercise 5.2.1. Show that κ(T) < |Γ | + , when T is stable.

Exercise 5.2.2. Prove Proposition 5.2.1.

Exercise 5.2.3. Let £ be the universal domain of a superstable theory and
A a set. Then TH^LA) is also superstable.

Exercise 5.2.4. Give examples of countable theories in each of the classes
delineated in Proposition 5.2.2.

Exercise 5.2.5. Let T be a countable stable theory and p E S(A) a type
with infinite multiplicity. Show that the multiplicity of p is 2H°.

Exercise 5.2.6. Prove: If T is superstable then for every infinite set of in-
discernibles /, Aυ(I/€) is based on a finite J C I.

5.3 Stable Groups and Modules

In this section we generalize the treatment of generics for ω—stable groups
to the stable setting. Besides the ω—stable groups the stable groups include
all modules (see Section 5.3.2). Group actions play a central role in stability
theory today. Here we develop a theory of generic types for group actions
specializing to a theory of generic types for groups (since a group acts on
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itself by translation). Examples of ω—stable groups and group actions were
given previously.

In the subsection on modules we develop the most basic model-theoretic
properties of these natural mathematical objects and interpret in this setting
the tools we will develop to study stable groups.

The material on 1—based groups generalizes the subject matter in Sec-
tion 4.3.2.

As with ω—stable groups our study of stable groups depends on the exis-
tence of the connected component of a group and stabilizers of types.

Given a definable group in a stable theory the groups of significant model
theoretic interest, such as the connected component and stabilizers of types,
may not be definable—they may only be /\ —definable. Since we need a theory
of generics for these groups as well we must work with /\ —definable groups
(and group actions) from the beginning. The explicit definitions are as follows.
(Parts (i) and (ii) are simply restatements of Definition 3.5.11(i) and (ϋ) )

Definition 5.3.1. Let T be a complete theory.
(i) We call (G, •) an /\ —definable group over A if

— (G, •) is a group,
— G is a subset of €, /\ —definable over A, and
— there is a function / , definable over A in (£, such that f \ G x G defines

the binary operation on G.

(ii) Similarly, a group action (G, ,X,*) is an /\ —definable group action
over A if (G, •) is an f\ —definable group over A in <£, X is a subset of £,
f\—definable over A, and • is the restriction to G x X of an A—definable
function.

(Hi) A stable group (Stable group action,) is an /\ —definable group (group
action) in a stable theory.

The usual conventions about dropping the A when it is 0 are adopted.
When confusion seems unlikely the and • are omitted from expressions
and we simply write gh foτg h and gx for g • x. When G — X and • is
multiplication on the left (right), • may be called left {right) translation.

If the type Φ defines an /\ —definable group action in £ and N is another
model of the theory, then Φ defines such a group action in N (when it contains
the relevant parameters). We then call Φ{N) an f\—definable group action
in N.

Let G be a stable group. If G is definable we can restrict the universe
to G without altering the set of definable relations. Since restriction to an
/\—definable set is not so well-behaved we must continue to mention the
ambient theory when studying an /\ —definable group. Instead of studying
the models of Th(G) where this theory is stable (as we did with ω—stable
groups), we study the groups Φ(M), where Φ(€) is a group and M ranges
over the models of the theory.
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When dealing with groups we abandon some of our notational abbrevia-
tions. By a G G we really mean that a is an element of G, not that a is a finite
sequence from G. When X is the set of realizations of the type Φ(x) in some
model M and A is a set, SX(A) denotes the elements of S(A) which extend
Φ(x). Given a set of formulas Δ(x), S%(A) denotes {p \ Δ : p € SX(A) }.

As with ω—stable groups, a stable group action gives rise to an action of
the group on a collection of types.

Definition 5.3.2. Let (G,X,*) be a stable group action, Φ(x) the type defin-
ing X andp(x) a type over M containing Φ. Given a G G, ap = { φ(a~1irx) :
φ G p} and is called the left translate of p by a. The type pa is defined simi-
larly, and (when X = G) p " 1 is obtained by replacing x by x~λ in p.

This definition specializes to the earlier definition of translation in an
ω—stable group G by taking X = G and the action to be multiplication on
the left._

Let G = (G, X, •) be a stable group action and Δ(x) a set of formulas over
0, where x has the same sort as X. Let Δ*(x) = { φ(y*x, z) : φ(x, z) G Δ },
where φ(y • x,z) has object variable x and a new parameter variable y. We
call Δ invariant if for any p G SΔ(£) and a G G, ap G 5^(C). Notice that zi*
is invariant and every element of S (̂<£) is a ^*— type (since any φ(x, z) G Δ
is equivalent to<p(l*x,z)). Warning: For Δ an arbitrary finite set of formulas
and p G S^(C) it is possible that αp

Lemma 5.3.1. Let (G,X) 6e a stable group action, Φ the type defining X
and Δ an invariant set of formulas. Then G acts on 5^(£) and for any type
p containing Φ and a G G, (R, Mult)^(p) = (iϊ, Mult)^(αp).

Proof See Exercise 5.3.2.

Thus, if H is an /\ —definable subgroup of the stable group G, Z\ is in-
variant with respect to the action of G on itself and a G G, then H and αi7
have the same Δ—rank and multiplicity. (Remember, the Δ—rank of H is,
by definition, the Δ—rank of the type defining it.)

Definition 5.3.3. Let (G, X) be a stable group action, Δ an invariant set
of formulas and p G Sx(<£). The Δ—stabilizer of p is stab{p,Δ) = {a G G :
a(p \ Δ) = p \ Δ}. The stabilizer of p, stab(p), is {a G G : αp =.p}; i.e.,
the L(x)—stabilizer of p, where L(x) is the set of formulas over® with object
variable x. Equivalently, stab(p) = f]{ stab(p, Δ) : Δ invariant }.

Let X be an /\ —definable set in <£ and p(x, y) a type. A subset Y of X is
called definable-by-p if there is a b such that Y = p(<£, 6) Π X. Occasionally, p
will have no parameter variables, in which case a definable-by-p set is just a
subset of p(£). For Δ{x) a set of formulas as usual we call Y definable-by-Δ if
there is a Z\-type p(x, b) such that Y = p(£, 6)nX. Y is called definable-by-L
if it is definable-by-^ for some formula φ; equivalently Y is the intersection
of X and a definable set.



5.3 Stable Groups and Modules 245

Lemma 5.3.2. If G is a stable group and Δ(x) is a finite set of formulas
over 0, where x has the same sort as G, then the collection of definable-by-Λ
subgroups of G has the ascending and descending chain conditions.

Proof Suppose, for example, that Go D Gi D (?2 3 . . . is a strictly
descending chain of definable-by-zA subgroups. Then, for each i, Gi con-
tains two cosets of Gΐ+i, each having the same Δ* — rank and multiplic-
ity as Gΐ+i Since Gi+i and each coset of it is defined by a Δ* — type,
(β,Mult)^* (Gi) > (i2,Mult)^*(G ί + i). This contradicts the existence of
Z\*-rank.

The nonexistence of an infinite ascending chain of definable-by-Zi sub-
groups follows from roughly the same argument using that Δ*— rank of any
type is finite.

Definition 5.3.4. If G is a stable group and Δ is finite (and contains x =
x, so that G is definable-by-Δ), there is a unique minimal definable-by-Δ
subgroup of G having finite index in G, which is called the Δ—connected
component of G.

Let G be a stable group. The connected component of G, denoted G°, is
the intersection of all of the Δ—connected components, as Δ ranges over all
finite sets of formulas. G is connected if G° = G.

If G is /\ —definable over A, then G° is also /\ —definable over A. The
connected component is a normal subgroup which is itself connected.

Lemma 5.3.3. Let (G,X, *) be a stable group action, p G Sx(€) and Δ a
finite invariant set of formulas. Then, for any set A over which p \ Δ is
definable there is a formula ψ(x) over A such that stab{p \ Δ) is definable-
by-ψ. Thus, the stabilizer of p is /\ —definable over Cb(p).

Proof. Given g G G, g G stab(p \ Δ) if and only if for all δ(x, y) G Δ,

\/y{δ{x,y)ep\ Δ <£=> δ{g*x,y) G p \ Δ )

Using that p \ Δ is definable over A this equivalence yields a formula ψ over
A defining stab(p \ Δ).

We frequently need to work with types over sets rather than elements
of Sx(<£). The following is used to translate theorems about the action of
G on Sx(<£) into facts about the action on other types. (This generalizes
Corollary 3.5.1.)

L e m m a 5.3.4. Let (G, X) be a stable group action, p, q G SX(C) and a G G.
Suppose that p and q are definable over A. Then,

(1) q'. = ap if and only if
(2) there is a b realizing p \ A such that b is independent from a over

A, ab realizes q \ A and ab is independent from a over A.
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Proof. Interpolating a few more equivalences will make the proof easy.

Claim. The following are equivalent.

(i) q = ap
(ii) for all sets B D AU {α}, q \ B = ap \ B;
(iii) there is a set B D A U {α}, q \ B = ap \ B.

This is proved like the claim in Corollary 3.5.1, replacing Morley rank and
degree by Δ—rank and Δ—multiplicity. (In the detailed proof the reader
should remember that for all finite Δ, Mult^(g) = Mult^(g \ A) = 1, by
Remark 5.1.5.)

Turning to the lemma per se, that (1) implies (2) is just a matter of
unraveling the notation. Now assume that a and b meet the conditions in
(2). Let B = A U {a} and let Δ be an invariant set. Since p and q are both
definable over A and both b and ab are independent from a over A, b realizes
p ί B and ab realizes q \ B. Thus, q = ap, proving the lemma.

Since independence in a stable theory is defined with a scheme of ranks
instead of a single rank a generic type cannot be defined as a type of maximal
rank (as in ω—stable groups). Instead, genericity is defined in terms of forking
independence (asking the reader to prove in the exercises that the two notions
are equivalent for ω—stable groups).

Definition 5.3.5. Let (G,X,*) be a stable group action, /\ — definable over
A, Φ the type defining X and p G Sx(<£).

- p is called generic if for all a G G, ap does not fork over A.
- An arbitrary stationary type q is generic if q\£ is generic.
- An element a of X is said to be generic over B if stp(a/B) is generic,

shortening the term "generic over A" to simply "generic".
- If X = G and * is left (right) translation we call p a left (right) generic of

G.

When we say "p is a generic of G", p is understood to be a left generic.

Notice that the translate of a generic is itself generic.

Lemma 5.3.5. Let (G,X,*) be a stable group action which is /\— definable
over A, Φ the type defining X and p a stationary type extending Φ. Then p is
generic if and only if for all sets B D A over which p is based, all a realizing
p\A, and g £ G,

g X a = > g*a\, g.
A A

Proof. See Exercise 5.3.5.

Lemma 5.3.6. Let (G, X) be a stable group action which is f\— definable
over A and let Φ be the type defining X.

(i) There is a generic type in Sx (€).



5.3 Stable Groups and Modules 247

(ii) Ifp G Sx(£) is generic, G° C stab(p). For any p £ SG(£), stab(p) c
G° (so when p is generic, stab(p) = G°).

(in) If α, b G G are A—independent generics then b~ιa is A—independent
from a and A—independent from b. Thus b~ιa is a generic.

(iv) SG°(<t) contains a left generic and a right generic.

Proof. To make the notation simpler we take A to be 0.
(i) Let x be a variable in the same sort as X. A formula φ{x) (over <£) is

called small if for some a G G, aφ{x) forks over 0. Let Ψ = { -up : φ small }uΦ
and suppose, towards a contradiction, that Ψ is inconsistent. Then, there are
small formulas φo,... ,φn such that every type in Sx(<£) contains one of φ^s.
Let ψi = ψi{x, αi), where ψi = ψi{x, yι) is over 0 and let A = {ψ0,..., ψn}*.
Let po be an element of Sx(acl(Φ)) with RΛ(PO) maximal, and let p G Sx(€)
be the nonforking extension of po Then one ofφo,...,(pn, say ψi = φ, is in p.
Pick a G G, so that α<£ forks over 0. Since Z\ is invariant, RΔ(P) = RΔ(O>P) =
k. By the maximality of RA{P), RΛ(%) = k, where q0 = ap \ acl($). There
is only one complete A—type over € consistent with qo and having the same
A—rank as go? namely the restriction to A of qo\£ (Lemma 5.1.8). Thus,
ap ί A does not fork over 0, contradicting that this type contains aφ. This
proves the consistency of Φ. Using Corollary 5.1.8(iii) the reader can verify
that any completion of Φ in Sx (<£) is a generic, proving (i).

(ii) Let A be a finite invariant set of formulas and H = stab(p, A). There
is a one-to-one correspondence between the cosets of H in G and { ap \ A :
a G G}. Since each translate of p is a generic, and hence does not fork over
0, there are at most 2 ' τ ' many types in {ap \ A : a G G}. Since H is
definable-by-ψ for some formula ψ over acl(Φ), this bound on [G : H] forces
H to have finite index in G (see the exercises). Thus H contains G°. This is
true for any invariant A and stap(p) = f]Δ stab(p, Δ*), so stab(p) D G°.

Let p G SG((t). The key observation needed to prove that stab(p) C G° is
the following. The proof of the claim is assigned as an exercise at the end of
the section.

Claim. Suppose H c G is a definable-by-^ subgroup of finite index, where
ψ is a formula over acl($). Then for any coset B of H in G there is a formula
θ over acl(Φ) such that B is definable-by-0. Thus,

for any a and b in G, sίp(α) = stp(b) = > αG° = 6G°. (5.3)

The proof is assigned to the reader in Exercise 5.3.6.
Let g G stab(p), B a set on which p is based, q — p\B and a a realization of

q independent from g over B. Since # is in the stabilizer of p, g-a also realizes
q (Lemma 5.3.4) hence stp(a) = stp(g a). By (5.3), g = (g a) α " 1 G G°.
Thus, stab{p) C G°, completing the proof of (ii).

(iii) Since stp(a) is generic and a sL &~\ 6~1α is independent from 6" 1

(by Lemma 5.3.5) hence b~ιa d, 6. Similarly, the inverse of b~ιa ( = a~ιb) is
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independent from α" 1, hence b~ιa X a. By Lemma 5.3.4, b(stp(b~1a)\<£) =
stp(a)\£; i.e., stp(b~1a)\(L is a translate of a generic, hence a generic itself.

(iv) Let a and b be independent generics with respect to left translation
which realize the same strong type p over 0. By (5.3), b~ιa is in G°, and this
is a generic element (by (iii)). The proof that there is a generic with respect
to right translation in G° is found simply by switching from left to right in
the above proof.

Proposition 5.3.1. Let (G,X) be a transitive stable group action andΦ the
type defining X.

(i) G acts transitively on the set of generics in Sx(<£).
(ii) For any generic p and invariant set Δ, RA(P) = RΔ(Φ)- For any

finite set of formulas Δ(x) (where x is in the sort of X), {p \ Δ : p G Sx(€)
is generic} is finite.

Proof. For simplicity, suppose that G and X are /\ —definable over 0.
(i) Let p and q be generics in 5X(C), po = p\acl($) and qo = g|αd(0). Let

a and b be independent realizations of po and qo, respectively, and g = ba~λ.
Let h G G° be a generic with respect to right translation which is independent
from {g, α, b}. Since stab(q) D G° and h sL b, hga = hb realizes qo. We claim
that hg is independent from α. First, h is a right generic independent from g,
so hg sL g. Moreover, hg and a are independent over g (since h is independent
from {g,a} and hg is interalgebraic with /ι over g). By the transitivity of
independence, hg 1 α, as needed. Since a is generic, hg X /î α; i.e., hg X /ι6.
By Lemma 5.3.4, hg(p\€) = g|<£, proving (i).

(ii) Let Zl be an invaraint finite set of formulas. That there is a generic
p* e Sx{€) with RΔ(P*) = RΔ{&) is implicit in the proof of Lemma 5.3.6(i).
All generic types p e Sx(€) have the same Δ—rank (by (i)). Thus, the
cardinality of {p \ Δ : p G Sx (€) is generic } is bounded by (actually equal
to) the Δ—multiplicity of Φ.

The following makes a good summary of what is known about generics in
stable groups.

Corollary 5.3.1. Let G be a stable group, f\—definable over A, and p G
sG{d).

(i) The following are equivalent.

(1) The left stabilizer of p is G°.
(2) p is a right generic.
(3) The right stabilizer of p is G°.
(4) p is left generic.

(ii) If a and b are generic, G°a = G°b ==> stp(a/A) = stp(b/A).
(iii) If α, b G G° are generic, then tp(a) = tp(b) = q and q is stationary.
(iv) If p is generic then so is p~ι.
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(v) p is generic if and only if p is a translate of the unique generic in
SG°(€). If p is generic and a realizes p|αc/(0), then a~xp is the generic in
SG°(£).

Proof (i) (1) = > (2) Assuming that the left stabilizer of p is G° we need
to show that each right translate of p does not fork over 0. Since each right
translate of p also has G° as its left stabilizer it suffices to show that p does
not fork over 0. Suppose that p is based on A, q = p\A and a realizes q.
Let I = {gι : i < ω } be an independent set of right generics in G° which
is independent from A U {a}. Since gi e G° is independent from a over A,
gia also realizes q. In fact, the A—independence of a and / implies that
giCL realizes the nonforking extension of p over A U {a} U (/ \ {gi})> Thus,
J = {g{a : i < ω } is a Morley sequence in p over A, over which p is based
by Lemma 5.1.17. However, since / is an independent set of right generics, J
is independent over 0 (see the exercises). Being the average type of J, p does
not fork over 0.

(2) => (3) and (4) => (1) are by Lemma 5.3.6(ii) and (3) => (4) is
proved by switching left and right in the proof of (1) = > (2).

(ii) Suppose that a and b are generics and G°a = G°b. Without loss of
generality, α l δ . For c — δα"1, c sL a and c\,b (since b is generic). Letting
p = stp(a)\£ and q = stp(b)\£, cp = q. Furthermore, c e G° = stab(p) since
a and b have the same coset with respect to G°. Thus, p = q, proving (ii).

(iii) This follows immediately from (ii).
(iv) If p is a left generic, then p~λ is a right generic, hence also a left

generic by (i).
(v) This is just a summary of previous results. The details are assigned

as an exercise.

5.3.1 1—based Groups and Modules

Throughout Chapter 4 groups played a key role in our detailed analysis of
uncountably categorical theories. Both the strongly minimal sets and the
manner in which the universe is constructed from the strongly minimal sets
are "simpler" when the theory is 1—based. Here, some of the results from
Section 4.3.2 (principally Theorem 4.3.3) are restated in the stable context.
The purpose is not to prove the more general results in detail, but to point
the reader in their direction. The details can be found in [Pil]. They are not
significantly different from the uncountably categorical case.

In the next subsection theories of modules are introduced as examples of
1—based theories.

Definition 5.3.6. A stable theory is called 1—based if for all sets A and B,
A is independent from B over acl(A) Π acl(B).

As usual, the universal domain of a stable theory T is called 1-based if T is
1—based.
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Remark 5.3.1. The following are equivalent for <£ the universe of a stable
theory.

(1) £ is 1-based.
(2) For all elements a and sets A, the canonical base of tp(a/acl{A)) is
contained in acl(a).

(The proof is virtually identical to the uncountably categorical case found in
Remark 4.3.3.)

This equivalent definition explains the term "1—based". An uncountably
categorical theory is 1—based when, given a stationary type p and q the
nonforking extension of p in S(£), q is based on acl(a) for any single a realizing
P-

The concept of an abelian structure was specified in Definition 4.3.6 for
definable groups. For f\ —definable groups we need a slightly more compli-
cated notion.

Definition 5.3.7. Let G be a group, f\—definable over A in the universal
domain of a complete theory. Let

H = {H : H is a subgroup of Gn, for some n,

which is definable-by-L over acl(A) }.

G is called an abelian structure if for every n < ω, every definable-by-L
subset of Gn is equal to a boolean combination of cosets of elements ofH.

Most results about 1—based groups depend on

Theorem 5.3.1. Let G be a group, /\ — definable in a 1—based (stable) the-
ory. Then G is an abelian structure.

The statements of the lemmas giving the proof of this theorem are vir-
tually identical to the statements of corresponding lemmas in the proof of
Theorem 4.3.3. The proofs of those earlier lemmas involved the action of
a 1—based (uncountably categorical) group G on the types over G, Mor-
ley rank independence and canonical parameters. After substituting forking
independence for Morley rank independence and canonical bases for canoni-
cal parameters the same proofs yield the generalized lemmas. The reader is
referred to [Pil] for the details.

One preliminary lemma that deserves to be singled out is

Lemma 5.3.7. Let G be a stable group, f\ —definable over A. Then, G is an
abelian structure if and only if

(*) for any n < ω and p G S^(G) there is a connected group H C Gn,
definable-by-L over acl(A), such thatp is a left (or right) translate of the
generic type of H.
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Corollary 5.3.2. Let G be a stable group in a 1—based theory. Then, any
connected /\ —definable subgroup of Gn is f\ -definable over acl(Φ).

Corollary 5.3.3. A connected stable group in a 1-based theory is abelian.

5.3.2 Modules

The purpose of this subsection is to introduce modules as natural examples of
1—based groups. Until stated otherwise we will work in a 1—sorted language.

Let R be a ring with identity. Here, the term R—module means right-
R—module. The language of R—modules is L R = {0, + , r } r G # , where 0 is a
constant symbol, + a binary operator and each r is a unary operator. It is
an elementary exercise to find a theory TR in LR whose models are exactly
the right R—modules.

Fixing a ring i?, φ(v) = φ(vi,..., vn) is a positive-primitive formula fpp-
formulaj over 0 if it is equivalent in the theory TR to one of the form

m n I

3wι - 'Wi /\ (^J Virij + 2^ Wkskj = 0),
j=l i=l k=l

where r^ , Skj € R and 0 is a tuple of 0's of the appropriate length. In matrix
notation this can be written as

( \rim

Sin

Sim /

= 0. (5.4)

This is compressed to 3w(vw)H = 0, where

H =

and r, s are the matrices of r^ 's and Sfc/s. In yet another form φ(v) can be
written as 3w(vr = —ws). As this final form suggests, a pp—formula can be
thought of as a generalized divisibility condition. (An element a is said to
be divisible by s if there is a b such that a = bs, equivalently a satisfies the
formula 3w(v = ws).)

For A a subset of some R—module the term pp—formula over A is defined
as above except that on the right hand side of (5.4) there i s a l x m row vector
of elements of A. For φ{v) a pp—formula over a there is ψfi, w) a pp—formula
over 0 such that φ(v) — ψ(ϋ,a). In general, the term pp—formula refers to
one with nonzero parameters.
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Remark 5.3.2. Let R be a ring, φ(v) a pp—formula over 0 and M an
R—module.

(i) In the exercises the reader is asked to verify that φ(M) is a subgroup
of M n , where n is the length of ΰ.

(ii) Furthermore, if r is in the center of R (i.e., the subring of elements
commuting with every element of R) then \= φ(ά) ==> (= φ(ar), where
(αi, . . . ,α n )r = άr = (air,... ,α n r). Thus, if R is commutative φ(v) de-
fines a submodule of M. If R is not commutative the subgroup defined by a
pp—formula need not be a submodule. (Consider, for example, the ring R of
2 x 2 matrices over a field K with M = RR. Let

( ι °
e = { o o

and ψ{v) = 3w(v — we). Then

is a left-ideal but not a right-ideal, hence not a submodule of M.)
(iii) More generally, if φ(ϋ,w) is a pp—formula over 0 and M is an

R—module then φ(M, a) is empty or a coset of the subgroup φ{M, 0) of
Mι, where / is the length of v and 0 denotes a tuple of 0's of the same length
as w (exercise). When φ(M,a) Φ 0, φ(ϋ,ά) is equivalent to φ(v — 5,0), for
some b.

Theorem 5.3.2 (Elimination of Quantifiers). Let R be a ring, LR the
language of R—modules andTR the theory of right R—modules. Then for any
formula φ(v) in LR without parameters there is φ'(v), a boolean combination
of pp—formulas, such that TR |= Vv(φ(ϋ) <—> ψ'{v).

For a proof of this theorem by Baur, Garavaglia and Monk see [Zie84] or
[Pre88].

In stability theory complete types are often more useful than formulas.
What does the elimination of quantifiers have to say about complete types?

Definition 5.3.8. Let M be a module over a ring R, A C M andp e Sn(A).
(i) Thepp—p&rt oίp, denotedp+', is { φ G p : φ is a pp—formula over A },

while p~ = { -*φ £ p : φ is a pp — formula over A }.
(ii) If a is a sequence from M the pp—type of α over A, pp(ά/A) is

tp(ά/A)~*~. Some contexts involve modules of different complete theories (i.e.,
we are not working in a single universal domain), in which case the notation
ppM(a/A) is used.

(iii) A pp—type over A is a consistent set Γ of pp—formulas over A. Γ is
complete (in M) if it is the pp—type over A of a sequence from the universal
domain ofTh(M).
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Let M be a module over a ring R and p a complete type in T = Th(M). By
the elimination of quantifiers down to pp—formulas, p is equivalent to p + \Jp~
in T and for α, b sequences from M, tp(ά/A) = tp(b/A) Φ=> pp(a/A) =

We now restrict our attention to 1—types, although the same facts hold
for n—types since Mn is also an R—module.

For pe Si(M) let

Φp = {φ(x) : φ is a pp—formula over 0 and for some a G M, φ(x — a) G p}.

Equivalently, Φ p is the set of pp—formulas φ(x) over 0 such that for a realizing
p, the coset a + </?(<£) is represented in M. Notice that the difference of two
realizations of p is in Φp(€).

Given a pp—formula ψ(x, b) G p there is a pp—formula <p(a;) over 0 and
an a G M such that <̂ (a: — a) is equivalent to ψ(x, b). Thus,

p + is equivalent to { φ(x — a) G p : y? G Φ p }.

Working in Meq let C(p) = { ^φ(x - α)l : y?(a; — α) G p and y? G Φp }.
Equivalently, C(p) is the set of b G Meq such that 6 is the name of a coset of a
subgroup H of <£, pp—definable over 0, and the formula expressing "x+H = 6"
is in p. Notice that C(p) C cίd(c) for any c realizing p f C(p). By (5.5),

For p , g € 5X(M), p = g ^ ^ p + = g+ ^=^ C(p) = C(q). (5.6)

As a first consequence of this reduction:

Corollary 5.3.4. The complete theory of an infinite module is stable.

Proof. Let M be an R—module of cardinality «, where K = κ}RK For any
p G 5i(M), \C(p)\ < \R\. In M e 9 there are < ώR\ sets of the form C(p),
as p ranges over Sχ(M). Thus, by (5.6), |SΊ(M)| < /ί | β | = K. Similarly,
|5 n (Λί) | < K for all n < ω, proving the corollary.

Let M be an infinite R—module, p G Sι(M) and identify p with its unique
extension in S\{Meq). Since Φp is a pp—type over 0, Φp(€) is a subgroup of
<£. Suppose there is an a G M realizing p \ C(p) (as there will be if M is
Ii?|+— saturated). Thus, a and a realization b of p have the same coset with
respect to φ(<£) for any <p G Φ p, in other words, a + ΦP(C) = 6 + ΦP(C).

It is a short trip from (5.6) to

Lemma 5.3.8. For p G SΊ(£), C6(p) = dcl{C{p)) in Ceq.

Proof. It suffices to show that for / G Aut(C), /(p) = p if and only if / fixes
C(p) pointwise. Observe that for any / G Aut(C), f(C(p)) = C(f(p)). Thus,
if / G Aut(C) and f(p) = p, / pointwise fixes C(p). Conversely, if / G Aut((£)
is the identity on C(p), then C(p) = C(f(p)), so p = /(p) by (5.6).
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Thus, p G Si (C) is also determined by C(p) in the sense that it is definable
over C(p).

Corollary 5.3.5. The theory of an infinite module is 1—based.

Proof. Suppose p = tp(a/A) is stationary and let q be the nonforking
extension of p over £. Without loss of generality, p is a 1—type. Then
Cb(q) C dcl(A), so a realizes q \ Cb(q) D q \ C(q). Since C(q) C dcl{a)
and Cb(q) C dcl{C{q)) (by Lemma 5.3.8), Cb(q) C dcl(a).

One step in the proof that a 1—based group G is an abelian structure is to
show that any p G SG(<£) is a translate of the generic in stab(p) and stab(p)
is connected and definable over acl(Φ). Below (in Proposition 5.3.2) we give
an independent proof of this fact when G is a module.

The group Φp{£) is one we are already very familiar with:

Lemma 5.3.9. Let £ be the universal domain of a complete theory of mod-
ules, Forpe SΊ(£), Φp{£) = stab(p).

Proof Let M be a saturated model on which p is based and q = p\M. Note:
q D p Γ C{p) and for any ψ £ Φp there is a b G M such that φ(x — b) G q.
Let s be the type over C(p) such that stab(p) = s(€). Since M is saturated,
to prove that s(C) = ΦP(£) it suffices to show that if = s(M) = Φp(M). If
g G if and α realizes g, then g + a also realizes g. Thus, g G ΦP(M) since the
difference of any two realizations of q is in ΦP(C); i.e., ϋf C Φ P (M).

Now suppose that g G Φ p(M) and let r = tp(g + a/M). To prove that
r = q we will show that C(#) = C(r) and quote (5.6). Given ψ G Φ p, if
ψ(x — b) e q, then |= y?(α — b) and </?(#), so |= φ(g + α — b). Thus, Φ r D Φ p .
Conversely, given φ e Φr with <p(x — b) G r, f= <p(α — (6 — p)), hence y? G Φ p .
We conclude that Φp = Φ r . Since ^ G ΦP(M), a and g + a have the same
coset with respect to <p(<£) for every ψ G Φ p , hence C(g) = C(r). This proves
(by (5.6) that r = q. Thus, ^ G if; i.e., ΦP(M) C H.

Corollary 5.3.6. Let £ be the universal domain of a complete theory of mod-
ules and p G SΊ(C). ΓΛen stab(p) is f\ —definable over 0.

Proposition 5.3.2. Let € be the universal domain of a complete theory of
R—modules andp G 5i(<£). Thenp is a translate of a generic type in stab(p).
Furthermore, stab(p) is connected.

Proof. The connectedness of the stabilizer will be proved later. The bulk of
the proof lies in showing

Claim. Let a and b to be realizations of p\C{p) which are independent over
C(p). Then a — b is a generic of stab(p) which is independent from a and from
b.
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By Lemma 5.3.9, a- b e G = stab(p). It remains to show that a - b is
a generic of G independent from a and independent from b. This is accom-
plished by finding α', br with the desired properties which realize tp(ab/C(p)).
We will use repeatedly throughout the proof the fact that C(p) is contained
in the definable closure of any realization of p\C(p). As a first step suppose
that a1 is a realization of p\C{p) and g is a generic of G = stab(p) which is
independent from a'. Then,

g + a! realizes p\C{p). (5.7)

For a and b as given let g G G be generic over {α, b}. Then (g + α) — b =
g+(a-b) is a generic of G over {α, b}. Letting ft be a generic of G independent
from {α, 6, #}, (g + a) — (h + b) = (g +a —b) — h is also generic over {α, 6, #}.
Let a! = g + a and ί/ = ft+ 6, both realizations of p|G(p) with a! — br a generic
of G. We claim that

α ' l f l ' - 6', b' l α ' - V and α' 1 6'. (5.8)
C(P)

(Since (g + α) — (ft + 6) is independent from {α, 6, #} it is independent from
g + α. By symmetry and transitivity of independence, # is independent from
{α, 6, ft}, hence the same argument shows that {g + a) — (ft+ 6) is independent
from ft + b. Since a and 6 are independent over C(p) C αd(α) Π αd(6) the
independence of {#, ft, {α, 6}} implies that {#, α} and {ft, b} are independent
over G(p). Hence, a! = g + α and b' = h + b are independent over C(p).)

By (5.7) α7 and ί/ are realizations of p\C{p). Since they are independent
over C(p), tp(a',b'/C(p)) = tp(a,b/C(p)). Thus there is an automorphism of
£eq fixing C(p) and taking a' to α and bf to 6. The conditions in (5.8) show
that a and b meet the requirements of the claim.

Now let M be a |i?|+—saturated model containing C(p), α a realization of
p|C(p) in M and b a realization of p|M. Let g = b — a and g = tp(g/M). By
the claim, ^ is a generic of stab(p) and is independent from a over 0. Since p
is based on α, 6 is independent from M over α, hence # is also independent
from M over a. By transitivity, # is independent from M over 0 implying
that ρ is a generic type of stab(p). Since α + q = p\M, p is a translate of a
generic of stab(p), completing the proof of the main part of the proposition.

To prove the connectedness of G = stab(p) first remember that a type
in SΊ(<£) and its translates have the same stabilizer. Thus, if q G SΊ(C) is
a generic of G such that q is a translate of p, stab{q) = G. In fact, since
the action of G on the generics is transitive, any generic of G has G as its
stabilizer. Let r G SΊ(C) be an arbitrary generic of G. By Corollary 5.3. l(v),
for a a realization of r|αc/(0), —α + r is the generic in G°. Since —α is also
in the stabilizer of r, r = — α + r must be the generic in G°. That is, G is
connected.

This yields the particularly simple picture of a module (£. Any p G Si (£) is
a translate of a generic of a subgroup Φ(<£) (= stab(p)), where Φ is a pp—type
over 0.
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The proposition translates many properties of types into properties of
their stabilizers. For example, if p C q are stationary types in a module, then
q is a forking extension of p if and only if stab(q\€) has infinite index in
stab(p\£) (left to the exercises).

Historical Notes. Historically speaking, the results of this section have
the same source as those in the subsection on ω—stable groups. We owe
much of our knowledge about generic types outside of the ω—stable setting
to Poizat [Poiδl], whose work was carried on by Berline and Lascar in [BL86]
and [Ber86]. Lemma 5.3.2 is due to Baldwin and Saxl [BS76]. The detailed
treatment here is taken from Hrushovski's dissertation [Hru86], which is also
found in [Hru90b].

The logical analysis of the theory of modules begins with Szmielew's quan-
tifier elimination theorem for abelian groups [Szm55]. The work of Eklof,
Fisher, Sabbagh and Baur (see [EF72], [ES71]) took a more model-theoretic
approach. The elimination of quantifiers theorem for modules is due indepen-
dently to Baur [Bau7β], Garavaglia and L. Monk.

Exercise 5.3.1. Suppose the types Φ and Ψ are such that (Φ(<ί),Ψ(<£),*)
defines a group action in £, where Φ, Ψ and • are all over 0. Given any
model M prove that (Φ(M),Ψ(M),*) is a group action.

Exercise 5.3.2. Prove Lemma 5.3.1.

Exercise 5.3.3. Let G be an ω—stable group. Prove that p G SG(G) is
generic (as defined in this section) if and only if MR(p) = MR{G).

Exercise 5.3.4. Suppose that G is a stable group in (£ and H is a subgroup
of G which is definable-by-i/> (for some formula ψ) with [G : H] < |C|. Prove
that [G : if] is finite.

Exercise 5.3.5. Prove Lemma 5.3.5.

Exercise 5.3.6. Prove the first claim in the proof of Lemma 5.3.6(ii).

Exercise 5.3.7. Suppose that (G, X,*) is a stable group action, I is an
independent set of generics in X and a € G is independent from / . Show that
{a*b : 6 E / } is an independent set of generics.

Exercise 5.3.8. Suppose that (G, •) and (G, Θ) are both stable groups. Show
that (G, •) is connected if and only if (G, Θ) is connected.

Exercise 5.3.9. Prove Corollary 5.3.l(v).

Exercise 5.3.10. Prove that a pp—formula over 0 defines a subgroup of a
modules. More generally, the pp—formula ιp(x,ά) defines a coset of <p(x, 0)
(unless it is inconsistent).

Exercise 5.3.11. Prove: If p C q are stationary types in a module, then q is
a forking extension of p if and only if stab(q\£) has infinite index in stab(p\£).
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5.4 Saturated Models

It follows directly from Lemma 2.2.6 that if T is K—stable, there is a satu-
rated model of T of cardinality κ+. In fact, roughly the same proof gives the
existence of a saturated model of cardinality K when K is regular and T is
K—stable. In the next proposition the restriction to regular cardinals will be
removed and the assumption of K—stability is proved to be necessary when
K is sufficiently large.

Proposition 5.4.1. // the theory T is K—stable, then T has a saturated
model of cardinality K. If, on the other hand, K > λ(T) and T is not K—stable
then T does not have a saturated model of cardinality K.

Proof Let T be ^-stable. Then cf(κ) > κ(T) since κcf^ > K and κ<κ^ =
K (by Theorem 5.2.1).

A saturated model of cardinality K is found using

Claim. There is a model M of T of cardinality K, such that for all A C M of
cardinality < κ,(T) and p G S(acl(A)), M contains a Morley sequence over
acl(A) in p of cardinality K.

The model M is constructed via an elementary chain, Mi, i < K. Let Mo
be any model of T of cardinality K. Given Mi, let M*+i be an elementary
extension of cardinality n such that for all p G S(Mi), Mi+ι contains a Morley
sequence in p of cardinality K. Such a model exists since |S(Mi)| = K, and T
is tt—stable. If j is a limit ordinal, let Mj = [j^j Mi. Let M = \Ji<κ Mi. If
A is a subset of M of cardinality < κ(T), then there is an i < K such that
A C Mi (since cf(κ) > κ{T)). By construction, any strong type over A, M
contains a Morley sequence of cardinality K, proving the claim.

To prove that M is saturated let A C M have cardinality λ < K and let
p G S(A). Let B C A be a set of cardinality < κ(T) over which p does not
fork and let q G S(acl(B)) be such that q\acl(A) D p. It suffices to find an
a realizing q which is independent from A over B. By the claim there is a
set / C M of cardinality K which is a Morley sequence over acl(B) in q. By
Proposition 5.2.1 there is a set J C / of cardinality < κ(T) + |^4|+ (if κ(T)
is regular) and < κ(T) + \A\ (otherwise) such that A is independent from /
over BUJ. In any case, | J\ < K (since K > κ(T) and K = κ(T) can only occur
when κ(T) is regular by Corollary 5.2.1). Then a G / \ J is a realization of
q which is independent from A over J U B, hence independent from A over
B (by the transitivity of independence). Thus, a realizes p, proving the first
part of the proposition.

Now suppose that K > λ(T) and T is not K—stable. By The Stability
Spectrum Theorem (Theorem 5.2.1), K < κ<κ(τ) and K > κ{T) (since λ(Γ) >
κ(T)). The proof of the nonexistence of a saturated model of cardinality K is
split into two cases, the first reducing largely to cardinal arithmetic.

Case 1. cf(k) > κ(T).
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Choose μ < κ(T) such that κμ > K. Express K as sup i<cf^κ)Ki, where
Ki < K. Every subset of K of cardinality < κ(T) is contained in one of the
fti's by the assumption of this case, hence κμ = supi<cf(κ)Kμ. Thus, there is
Ki < K with κμ > K. Since μ < κ(T) the proof of Lemma 5.2.2 yields a set A
of cardinality κι such that |5(Λ)| = κμ. Thus, there cannot be a saturated
model of cardinality n.

Case 2. cf(κ) < κ(T).
Let λ = cf(κ) and K = sup^x^i, where K{ < K. Suppose, towards a

contradiction, that M is a saturated model of cardinality K. Write M as
| J i < λ Mi, where Mi is a submodel of M of cardinality Ki and when 6 < λ is
a limit ordinal, Ms = [ji<δMi. Since λ < κ(T) there is a chain of sets Ai,
i < λ, such that

- Ai+i \ Ai is finite,
- Aβ = Ui<(5 Ai, if δ is a limit ordinal, and
- there is a p G S(Aχ) such that p \ Ai+\ forks over Ai, for all i < λ.

Since M is saturated and \Mi\ < K, we can choose the A^s and M '̂s so that
Ai C Λίf, for all z < λ, and Ai+\ is independent from Mi over Ai. Since
|ylλ| = λ < κ(T) < K and M is saturated there is an α G M realizing p. Find
z < λ such that a G M .̂ This contradicts that p \ Ai+ι forks over Ai and
-Ai+i is independent from Mi over Ai, proving the proposition.

In the exercises the reader is asked to investigate when the union of an
elementary chain of saturated models of a stable theory is also saturated.

5.4.1 a—models

One useful property of t.t. theories is that every type over a model is based
on a finite subset of the model. The same may not be true in a properly
superstable theory, even though every type does not fork over a finite set.
Consider, for example, the theory Γ in the language L = {Ei(x,y) : i < ω}
which says that each Ei is an equivalence relation with only infinite classes,
Eo(x,y) is x — x and each Ei—class is refined into two JEi+i— classes. Let
M be any countable model. There is a one-to-one correspondence between
stationary types over A C M and elements of S(M) which are definable over
A. Since T is small there can only be countably many types over M definable
over a finite subset of M, while there are 2̂ ° types over M. If, however, we
chose M to be Hi—saturated instead of countable, tp(a/M) would be based
on any b G M realizing tp(α/αd(0)). The following property of a model M
is potentially weaker than κ+—saturation, but is enough to guarantee that
every complete type over M is based on a subset of M of cardinality < /ί+.

Definition 5.4.1. A model M is almost κ;—saturated, (a, K)—saturated, for
short, if for all sets A C M of cardinality < K, every strong type over A
is realized in M. When T is stable the terms almost κ(T)—saturated model,
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almost saturated model, α—saturated model, and a—model are used inter-
changeably.

Restating the definition, M is (α, ft) — saturated if for all A C M of car-
dinality < ft, every element of S(acl(A)) is realized in M. This form of
the definition makes it clear that a model which is (ft -f |T|+)—saturated
is (α, ft) — saturated and an (α, ft)—saturated model is ft—saturated. In any
context using almost ft—saturated models for some ft > ft(T) we can usually
reach the same goal using α—models. The term almost ft—saturated is a little
misleading because an (α, ft)—saturated model is certainly ft—saturated. The
"almost" comes from the fact that an (α, ft)—saturated model must realize
every type "almost over a subset A" i.e., a type consisting of formulas almost
over A.

These models do have the desired property:

Lemma 5.4.1. Let T be stable and M an a—model. For any p G S(M) there
is a subset of M of cardinality < ft(T) on which p is based.

Proof. Let A C M be a set of cardinality < ft(T) such that p does not fork
over A. Since M is an a—model there is a G M realizing p \ acl(A). By
Corollary 5.1.8(i) p is based on A U {α}, a set of cardinality < κ(T).

Almost saturated models will be used in Section 5.6.2 to develop a good
theory of domination. The "dimension theory" developed in Section 5.6 is
easiest to apply in the context of a—models. Indeed, many of the theorems
in [She90] related to Morley's Conjecture apply to the class of a—models of
a superstable theory.

Types over α—models are determined by the elements realizing a subtype
(compare this with Lemma 5.1.9):

Lemma 5.4.2. Let M be an a—model, A a subset of M of cardinality <
ft(T), q G S(A) and b C q(t). Then, tp(b/A U q(M)) f= tp(b/M).

Proof Let e be an element of M and bf an arbitrary realization of tp(b/A U
q(M)). We need to show that b and bf have the same type over e. Let E be a
subset oϊq(M) of cardinality < κ(T) such that e is independent from q(M)uA
over E U A. In fact, e is independent from q(€) U A over E U A. (Suppose
that e depends on the finite c C q(<£) over EuA. Since M is ft(Γ)—saturated
there is a d C q(£) realizing tp(c/EuA\J{e}); a contradiction.) Let bo G M
realize stp(b/E U A). Since this strong type is based on {bo} U E U A C
q{M) U A, tp(b/q(M) U A) is stationary. Thus, b and b' have the same type
over q{M) U A U {e}, proving the lemma.

This alternative kind of saturation is further connected to ordinary satu-
ration in
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L e m m a 5.4.3. (i) IfT is t.t. then a model M is (a, K)—saturated if and
only if M is K—saturated. Thus, the a—models of a t.t. theory are exactly the
Ho—saturated models.

(ii) If T is a countable stable theory then an Hi —saturated model is
a—saturated. Thus, if T is properly stable a model is Hi —saturated if and
only if it is a—saturated.

Proof, (i) Suppose that M is K—saturated, A C M has cardinality < K
and p e S(acl(A)). Since T is t.t. a complete type has only finitely many
nonforking extensions. Thus, there is a set B, A C B C acl(A), of cardinality
< K such that p is implied by its restriction to B. Since M is K—saturated
there is an a G M realizing p \ J9, hence also p.

(ii) If T is countable, κ(T) is < |T|+ = Hi. Thus, an Hx-saturated model
is {κ(T) -h |T|+)— saturated, hence α—saturated. If T is properly stable κ(T)
is Hi, hence an α—model must be Hi—saturated.

Corollary 5.4.1. Let T be a countable stable theory and M a model ofT. If
T is properly stable then M is an a—model if and only if M is Hi—saturated.
IfT is Ho—stable then M is an a—model if and only if M is HQ—saturated.

Remark 5.1^.1. If T is a countable properly superstable theory and M is
Ho—saturated, M may or may not be an a—model, depending on detailed
properties of T.

Historical Notes. Proposition 5.4.1 was proved for ω—stable theories by
Harnik in [Har73] and generalized to stable theories by Shelah in [She90, III,
3.10 and 3.12]. The notion of an α-model is due to Shelah [She90].

Exercise 5.4.1. If T is a countable properly superstable theory what is the
least cardinal in which T has an a—model?

Exercise 5.4.2. Let T be stable, M an α—model and λ an infinite cardinal.
Show that M is λ—saturated if and only if for every infinite set of indis-
cernibles I <Z M there is a set of indiscernibles J, I C J C M, of cardinality
λ.

Exercise 5.4.3. Let T be a countable stable theory and Mi, i < Hi, an
elementary chain of λ—saturated models (for some λ). Prove that M =

i is also λ—saturated.

Exercise 5.4.4. Let T be a stable theory and {Mi : i < 6} a chain
of λ-saturated models, where κ{T) < cf(δ). Show that M = [ji<δ Mi is
λ—saturated.
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5.5 Prime Models

In most applications of prime models an essential ingredient is their unique-
ness. For prime models in countable theories this was proved in Section 2.1,
where we also remarked that an uncountable theory may have prime mod-
els which are not isomorphic or a nonatomic prime model. We proved in
Lemma 3.1.5 the existence of prime models over arbitrary sets in an Ko—stable
theory without addressing the uniqueness issue. In the proofs of certain re-
sults, such as Corollary 3.1.4, the nonexistence of Vaughtian pairs was used
in place of the uniqueness of prime models to see that prime models over con-
jugate sets are isomorphic. Outside of the context of uncountably categorical
theories, no such replacement is possible. The uniqueness of prime models
(over sets) in any t.t. theory is proved in this section.

Prime models over sets may not exist in theories which are not totally
transcendental. However, we will see that in stable theories there are prime
models over sets relative to the class of α—models. (The Ho—prime models of
Section 3.1 are an example of such models.) We will also prove the uniqueness
of these so-called a—prime models.

5.5.1 Prime Models in a t.t. Theory

The proof of the existence of prime models over sets in an Ho—stable theory
did use the count ability of the theory, so another proof which handles all t.t.
theories is needed. The models we find are not only prime, but are constructed
as such in the following sense.

Notation. If { aβ : β < a } is a set of elements indexed by an ordinal a and
β<a,Aβ = {aΊ: 7 < /?}•

Definition 5.5.1. (i) A set {(aβ,ψβ) : β < a} is called a t—construction
over A if, for all β < α, ψβ is a formula over AϋAβ which isolates tp(dβ/AU
Aβ). When the particular isolating formulas are irrelevant we may simply
write {dβ : β < a } for the t—construction. A set is t—constructible over A
if some enumeration of it is a t—construction over A.

(ii) A model M D A (of the theory in question) is called strictly prime
over A if it is t— constructive.

Remark 5.5.1. In Shelah's terminology isolated types are in the class F^ o ,
meaning that the type is isolated by a subtype of cardinality < Ho Moreover,
a t—construction is called an F^o—construction in [She90].

Remark 5.5.2. If <£ is t.t. and A is a set, the theory of <£ with constants for
the elements of A is also t.t. Thus, a theorem stated to hold for the prime
models of any t.t. theory actually holds for the prime models over sets in any



262 5. Stability

t.t. theory. In practice, though, it is common to state a major result about
the prime models over a set A in a t.t. theory, and say "Without loss of
generality, A = 0" when beginning the proof. In lemmas we may omit the set
in the statement.

The results of the section are summarized in

Theorem 5.5.1. Suppose that T is a t.t theory and A is a set
(i) There is a strictly prime model over A.
(ii) Any two strictly prime models over A are isomorphic over A.
(Hi) The following are equivalent:

(1) M is strictly prime over A.
(2) M is prime over A.
(3) M is atomic over A and does not contain an uncountable set of
indiscernibles over A.

Corollary 5.5.1. IfT is t.t and M, N are prime models ofT, then M = N.

The first part of the theorem is handled rather easily:

Lemma 5.5.1. If T is a t.t. theory then there is a strictly prime model M.
In addition, M is prime and atomic.

Proof. The main point is contained in
Claim. For all sets B the isolated points are dense in S(B).
Let φ be a formula over B. Let p € S(B) be an element containing φ which

has minimal Morley rank α. Let ψ G p b e such that p is the only element of
S(B) containing φ and having Morley rank α. Since we can assume that φ
implies φ the minimal rank assumption shows that φ isolates p, to prove the
claim.

The construction of a strictly prime model and the verification that it is
prime and atomic is carried out exactly as in Lemma 3.1.5.

Corollary 5.5.2. A t— constructible set in a t.t theory is atomic.

The following basic fact about t—constructible sets arises repeatedly in
the proof.

Lemma 5.5.2. If B = {bβ : β < a} is a t—construction over A and B' C B
is finite, then {bβ : β < a} is a t—construction over A U B'.

Proof. For each β < α, { bβ : β < a } is a t-construction over A U Bβ, hence
B is atomic over A U Bβ. In particular, tp(bβbf/A U Bβ) is isolated, where V
is an enumeration of B'. By the transitivity of isolation, tp(bβ/A U Bβ U Br)
is isolated, as desired.

Part (ii) of the theorem is proved in the following lengthy result.
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Proposition 5.5.1. If T is t.t. and A is a set, then any two strictly prime
models over A are isomorphic over A.

Proof. Adding constants to the language for the elements of A results in
another t.t. theory, so we may as well assume that A = 0. Let {(aβ,ψβ) :
β < a } be a t—construction of a strictly prime model M over 0.

A set B C M is closed if for all aβ e B the parameters of ψβ are in B.
Note: any union of closed sets is closed. In the proof we need the following
basic properties of closed sets.

Claim, (i) For every β < a there is a finite closed set C containing aβ.
(ii) If B is closed M is atomic over B.

(i) This is proved by induction on β. Let {co,..., cn} C Aβ be the set of
parameters appearing in ψβ. Each c* is contained in a finite closed set C ,̂
hence Co U ... U Cn U {aβ} is a closed set containing aβ.

(ii) Since a strictly prime model is atomic it suffices to show that for all
β < α, tp(aβ/BuAβ) is isolated. This is accomplished by showing that for all
β < a, aβ £ B or ψβ isolates tp(aβ/BUAβ). Fix β < a and suppose aβ £ B.
To show that ψβ isolates tp(aβ/B U Aβ) we prove (inductively), for δ < a
and Bδ = BΠ A6, φβ isolates tp(aβ/Bδ U Aβ). If δ < β, Bδ C Aβ, so we
can assume that δ > β and δ = 7 -f 1 (since the case for limit ordinals
is easy). By the inductive hypothesis, ψβ isolates tp(aβ/BΊ U Aβ). Since
B is closed ψΊ is over J97, hence it isolates tp{aΊ/BΊ U Aβ U {aβ}). Thus,
ψβ(x) Λ ψΊ(y) isolates tp{aβ,aΊ/BΊ U Aβ). This, in turn, implies that ψβ
isolates tp(aβ/BΊ U {aΊ} U Aβ) = tp(aβ/Bδ U Aβ), proving the claim.

With this claim in hand we can proceed with the main body of the proof.
Let { (6/3, φβ) : β < a' } be a t—construction over 0 of a model M'. Without
loss of generality, a < ar. We define by recursion on β < a closed sets Cβ C M
and Cβ C M' and elementary maps fβ from Cβ onto Cβ such that:

(1) If 7 < β then CΊ C Cβ, C'Ί C C'β and fΊ C //?.
(2) If β is a limit ordinal then Cβ = \JΊ<βCΊ, C'β = \JΊ<βC'Ί

 a n d

fβ = UΊ<βfγ
(3) If η is a limit ordinal and β = η + (2n + 2), then aη+n e Cβ; ii
β = 77 + (2n + 1) then 6̂ +n G C£.

Consider a typical case in the recursion such as/3 = 7 + l = ?7 + (2n + 2),
where η is a limit ordinal. There is a finite closed set BQ C M containing aη+n

(by (i) of the claim). Since M is atomic over CΊ (by (ii) of the claim) there
is an elementary map go extending fΊ and taking i?o onto some B'o C M'.
Now find a finite B[ with B'o C B[ C M' such that i?ί is closed and note
that C'Ί U B[ is closed. Since M' is atomic over C'Ί and i?ό is finite, Mf is
atomic over C!yUB'Q. Hence, there is an elementary map g\ extending go a n d
taking CΊ U B\ (for some B\ C M) onto Cf

Ί\JB[. Continuing in this manner
produces chains of finite sets Bi C M and B[ C M1 and elementary maps
gι from C 7 U i?i onto C'Ί U J32 such that Bi is closed if i is even and JB2 is
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closed if i is odd. Finally, the sets Cβ = CΊ U \Ji<ω BuC'β = C'ΊΌ {}i<ω B[
and fβ = \Ji<ω9i satisfy (l)-(3).

In the end the construction yields an isomorphism / = fa from M onto
the closed subset B'a of M'. Since M' is an atomic model over JB^, M' must
equal B'a. Thus, M and M' are isomorphic, proving the proposition.

The equivalents in part (iii) of the theorem are handled in the next two
lemmas. In Lemma 5.5.1 (1) = > (2) was proved. The next lemma proves
(2) = • (3).

Lemma 5.5.3. IfT is t.t. and M is prime over A, then M is atomic over
A and there is no uncountable subset of M which is indiscernible over A.

Proof. It follows from Lemma 5.5.1 that any prime model over A is atomic.
(A prime model is elementarily embeddable into a strictly prime model N
over A, and any subset of N is atomic over A.) The model M is also prime
over acl(A). An infinite set of indiscernibles over A is indiscernible over acl(A)
(by Exercise 5.1.13), so we may as well assume that A = acl(A). By working
over A we may take A to be 0. Suppose, towards a contradiction, that M
contains an uncountable indiscernible set /. Without loss of generality, M is
strictly prime (since a prime model is contained in a strictly prime model).
By Corollary 5.1.13 there is a finite set J C 7 such that / \ J is a Morley
sequence over J. Since J is finite M is strictly prime over J. So, we may as
well assume that J = 0 and / is a Morley sequence over 0 in a stationary
type pe 5(0).

Let /o be a countable infinite subset of / and Mf a prime (hence atomic)
model over 7o which is contained in M. Since M is prime over 0 it can be
elementarily embedded into M', hence Mf contains an uncountable Morley
sequence J in p. We prove that a G J => a X Jo as follows. There is a
formula φ over a finite /' C /o which isolates tp(a/Io). If α vL /', then a and
any b G IQ \ I' have the same type over /' (since p is stationary and 7o is
independent over 0). Thus, any b G IQ\Γ also satisfies φ contradicting that
φ isolates a type over 7o Thus, a X Io .

Since Io is countable there is a countable Jo C J such that 70 and J
are independent over Jo. A fortiori, any b G J \ Jo (which exists since J
is uncountable) is independent from 7o over JQ. However, b is independent
from Jo, hence independent from 7o by transitivity. This contradicts what
was proved in the previous paragraph, to establish the lemma.

The proof of (3) = > (1) of Theorem 5.5.1 (iii) is

Lemma 5.5.4. Suppose that T is t.t, M is atomic over A and does not
contain an uncountable set of indiscernibles over A. Then M is strictly prime
over A.

Proof. The structure of the proof is set with the following claim.
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Claim. It suffices to show that for any set A! C M such that M is atomic
over A! and M does not contain an uncountable indiscernible set over A'
there is a set B such that (*) A' C B c M, such that M is atomic over B
and B φ A! is £—constructible over A'. In fact, it suffices to find a set B
satisfying (*) with A! = A.

Notice that M does not contain an uncountable set of indiscernibles over
any subset containing A. Thus, assuming (*), we can apply it again with A
replaced by B to obtain a set B\ φ B, B c B\ C M, which is t—constructible
over B and over which M is atomic. The constructions of B over A and B\
over B can be pieced together to give a t—construction of B\ over A. If
Bi, i < δ, is a chain where each Sj is a t—construction over which M is
atomic and the t—construction of Bi+ι extends the t—construction of Bi,
then \Ji<δ Bi is also a t—construction over which M is atomic. From these
facts we obtain a chain of sets A C B C B\ C B2 C ... C M, each of which
is t—constructible over A, and whose union is all of M. This proves that M
is strictly prime over A as desired.

A set D, C C D C M, is said to be /w// over C if whenever α and bin M
have the same type over C, α G D 4=ϊ b e D.

Claim. Let A' C M be any set such that M is atomic over yl; and M does
not contain an uncountable indiscernible set over A!. If D C M is full over
4̂/, then M is atomic over Zλ

Let a be an arbitrary element of M and JB a finite subset of £) such
that tp(a/D) = q does not split over B. Since B is finite, M is atomic over
A'UB, yielding a formula φ(x) which isolates tp(a/A'uB). Assume, towards
a contradiction, that φ does not isolate tp(a/D) and ^(z, 6) G q is such that
f= 3x(φ(x) A ^ψ(x, b)). Thus, for θ a formula isolating tp(b/A' U 5) there is
a c G M such that |= θ(c) and ->φ(a, c). Then c £ D, because D is full over
A. Since |= ψ{a,b) and f= -yψ(a,c) we contradict that g does not split over
B, proving the claim.

Claim. Let A' C M be any set such that M is atomic over A1 and M does
not contain an uncountable indiscernible set over A'. If D C M is full over
J4/, then Z) is t—constructible over Af.

This is proved for all D and A' by induction on the least ordinal a such
that a e D = > MR{a/A') < a. If α = 1 any enumeration of Z> is a
ί—construction. Suppose a is a limit ordinal and for β < a let Bβ = { a G
D : MR(a/A) < β}. Since each J5/3 is full over A', M is atomic over i ^ .
In fact, Bβ+\ is full over 5/5, hence is t—constructible over Bβ, by induction.
Piecing these constructions together end to end yields a t—construction of
D = {Jβ<aBβθveτA'.

Now suppose that a = β + 1 and {pi : i < λ } is an enumeration of the
complete types over A' realized in D. We will find by recursion on i < λ a
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ί-construction of Bi = Pi(D) over d = AU\Jj<:i Bj. A t-construction of D
over A' is again obtained by piecing together these constructions end to end.

At stage i in the recursion let B' be a maximal A'—independent sub-
set of Bi which is also independent from d over A'. Observe that B' must
be countable. (There are only finitely many strong types over A' extend-
ing pi. Assuming B' to be uncountable there is an uncountable B" C B'
such that the elements of B" have the same strong type over A'. Then B"
would be an uncountable Morley sequence, hence indiscernible set over A',
in contradiction to the hypotheses.) Let {bm : m < ω} be an enumera-
tion of B' (with repetitions if B' is finite). For m < ω let Dm = {b £ Bi :
MR(b/d U {bo,..., bm}) < a } and set £>_i = 0. We will show that each
Dm is t—constructible over Ci U Dm-i, and to aid in the recursion, that M
is atomic over d U D m . Assuming that M is atomic over d U Dm-i it is also
atomic over Ĉ  U Dm-i U {6m} Examining the definition shows that D m is
full over d U J9m-i U {6m}, hence M is atomic over d U Z>m. Furthermore,
for any 6 G £>m, MR{b/d U D m _i U {&m}) < α, so D m is ί-constructive
over Ci U Dm-i U {frm} (by induction). In fact, .Dm is ί—constructive over
d UD m _i (since the type of 6m over Ĉ  UDm-i is isolated). Finally, observe
that these constructions can be concatenated to produce a t—construction of
Bi = U m < ω Dm over C;, as desired. This proves the claim.

The reduction obtained in the first claim will be used to complete the
proof. Suppose a e M \A. Let D D A be a subset of M, full over A, which
contains α. By the second claim M is atomic over JD, and by the third claim
D is t—constructive over A. Thus, D satisfies (*). By the first claim the
lemma is proved.

Following is an example of a superstable theory with a prime model but
no atomic model. Of course, the language is necessarily uncountable. This
shows, in particular, that the restriction to t.t. theories in Theorem 5.5.1 is
necessary.

Example 5.5.1. Let Mo be the direct product of No copies of the two element
group (Z2,+,0), (with universe ω2) and Mi = Mo x Mo. Let H be the
subgroup Mo x {0}. Let π be the composition of the projection of M\ onto
{0} x Mo followed by the natural identification of this group with H. For
i < ω let Ui = {(f,g) : f,g £ ω2 and f(j) = g{j) = 0 for j < i}, a
subgroup of Mi of index 2 ί + 1 . Let M2 = (Mi, H, Ui, +, 0, π)i<ω, a structure
in a language L = {H, Ui,+,0,π}i<ω. Then, Γo = Th(M2) is quantifier-
eliminable, countable and superstable (of oo—rank 2, see Section 6.1). The
connected component of £ is f]i<ω £/»(£), so £ has 2*° many generics. Also
H(<£) has 2**° many generic types since H(<£) Π <£° has 2̂ ° many cosets in
H(€). Note that any nonzero element of if (£) is a generic element. Similarly,
for any a G H(€) the set π~1(a) = {b : τr(6) = a} is partitioned into
continuum many cosets of €°. Moreover, any two elements of π~1(α) with
the same coset of €° have the same type over acl(ά). Furthermore, π induces
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an isomorphism π* between the groups H(£) and <£/if(<£) which preserves
the EVs.

Let c* be a nonzero element of H(€). Let C = {cη : 77 < 2**° } be a subset
of π-^c*) such that C + £° D π " 1 ^ * ) and 77 ̂  7/ =Φ c^ + £° ^ cy -j- C°.
Finally, let T be the theory of JV with a constant symbol for each cη. It is
easy to verify that for any M1 \= T and a G H(M') every strong type over a
extending π(υ) = a is realized in M'.

Elimination of quantifiers gives the existence of a model M with the prop-
erty that each element of H(M) is the difference of two c '̂s (and each ele-
ment of M/H(M) is π* of an element of H(M)). We claim that M is a prime
model which is not atomic. Let M' be any model of the theory. Certainly
there is an elementary mapping F of H(M) U (π - 1(c*) Π M) into M', so it
remains to map the sets π~1(b)Γ\M into π~1(Fb)ΠMf, for b G H(M). Given
b e H{M) \ {0, c*} = X let 6 be an element of TΓ"1 (6) ΠM. Then, TΓ" 1 ^) ΠM
is simply b + H(M). Elimination of quantifiers guarantees that { b : 6 £ X }
is independent over X U (π~x(c*) Π M). As we argued above, F(stp(b/b)) is
realized in M' by some element bp. Since {bp '- b € X} must be independent
over F(XU(π~1(c*)Γ\M)), F extends to an elementary map / taking btobp.
Since TΓ" 1 ^) Π M = b + H(M), f extends to an isomorphism of M into Mf.
Hence M is prime. Furthermore, for any choice of έ, tp(b/{b}) is nonisolated
(left as an exercise). Thus, M is not atomic.

5.5.2 a-prime Models

In the proof of Morley's Categoricity Theorem we dealt with No~prim e mod-
els; i.e., prime models over sets relative to the class of No—saturated models.
In general,

Definition 5.5.2. // /C is a class of models and A is a set we call M D A
a prime model over A relative to /C if M G /C and for any N G /C such that
N D A, M is elementarily embeddable over A into N.

We will see that by taking /C to be the class of a—models we obtain
relatively prime models in properly superstable or properly stable theories
which act somewhat like prime models in totally transcendental theories.
The relevant notions of isolation are defined summarily.

Definition 5.5.3. Let T be stable and K an infinite cardinal, K the class of
K—saturated models ofT and K,a the class of {a, n)—saturated models ofT.

(i) A model M is K—prime over A if M is a prime model over A relative
to )C. We call M (a, K)—prime over A if M is prime over A relative to JCa-
When K = κ,(T) we abbreviate (α, tή—prime to a—prime.

(ii) Let B C A have cardinality < K. A type p G S(A) is K—isolated
over B if p \ B \= p. A strong type p over A is (α,^)—isolated over B if
p Γ acl(B) |= p; equivalently, for all a realizing p, stp(a/B) f= p. We call
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p K—isolated (respectively, (a, K,) —isolated) if it is K—isolated (respectively,

(α, K)—isolated) over some subset of A. When K = κ(T) we say a—isolated
for (α, K) — isolated.

Only types over algebraically closed sets are relevant in (a,κ)— isolation,
so it requires a little more care in handling than /^-isolation. However, most
proofs for (α, K)— isolation and K—isolation are very similar. The next lemma
is stated for (α,«)— isolation, but the proofs are much the same (or easier)
for K—isolation.

Lemma 5.5.5. Let T be stable, K an infinite cardinal, p a strong type over
A and B C A.

(i) If p is (α, K,)—isolated over B, then p does not fork over B.
(ii) p is (α, K,)—isolated over B if and only if it is («+ |T|+)—isolated over

acl(B).
(Hi) (Existence) If K > κ(T) then for any A, B C A of cardinality < K

and strong type q over B there is an (α, K)—isolated strong type r over A
extending q.

Proof. Part (i) is clear since p is implied by a strong type over B. Part (ii)
is left as an exercise to the reader.

(iii) Without loss of generality, A — acl(A). By the definition of /s(T),
there is a set C, B c C C A, with \C\B\ < κ{T) and a type r G S(acl(C))
extending p such that no extension of r over A forks over C. Then \C\ < K
and the unique nonforking extension of r over ad (A) is an (α,«)— isolated
extension of p.

When K < «(Γ), (α,«)—isolated types may not exist as in (iii) of the
previous lemma. There are few uses for (α,«)— isolation when K, > κ(T) and
as (ii) indicates the notion collapses to /ς—isolation when n is sufficiently large.
To focus on the main concept, we will only deal with (α, κ(T))—isolation; i.e.,
a—isolation, in the remainder of the section.

Our treatment is further specialized by considering only theories in which
κ(T) is regular (as it is when T is countable). Indeed, many of the results
do not hold without this restriction. This property is used to obtain the
following, which is part of Proposition 5.2.1.

(*) Suppose that κ(T) is regular, K > κ(T) and \B\ < K. Then for
all sets A, there is a set C C A of cardinality < hi such that B is
independent from A over C.

Definition 5.5.4. Let T be stable.
(i) A set B = {bβ : β < a } is called an a—construction over A if for all

β < a, stp(bβ/A U Bβ) is a—isolated. A set C is a—constructive over A if
some enumeration of C is an a—construction over A.

(ii) A model M D A is strictly a—prime over A if M is an a—model and
is a—constructive over A.
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(iii) A set B is a—atomic over A if for all finite sequences b from B,
stp(b/A) is a—isolated.

(iv) Let B = {bβ : β < a} be an a—construction over some set A and, for
β < α, Cβ C Bβ U A a set of cardinality < κ(T) over which stp(bβ/Bβ U A)
is a-isolated. Then, a set D C B is called closed if whenever bβ e D, Cβ C
DUA.

In analogy to Theorem 5.5.1 we will prove below

Theorem 5.5.2. Suppose that T is stable, κ(T) is regular and A is any set.
(i) There is a strictly a—prime model over A and every such model is

a—prime over A.
(ii) Any two strictly a—prime models over A are isomorphic over A.
(in) A strictly a—prime model over A is a—atomic over A and does not

contain a set of cardinality > κ(T) which is indiscernible over A.
(iv) An a—prime model over A is strictly a—prime over A.

Unlike the ordinary prime case we will not prove the converse of part (iii):
If M is a—atomic over A and does not contain a set over indiscernibles over
A of cardinality > κ(T), then M is strictly a—prime over A. The proof of
this harder result can be found in [Her92], which improves a slightly weaker
result proved in [She90, IV, 4.14].

Lemma 5.5.6. Suppose that T is stable and κ(T) is regular.
(i) If B is a— constructive over A and C C B there is a closed set C C B

containing C of cardinality < | C | + + κ(T).
(ii) If the strong type p over A is a—isolated and p does not fork over

B C A, then q = p \ acl(B) is a—isolated. In fact, p is a—isolated over a
subset of B.

(iii) If B is a—constructible over A, then B is a—atomic over A.
(iv) If B is a—atomic over A and \B\ < κ(T), then any enumeration of

B is an a—construction over A. If B is a—atomic over A and \B\ < κ(T),
then B is a—constructible over A.

(v) (Transitivity) If\B\ < κ(T) andB is a-atomic over A, thenstp(b/AU
B) is a—isolated if and only if BU {b} is a—atomic over A.

(vi) If B is a—atomic over A and C C B has cardinality < ft(T), then B
is a—atomic over AuC.

(vii) If B is a—constructible over A and C C B is closed, then C is
a—constructible over A and B is a—constructible over AuC.

Proof, (i) Let B = { bβ : β < a } be an a—construction of B over A. For
x e B and bβ = x let Dx be a subset of Bβ of cardinality < κ(T) such that
stp(bβ/Bβ U A) is α-isolated over Dx U A. For X C B let Xf = \J{ Dx : xe
X}UX. Then the set D = \Jn<ω C<n\ where C<°) = C and C<n+1) = (σ<n>)'
is a—constructible. (Enumerate C as { Cβ : β < a'} where 7 < β < a',cΊ = be
and Cβ = be implies that δ < e. The reader can check that this enumeration
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gives an α—construction of C over A.) To check the cardinality of D we
consider only when \C\ < «(T), leaving the general case to the reader. If

K(T) = No then each C ( n ) is finite and for some n, C ( n + 1 ) = C ( n ) , hence D is
finite. If κ(T) is uncountable, then the regularity of the cardinal implies that
| C ( n ) | < /c(Γ) and sup n < α ; |C

( n ) | is also < «(T), completing the proof of (i).
(ii) Without loss of generality, A = αd(A) and B = acl(B). Let r C p

be a strong type over a set Ao of cardinality < κ(T) which is equivalent to
p. Since κ(T) is regular there is a set C C ΰ , the algebraic closure of a set
of cardinality < «(T), such that Ao is independent from 5 over C and p is
based on C. We will show that s = q \ C = p \ C is equivalent to p, which is
sufficient to prove this part. Suppose, to the contrary, that a realizes s, but
a does not realize α. Without loss of generality, a is independent from AQ
over B, hence a is independent from Ao over C (by transitivity). Since the
nonforking extension of 5 over A is p, α realizes p \ AQ = r. Hence, a realizes
p D q, a contradiction which proves (ii).

(iii) Without loss of generality, A = acl(A). It suffices to show that when
B = { bΊ : 7 < β } is an a—construction over A and Bβ is α—atomic over
A, B is also α—atomic over A Suppose this to be false. Let a = bβ and let
6 be a finite sequence from Bβ such that stp(ab/A) is not a—isolated. Let
Co D 6 be a subset of Bβ U A of cardinality < κ(T) such that stp(a/Bβ U A)
is a—isolated over Co- Then Co is a—atomic over A, in fact, C = acl(Co)
is also α—atomic over A (see the exercises). Let AQ C A be the algebraic
closure of a set of cardinality < κ(T) such that C U {a} is independent
from A over Ao Since stp(ab/A) is not α-isolated there is a sequence α'?/
realizing stp(ab/Ao) = tp(ab/Ao) which does not realize tp(ab/A). Let / be an
automorphism of the universe fixing Ao and mapping ab to o!b'\ let D = /(C).
Since C is a—atomic over A and independent from A over Ao, (ii) implies
that tp(c/Ao) \= tp(c/A) for any finite sequence c from C. This implies that
for all c from C, tp(c/A) = tp(f(c)/A), hence there is an automorphism #
of <Γ which fixes A and maps f(c) to c, for any c e C. Since /(α) = α',
^ ( α ' / D ϋ A o ) ) = ίp(α/CuA0). Again using (ii), tp(a/CuAo) \= tp(a/CUA),
hence g(a') realizes tp(a/C U_A). This contradicts that g(bf) = b, g fixes A
and α'6; does not realize tp(ab/A), completing the proof of (iii).

(iv) The case for \B\ < κ(T) is proved by induction on |£?|. For finite B
this follows immediately from

Claim. If stp(ab/A) is α-isolated over B then stp(a/Au{b}) is α-isolated
over B U {6} and stp(b/A) is a—isolated over B.

Since stp(ab/B) [= stp(ab/A) it is clear that stp(b/B) f= stp(b/A). Sup-
pose that α' realizes stp(a/B U {6}). Then, α'6 realizes stp(ab/B), hence α;δ
is independent from A over 5 . This implies that α' (like α) is independent
from A U {6} over B U {6}, thus α' realizes stp(a/A U {6}), proving the claim.

Now suppose that B is infinite and let { bβ : β < a } be any enumeration
of B. Let β < α, K = \Bβ\ and write Bβ as Ui<«Cή where \d\ < K and
i < j ==» Ci C Cj. Since each set C U ^ } is α-atomic over A the inductive
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hypothesis implies that any enumeration of the set is an a—construction.
Thus, stp(bβ/d U A) is a—isolated. This allows us to write stp(bβ/Bβ U A)
as \Ji<κPi, where the p^s form a chain and each pi is α-isolated. We leave
it as an exercise to the reader to show that since K < κ(T) this union is
a—isolated. This proves that { bβ : β < a } is an a—construction of B.

If \B\ — κ(T), then the first part of (iv) says that an enumeration {ba :
a < κ,(T) } of B is an a—construction over A.

(v) Both directions of the biconditional follow from (iii) and (iv) of this
lemma.

(vi) The proof of this part is left for the reader in the exercises.
(vii) Let { bi : i < a } be an a—construction of B and let < denote the

induced well-ordering of B. For i < a let E{ c Bi U A be the distinguished
set of cardinality < κ(T) such that stp(b{/Bi U A) is α—isolated over Ei. Let
D = B\C and C = {ci : i < 7 }, D = {di : i < 6} enumerations of these
sets which respect the enumeration of B (i.e., if Q = bβ and Cj = bβ> then
i < j <==> β < β'). Let / : δ —• a and g : 7 —• a be defined by: f(i) = j if
di = bj and g(i) = j if Ci = bj.

Since C is closed, i < 7 implies that ϋ^i) C Ci U 4, hence the
given enumeration is an a—construction of C over A. To prove that D is
a—constructible over AUC it suffices to show that for i < δ, stp(di/DiUAuC)
is a—isolated over Ef^y To prove this we fix i and show by induction on
k < 7 that stp(di/Di U i U ft U -^/(i)) *s α~isolated over Ef^y (This is
sufficient because a quick check of the definitions shows that Ef^ is con-
tained in Di U A U C.) Since Co = 0 and Z^ C -#/(i) there is nothing
to prove when k = 0. The condition is also preserved at limit ordinals,
so suppose that k = I + 1. If c\ precedes di in the ordering of B then
DiU Ci C Bf(i) and again there is nothing to prove. In the remaining case,
when f(i) < g(l), we see that Ef{i) C A U A U Cu A U A+i U Cj C A U Bp ( z )

and stp(cι/A U A+i U Q ) is α—isolated over a subset of A U C\ (since
^ ( z ) C AuCi). A fortiori, stpfo/AuCiUA) h stp(cι/A\JCιUDi+1). Switch-
ing the roles of c\ and di in this equation proves that stp(di/A U C\ U A ) f=
s£p(di/AuC/+i U A ) . Since 8tp{di/A\JEm) |= 5ίp(di/AuCz UD») we have
shown that stp(di/A U Cj+i U A ) is α-isolated over -E/(i), as required to
complete the proof.

Parts of the following proposition are proved like the corresponding results
for ordinary isolation in t.t. theories. There are differences in that finite is
replaced by "of cardinality < κ(T)", but the properties proved above fill the
gaps. With this proposition we prove parts (i)-(iii) of Theorem 5.5.2.

Proposition 5.5.2. Suppose that T is stable, κ(T) is regular and A is any
set.

(i) There is a strictly a—prime model M over A. The model M is a—prime
over A and its cardinality is < the first cardinal > \A\ in which T is stable.

(ii) Any two strictly a—prime models over A are isomorphic over A.
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(in) A strictly a—prime model over A is a—atomic over A and does not
contain a set of cardinality > κ(T) which is indiscernible over A.

It remains to prove Theorem 5.5.2(iv), which is done in

Proposition 5.5.3. Suppose that T is stable and «(T) is regular. Then for
all sets A, if M is a—prime over A, M is strictly a—prime over A. In fact,
if M D B D A, B is a— constructible.

Proof We know that there is a strictly a—prime model over A and M can be
embedded into this model over A. Thus, it suffices to show that when M' is a
strictly a—prime model over A, any set B, A C B C M', is α—constructible
over A. Let { aa : a < v } be an a—construction of M' over A. We will find,
by recursion on a < μ (for some μ < |M' | + ) sets Da D A such that

(1) Each Da is closed.
(2) If a < /?, Da C Dβ and Da = \Jβ<a Dβ when a is a limit ordinal.
(3) \Da+1\Da\<κ(T).
(4) M' = Uα< μ A,
(5) Da and B are independent over Ba = DaΠ B.

That B is a—constructible will follow rather quickly from this.
The set A*+i will be the union of Da and the sets D™+ι, n < ω-> which

are defined as follows.

(i) D°a+1 = {aa}.

(ii) If n > 0 is even, £)2+i *s a closed set of cardinality < κ(T) con-
taining D£+ί

(iii) If n is odd we first let C C B be a set of cardinality < «(T) such

that DΊ^Γ\ is independent from B U Da over C U D Q , and then set

α+1 — υcx+l U O

Finally, let Da+\ = Da U Un<ω -^α+i A union of closed sets is closed, so (1)
holds. Since Da+ι \ Da is the union of countably many sets of cardinality
< κ(T) this difference has cardinality < κ(T). To verify the fifth condition
suppose that d is a finite subset of A*+i and n is minimal with d C £>2+i By
construction there is a set C C B Π D α + i such that d is independent from B
over DQUC. Since B and DQ, are independent over BΓ\Da, d is independent
from B over 5 Π £)α+i, so (5) holds. The other conditions hold trivially.

We claim that J3α+i is a—atomic over Ba Since Da is closed, Lemma 5.5.6
says that Mr is a—constructible over Da, hence a—atomic over Da. That is,
for any finite set b from £ α + i , stp(b/Da) is a—isolated. Since b is independent
from Da over Ba, Lemma 5.5.6(ii) implies that stp(b/Ba) is a—isolated, as
desired. Then #α+i is a—constructible over Ba (by Lemma 5.5.6(iv)). Piecing
together all of these constructions gives an a—construction of B, completing
the proof of the proposition.

Corollary 5.5.3. Suppose that T is stable and κ(T) is regular. If M is
a—prime over A and M D B D A, then M is a—prime over B.
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Historical Notes. Shelah first proved the uniqueness of prime models for
ω—stable theories by induction on rank in [She72]. The proof given here was
inspired by an unpublished proof by Ressayre. All of the other results are by
Shelah and can be found in [She90, IV].

Exercise 5.5.1. Prove the property (*) preceding the definition of an
a—construction (Definition 5.5.4).

Exercise 5.5.2. Prove that the union of a chain of < κ(T) many a—isolated
types is a—isolated.

Exercise 5.5.3. Prove that the algebraic closure of a set C is a—atomic over
A whenever C is α—atomic over A.

Exercise 5.5.4. Prove (vi) of Lemma 5.5.6.

Exercise 5.5.5. Prove Corollary 5.5.3.

5.6 Orthogonality, Domination and Weight

We saw in the proofs of the Morley Categoricity Theorem and the Baldwin-
Lachlan Theorem how the dimension theory on strongly minimal sets can be
used to determine when models are isomorphic. This section is one facet in
the development of a dimension theory for arbitrary stationary types which
is based on the forking dependence relation.

Definition 5.6.1. Let T be stable. Given a stationary type p over A and a
set B, I is a basis for p in B if it is a maximal Morley sequence over A in p
which is contained in B.

Some key features of the dimension theory for strongly minimal sets in
uncountably categorical theories are

1. If M is a model, φ is a strongly minimal formula over A C M and p is
the unique nonalgebraic completion of φ over A, then all bases for p in
M have the same cardinality (which is called the dimension of p(M) or

2. If ψ is another strongly minimal formula over M and M is uncountable,
then φ{M) and ψ(M) have the same dimension.

Using also the fact that M is prime over any strongly minimal set in M we
obtained the Morley Categoricity Theorem. To prove the Baldwin-Lachlan
Theorem (about countable models) we need a finer result on dimension: If,
in addition, φ' is a strongly minimal formula conjugate to φ, then φ(M) and
φ'(M) have the same dimension.
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When working in an uncountably categorical theory strongly minimal sets
have the same dimension in any uncountable model. Other t.t. theories may
contain strongly minimal sets whose dimensions in models can differ widely.
Here is a simple example.

Example 5.6.1. Let T be the theory of one equivalence relation E with in-
finitely many infinite classes and no finite classes. For any α, E(£,a) is a
strongly minimal set. For any pair of infinite cardinals «, λ there is a model
M containing a and b such that E(M, a) has dimension K and E(M, b) has
dimension λ.

This freedom to find models with varying dimensions of strongly min-
imal sets can be used to show there are nonisomorphic models in each
uncountable cardinal. In detail, let K, be uncountable and A the set of
cardinals < K and Λ+ the set of infinite cardinals < K. Let Φ = {f :
f is a function from Λ+ into A such that f(κ) ^ 0 or K G range (/) }.
For any model M of T of cardinality n let FM be the element of Φ such
that for any λ G ΛL+, FM(A) is the number of ϋ?—classes in M of cardinality
λ. Then,

- any element of Φ is FM for some model M of T, and
- for models M, N of T of cardinality «, M = N if and only if FM = FN

Thus, the number of models of T of cardinality K, up to isomorphism, is \Φ\.

In generalizing the observed behavior of strongly minimal sets to a col-
lection P of stationary types in a stable theory the most basic questions
are:

1. Given stationary types p, q G P (over, say, 0) let (*) denote the condition:
for all sufficiently large cardinals K, λ there is a model M containing a
basis for p of cardinality K and a basis for q of cardinality λ. What basic
properties of p and q cause (*) to hold?

2. When (*) fails for a pair p, q how widely can the cardinality of bases of
p and q vary as we range over models of the theory.

3. Can we isolate a broad class of types Q such that dimension is well-
defined for any p G Q? (That is, for any p G Q and model M containing
the domain of p, all bases of p in M have the same cardinality.)

These items are the subjects (in order) of the three subsections: orthogonality,
domination and weight.

Before getting to the main topics we make the conceptual jump of intro-
ducing types and strong types in infinitely many variables.

Notation. If A and B are sets, tp(A/B) is the set of formulas in a poten-
tially infinite sequence of variables obtained in the expected way. (In the
background we have fixed an arbitrary enumeration of A.) Such types, called
*—types, are only used to conveniently speak of the class of all sets conjugate
to A over B: A! realizes tp(A/B) if there is an automorphism of the universe
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fixing B and taking A' to A. Extending also the notation for strong types,
stp(A/B) = tp(A/acl(B)).

Most terms associated to the forking relation on types can be gen-
eralized to *—types using the obvious definitions. For example, tp(A/B)
is stationary if it has a unique nonforking extension over <£, equivalently,
tp(A/B) (= stp(A/B).

If p and q are stationary types over A then all pairs α&, where a realizes p,
b realizes q and a is independent from b over A, realize the same stationary
type over A. This type is denoted p ® q. More generally,

Notation. If pi = stp(Bi/A), i G /, is a family of stationary *—types over A
and { Bi : i G / } is A—independent then stp(\JieI Bι/A) is denoted ® ί € / Pz
If p is a strong type over A and λ is a cardinal, p^ is the strong type over A of
a Morley sequence over A in p of cardinality λ (equivalently, the 0—product
of λ copies of p).

Throughout the entire section we assume the underlying theory
to be stable. The stability hypothesis may be restated for emphasis in key
definitions and results.

5.6.1 Orthogonality

Intuitively, stationary types are orthogonal when there are models in which
bases for the types have widely varying cardinalities. The actual definition
(given subsequently) specifies a property which guarantees this behavior.

Definition 5.6.2. (i) The *—types p and q over A are said to be almost
orthogonal, written p A. q, if for all B realizing p and C realizing q, B and
C are independent over A. The negation of the relation is denoted p J- q.

(ii) The stationary *—types p and q are called orthogonal, written p _L g,
if for all sets A on which both p and q are based, p\A !l_ q\A.

(in) The *—types p and q are orthogonal if p' _L qf whenever p', q' G S(€)
are nonforking extensions of p and q, respectively.

Example 5.6.2. As trivial examples of orthogonal and nonorthogonal types
consider a single unary predicate U, the theory T\ saying that U and -ι{7
define infinite sets, and the theory T2 D I\ saying that an additional function
symbol F defines a bijection between the sets defined by U and ->U.

Then, for p and q the unique nonalgebraic types containing U and ->[/,
respectively, p J_ q in 7\ and pjLq in T2.

Let T be the theory in Example 5.6.1. Let a φ b in € and pa, Pb the
strongly minimal types extending E{x,a), E(x,b), respectively. Then pa is
orthogonal to pb
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The finite character of forking allows us to prove most facts about or-
thogonality by considering only types (instead of *—types). (Use the fact that
stp(B/A) is almost orthogonal to stp(C/A) if and only if stp{b/A) !l_ stp(c/A),
for all finite subsets b of B and c of C.) In the sequel we will normally state
results only for types, leaving the extension to *—types to the reader.

Lemma 5.6.1. Let T be stable.
(i) For stationary types p and q, the following are equivalent.

(1) p JL q.
(2) For some set A on which p and q are both based and all sets B D A,
p\B 1 q\B.

(3) For some a—model M on which p and q are both based, p\M _L q\M.

(ii) If p and qi, i G /, are stationary types, p _L ®iejqi if and only if
p J_ qi, for all i £ I.

Proof. The proof of (ii) is left to the exercises, while (1) => (2) = > (3) of (i)
are vacuously true. To prove (3) = > (1) let p be nonorthogonal to q and M
an a—model on which both p and q are based. Suppose A is a set on which
both p and q are based such that p\A /. q\A. For any B D A, p\B JL q\B,
so there is a B D M such that p\B "jL q\B. Let a be a realization of p\B,
b a realization of q\B and c a finite subset of B such that a depends on b
over M U {c}. Let C C M be of cardinality < κ(T) over which stp(abc/M)
is based. Since M is an a—model there is d G M realizing stp(c/C). Now
choose elements a' and bf such that stp(a'b'd/C) = stp(abc/C) and a'bf is
independent from M over C U {c'}. These conditions imply that a' is not
only independent from M over CU{c'}, but also over C; i.e., a' realizes p\M,
and similarly, b' realizes q\M. Since a' and br are dependent over C U {c'},
p\M °]L q\M as required.

Remark 5.6.1. As a simple application of the lemma:

If T is uncountably categorical and φ is a strongly minimal formula,
then every nonalgebraic stationary type p is nonorthogonal to φ.

(A type is nonorthogonal to φ if it is nonorthogonal to the unique nonalge-
braic q G S(£) containing φ. Let M be an a—model containing the parameters
in φ and over which p is based. Let a realize p\M and N be the prime model
over M U {a}. Since T has no Vaughtian pair there is a b G N \ M satisfying
φ, hence realizing q\M. By Corollary 3.3.4, a and b are dependent over M,
witnessing the nonorthogonality of p and q (by the lemma).)

The argument used to verify this remark can be generalized. When p and q
are orthogonal stationary types over an a—model M there is a larger a—model
realizing p and omitting q. (This is proved using Corollary 5.6.1 below.) We
can iterate this process to find a "long" Morley sequence in p in a a—model
N D M which omits q. Hence the cardinalities of bases for p can q can vary
widely as we range over α-models containing M. (See Corollary 5.6.2 below.)
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Given nonorthogonal stationary types p and q the first question which
comes to mind is: What must a set A contain to ensure that p\A and q\A
are not almost orthogonal? We saw in Lemma 5.1.17 that p is based on an
indiscernible set whose average type is parallel to p. The next result shows
that such indiscernibles also control the manner in which the stationary type
interacts with other types.

Proposition 5.6.1. For T stable and p, q € S(£) the following are equiva-
lent:

(1) p±q.
(2) For some infinite sets of indiscernibles / , J such that Aυ(I/(£) = p

and Aυ(J/<L) = q, p\(I U J) 1 q\(I U J).
(3) For some set A on which p and q are both based and for all n,

(^ is almost orthogonal to {q\A)^n\

Proof. With regard to (2), recall from Lemma 5.1.17 that p and q are based
on I and J, respectively, hence p\(IUJ) and q\(IUJ) exist. That (1) =Φ (2)
is trivial. For (2) =$- (3) suppose that there are such sets of indiscernibles /
and J. Let V and J' be infinite and coinfinite subsets of / and J, respectively.
By Lemma 5.1.17 both p and q are based on A = /' U J' . Assuming that for
some n (p\A)^ aJί (q\A)^ yields minimal sets Io C I and J o C J such that
stp(I0/A) aJL stp(J0/A). Let a e Io, b e J o, h = Io \ {a} and Jλ = Jo\ {b}.
By the minimality assumption on 7o a n d Jo,

Io X J\ and 1\ X J o .
A A

Combining this with the initial assumption about Io and Jo shows that for
B = AUli U Ji, stp(a/B) = p\B is not almost orthogonal to stp(b/B) = q\B.
Since B C I L) J this contradicts that p\(I U J) !l_ q\(I U J), proving that
(2) = » (3).

To prove (3) = > (1) suppose that p is nonorthogonal to q and A is any
set on which p and q are based. By Lemma 5.6.l(i) there is a set B D A,
a realizing p\B and b realizing q\B such that a and b are dependent over
B. Let / = {aibi : i < ω} be an infinite Morley sequence in stp(ab/B).
Then {aι : i < ω} and {bι : i < ω} are Morley sequences over B
(and A) in p. Since α& realizes the average type of I over B and this av-
erage is based on / there must be some n and m such that an and 6m

are dependent over AVJ {aι : i < n} U {h : i < m}. The sequences
( α 0 , . . . , an) and (6g, , 6m) witness that (p|A)(n+1) °JL ( g μ ) ( m + 1 \ hence if
n>m, (p|.A)(n+1) ί̂. (^|A) ( n + 1 ), completing the proof of the lemma.

The next example exhibits a simple situation in which nonorthogonal
types p and q are based on a set A, but are almost orthogonal over this set.

Example 5.6.3. Let M be an infinite direct sum of copies of the group Z 2 (in
the language {+, 0}) and let N be a subgroup of M of index 2. Add to the
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language a unary predicate P and let M1 be the expansion of M interpreting
P by N. Then, P(x) and ~^P(x) are strongly minimal formulas. Let p and
q be the unique nonalgebraic completions of P(x), -«P(x), respectively, over
0. For any realizations a and α' of q in M' there is an automorphism of the
model fixing N pointwise and taking a to a'. As the reader can verify, this
implies that p l q . However, any element of M' \ N is inter algebraic with an
element of N over α, hence q\a JL p\a.

Remark 5.6.2. Let p,gG S(A) be nonorthogonal regular types in a stable
theory. By the previous proposition there are m and n such that p^ and
q(™) a r e n o t almost orthogonal. We can ask: What are the minimal such m
and n. For example, when p and q are modular strongly minimal types (in
an uncountably categorical theory) we can take m and n to be 1 by Corol-
lary 4.3.5. However, when p and q are both locally modular and nonmodular
the minimal pair may be m = n = 2. In general, the answer to this question
is a deep result in geometrical stability theory worked out in [Hru89].

Definition 5.6.3. The complete type p is orthogonal to the set A, written
p±A, ifp-Lq for all q G S(A).

The results in [She90] and [SHM84] show how families of nonorthogonal
types can lead to many nonisomorphic models in a fixed cardinality. The
presence of a type orthogonal to a set leads to arbitrarily large families of
pairwise orthogonal types.

Example 5.6.4- Consider first the ω—stable, ω—categorical theory T\ of a
single equivalence relation E with infinitely many infinite classes and no finite
classes. Let M be a model (which is an a—model as it is No—saturated). For
some a G M let p G Sι(M) be the unique nonalgebraic type containing
E(x,a). It is left to the reader to show (using the elimination of quantifiers)
that tp(b/M) is nonorthogonal to p only if some element of the sequence 6 is
E—equivalent to α, hence forks over 0. If q G S(€) does not fork over 0 then
q is based on M. We have shown that q\M, hence q, is orthogonal to p. Thus,
p is orthogonal to 0.

Now consider the theory T<ι of two equivalence relations E and E' such
that

— E and E' have infinitely many infinite classes,
— E and E' have no finite classes, and
— for all α and b there are infinitely many elements which are ϋ?—equivalent

to a and E'—equivalent to b.

(T2 is known as the theory of two cross-cutting equivalence relations.) The
reader can check that for any a and 6, E(x, a) and E'(x, b) both have Morley
rank 2, E(x, a) Λ E'(x, b) has Morley rank 1 and each of these formulas has
degree 1. Let M be a model, a G M, p the unique element of S\(M) of Morley
rank 2 containing E(x,a) and q the unique element of S\(M) containing
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-iE(x,b) A ->E'(x,b) for all b G M. Let c be a realization of q and d an
element satisfying E(x, a) Λ E'(x, c). The specified equivalences imply that d
realizes p and depends on c over M. Thus, p is nonorthogonal to q. Since q
is based on 0 this type witnesses that p is nonorthogonal to 0. This gives a
type which forks over 0 but is nonorthogonal to 0.

Unraveling the definitions shows that p ± A if and only if p ± αc/(A).
The next proposition is the key to understanding this relation.

Proposition 5.6.2. For T a stable theory, p a stationary type and A a set,
the following are equivalent.

(1) p±A.
(2) If p is based on B and A' is independent from B over A, then p is
orthogonal to A!.

(3) For any set B on which p is based, if f is an automorphism fixing
acl(A) with f(B) ± B, then p\B _L f(p\B).

A

Proof We can assume without loss of generality that A = ad (A).
(1) => (2). Suppose p is based on B, p _L A, A! = acl(A') is independent

from B over A and, to the contrary, that q G S(A') is nonorthogonal to p.
By Proposition 5.6.1 there are α and b which are finite Morley sequences
over A! U B in p and q, respectively, and are dependent over Af U B. Since
a is independent from A' over B, a must depend on A' U {6} over B. Since
B is independent from A! U {b} over A this set witnesses that stp(a/B) is
nonorthogonal to A. For some n, stp(a/B) = (p|jE?)(n), so Lemma 5.6.1(ii)
implies that p is nonorthogonal to A, a contradiction which proves the im-
plication.

(2) =Φ> (3). This part holds trivially.
(3) = > (1). Suppose p G S(B), pjίq for some g G 5(A) and, towards a

contradiction, that p is orthogonal to p' = f(p), where / is as in (3). Let
{ Bi : i G /} be an A—independent family of realizations of stp(B/A), where
|/ | = κ(T), and let pi be a conjugate of p over B^. Since all independent
pairs of realizations of stp{B/A) have the same type over A the pair (puPj)
is conjugate to (p,pf), hence pi J_ pj, for i φ j G /. Let M be an a—model
containing A U (JieI Bi, q' = q\M and p\ = pι\M (for i G /). Since g is a
stationary type over A and each pi is conjugate over A to p, qJ-Pi, for each
i G /. By Lemma 5.6.l(i) there are 6 realizing q' and α̂  realizing p^ such that
b depends on α̂  over M, for each z G /. Let f C / be a set of cardinality
< κ(T) such that b is independent from { α̂  : i G / } over M U { α̂  : z G / '} .
Then, for a fixed j G / \ /', the dependence over 6 and α̂  over M forces aj
to be dependent on {aι : i G/'} over M. However, Lemma 5.6.1(ii) implies
that pj is orthogonal to ®ieΓPi- This contradiction completes the proof of
the proposition.
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5.6.2 Domination

The domination relation on stationary types addresses the second motivat-
ing question at the beginning of the section. Namely: When p and q are
nonorthogonal stationary types, must bases of p and q (in a given model)
have the same cardinality? This question is approached by defining the dom-
ination relation on types, which forces bases of p and q to have the same
cardinality, then discussing (under the subsection on weight) when domina-
tion agrees with nonorthogonality. In this subsection we also point out some
useful connections between a—isolation and dependence.

The domination relation on triples of sets was introduced in Defini-
tion 3.4.2 in the context of totally transcendental theories. Before discussing
domination between types we study the extension of this notion to triples of
sets in stable theories.

Definition 5.6.4. For sets A, B and C we say that A is dominated by B
over C, and write A < B (C), if for all sets D,

The sets A and B are said to be domination equivalent over C, written
AOB (C), ifA<B (C) andB<A (C).

The basic properties of the relation, especially as they relate to indepen-
dence are found in

Lemma 5.6.2. (i) Suppose that AQ C A and C is independent from A over
AQ. Then

B<\C (;4o) => B < C {A).

(ii) If AQ C A and Bl)C is independent from A over AQ, then

B<C(A) = * B < C {AQ).

(in) IfBocB,B<Bo\JC {A) and C ± B; then B < Bo (A).
A

(iv) If {Ai : i e 1} is a family of sets which is independent over C and
Bi is dominated by Ai over C for all i G /, then {Bι : i G / } is independent
over C.

(v) (Transitivity) // A D B D C D £>, A < B (C) and B < C (D) then
A<C(D).
Proof, (i) Let D be independent from C over A. Then D U A is independent
from C over Ao (by the transitivity of independence). Since B < C (Ao),
D U A is independent from B over AQ. We conclude that D is independent
from B over A.

(ii) Suppose that D is independent from C over AQ. Without loss of
generality, D is independent from A over AQ U C U B. (If there is such a
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D which is dependent on B over AQ, there is one satisfying this condition.)
Since A is independent from B U C over Ao, D U B U C is independent from
A over AQ. Thus, D is independent from AUC over AoUC which, combined
with the original assumption about D, shows that D is independent from
AUC over Ao. Thus, D is independent from C over A and D is independent
from B over A (since B < C {A)). From the independence of D from A over
J40 we conclude that D and 5 are independent over Ao, as desired.

(iii) The proof of this, which is similar to (ii), is assigned in the exercises.
(iv) To simplify the notation let C — 0. To prove the independence of

the family of B^s we prove by induction on \X\ that whenever X is a finite
subset of / , { Ai : i £ I \ X } U { B< : i € X } is independent. When X = 0
it is true by hypothesis. For the inductive step let j £ X and Y = X \ {j}.
Since {Ai : i E I\X}U {Aj} U { Bi : i e Y } is independent and Bj is
dominated by Aj, { Ai : i G / \ X } U {£7} U { Bi : i G Y } is independent,
as required.

(v) The straightforward proof is left to the reader.

Definition 5.6.5. For stationary *—types p andq we say thatp is dominated
by q and write p < q if there is a set A on which both p and q are based and
realizations C and D of p\A and q\A, respectively, such that C is dominated
by D over A.

Ifp<q and q < p we call p and q domination equivalent and write p • q.

Remark 5.6.3. Notice that < is transitive on stationary types and x • y is
an equivalence relation (exercise). Also, for p, q and r stationary, p < q ==>
p <S> r < q 0 r. Thus, if p^, qi are stationary and pi • <̂ , for 1 < i < n, then
P\ 0 . . . 0 pn is domination equivalent to gi 0 . . . 0 qn.

Again, we only prove properties for types, leaving the extension to
*—types to the reader. Domination links two types within a—models through
the following connections to α-isolation. The first result is little more than
a rewording of the definitions. The subsequent proposition is a direct gener-
alization of Lemma 3.4.7. Both proofs are left to the reader in the exercises.

Lemma 5.6.3. If B D C are sets and a is an element, then {a}UB < B (C)
if and only if for all sets D independent from B overC, stp(a/B) \= stp(a/DU
B).

Proposition 5.6.3. Let M be an a—model and B D A. If B is a—atomic
over MUA then B is dominated by A over M. If A is finite (or of cardinality
< κ(T) when κ(T) is regular) and B is dominated by A over M, then B is
a— atomic over MUA.

As an immediate consequence of the proposition we obtain:

Corollary 5.6.1. If M is an a—model and B is a—atomic over AuM, then
for anyb£B\M, b^A.

M
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Corollary 5.6.2. Suppose M is an a—model and p, q e S(M) are orthogo-
nal Then, for all cardinals /s, λ there is an a—model N D M and sets /, J
such that I is a basis forp in N, J is a basis for q in N, \I\ = K and \J\ = λ.

Proof. Assigned as Exercise 5.6.9.

Proposition 5.6.4. For p and q stationary types and M an a—model on
which p and q are based, the following are equivalent:

(1) p < q.
(2) There is a b realizing q\M and an a realizing p\M such that a <
b(M).

(3) For any b realizing q\M and any a—model N D M U {b}, p\M is
realized in N.

Proof. Most of the work goes into proving (1) = > (2). Suppose that A is a set
on which p and q are based and there are c, d realizing p\A, q\A, respectively,
with c < d (A). Without loss of generality, cd is independent from M over A.
Let 5 b e a subset of M of cardinality < κ(T) over which both p and q are
based. Choosing Ao C A a set of cardinality < κ(T) over which tp(cd/A) does
not fork, Lemma 5.6.2 implies that c < d(A0). Since M is an α—model there
is a set A\ C M realizing tp(Ao/B), and there are ab such that tp(abAι/B) =
tp(cdAo/B) and ab is independent from M over A\\JB. The types of c and d
over MuAo arep|(MuAo) and q\(MuAo), respectively, and these types are
based on J3, so a realizes p\M and b realizes q\M. Furthermore, by a < b(Aι),
tp(c/M U Ao) = p\(M U Ao), the independence of ab from M over Ai, and
Lemma 5.6.2(i), a < b (M). This completes the proof of (1) = > (2).

(2) => (3) Letting α, b and M be as in (2), the proof of this part follows
immediately from

Claim. There is an element o! realizing p\M such that stp(a!/M U {6}) is
a—isolated.

Let Ao C M be a set of cardinality < κ(T) over which tp(ab/M) does
not fork. Let N be an a—prime model over M U {b} and a' a realization of
stp(a/AoU{b}) in TV. By Lemma 5.6.2(ii) a! is dominated by b over Ao. Thus,
the Ao—independence of b and M yields the AQ—independence of a1 and M.
We conclude that a' realizes p\M and stp(a'/M U {b}) is a—isolated (simply
because a' € N), proving the claim.

That (3) =ϊ (1) follows from Proposition 5.6.3.

By the previous proposition and Proposition 5.6.3, given an a—model M
and p, q G S(M) such that p < q, there are a realizing p and b realizing q
such that ab <b (M).

Corollary 5.6.3. Given ana—modelM, p, q G 5(M) domination equivalent
and an a—model N D M, ίftere zs α 6αse for p in N of cardinality λ if and
only if there is a base for q in N of cardinality λ.
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Proof. Suppose / is a basis for p in N of cardinality λ. For a e I there
is a ba G N realizing q such that {ba,a} is dominated by a over M. Let
J = {ba : a G I}. By Lemma 5.6.2(iv), J is a Morley sequence in q of
cardinality λ.

5.6.3 Weight

The most basic problem in the development of a dimension theory is: Given
a set A, do all maximal independent subsets of A have the same cardinal-
ity? If the answer is negative is there at least a measure of how widely the
cardinalities of maximal independent sets can differ? Weight addresses these
issues.

Definition 5.6.6. Let T be stable and p a complete *—type over A.
(i) Let PWT(p) be the set of all λ such that given B realizing p there is

an A—independent set C such that c J/ B , for all c G C and \C\ = λ.
A

(ii) The pre-weight of p (pwt{p)) is sup PWT{p).
(Hi) Suppose thatp is stationary. The weight of p (wt(p)) is the supremum

of {pwt(p\C) : p is based on C}.
For any set B the pre-weight of B over A is pwt(tp(B/A)), which we

denote by pwt(B/A). The weight of B over A (wt(B/A)) is wt{stp{B/A)).
If A — 0 we omit it as usual.

Remark 5.6.4- I*1 Definition 3.4.1 pre-weight was defined for complete types
in a t.t. theory. The reader can verify that the two notions agree in t.t.
theories.

Pre-weight and weight are invariant under conjugacy. Thus, pwt(B/A) =
pwt(stp(B/A)), and wt(B/A) = wt{B'/A) for all sets A, B and B1 with
tp(Bf/A) = tp(B/A). Also, given B1 c B, pwt(Bf/A) < pwt{B/A) and
wt(B'/A) < wt(B/A).

Remark 5.6.5. Given a superstable theory and a complete type p in finitely
many variables, PWT(p) C ω. (Suppose p G S(A), a realizes p and / is an
A—independent set such that each b G / depends on a over A. There is a
finite J C I such that a is independent from / U A over JU A. Any b G I\J
is independent from A U {a} over J u A , hence independent from a over A.
Thus, / = J , proving that / is finite.)

Remark 5.6.6. A complete strongly minimal type has weight 1. (See Exer-

cise 5.6.10.)

If λ is any cardinal, λ~ is K if λ = κ+ and λ~ = λ if λ is a limit cardinal.
For countable stable theories, κ(T)~ is always HQ
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Lemma 5.6.4. Let T be stable.
(i) wt(B/A) < «(Γ)- + |S | .
(ii) Ifp is a stationary type and M is an a—model over which p is based,

wt(p) = pwt(p\M).
(Hi) If p and q are stationary types and p < q, then wt(p) < wt(q).
(iv) Domination equivalent stationary types have the same weight.

Proof, (i) Since A is arbitrary here it suffices to prove the inequality for pre-
weight instead of weight. Let C = { c\ : i G /} bean A—independent set
with Ci dependent on B over A, for all i G /. By Proposition 5.2.1 there is a
set J C / of cardinality < κ(T) + |B|+ (if κ(T) is regular) and < κ(T) + |B|
(otherwise) such that B is independent from CL)A over A\j{c% : i G J }. The
stated conditions on C force J to equal /, hence \I\ satisfies the restrictions
placed on \J\. Whether κ(T) is regular or singular, |/| < «(T)~ + \B\. Since
pwt(B/A) is the supremum of the cardinalities of such sets J this proves (i).

(ii) It suffices to show that whenever

- A is a set on which p is based,
- a is a realization of p\A, and
- C = {ci : z G / } an A—independent set such that c* depends on a over A,

for all i e l ,

there are

- b realizing p\M and
- an M—independent set { c\ : i G /} such that c[ depends on b over M for

all i G /.

Let Λbea set on which p is based, a a realization of p\A and C = {ci : i £ 1}
an A—independent set such that c* depends on a over A, for all i G /. We
can assume that A D M (an exercise left to the reader). The argument in (i)
shows that |/| < κ(T), so there is an A! C A of cardinality < κ(T) such that
{α}UC is independent from A over A! (see Proposition 5.2.1). Let ΰ c M b e
a set of cardinality < κ{T) over which p is based. Since M is κ(T)—saturated
there is a set A" C M realizing tp(A'/B). In fact, A" realizes tp(A'/B\j{a})
since p is based on B and a is independent from both A! and M over B.
Let C = {c'i : i G / } be a family of sets such that C U A" is conjugate
t o C U i over B U {α} and C" is independent from M over A" U {α}. These
conditions imply that C is not only A"—independent, but M—independent
and a depends on c[ over M for all i G /. Thus, |/| < pwt(p\M), completing
the proof of (ii).

(iii) Let M be an a—model on which both p and q are based. By Propo-
sition 5.6.4 there are a realizing p and b realizing q such that a is dominated
by b over M. If { c* : i G / } is an M—independent set such that Q depends
on a over M for all i G /, then the domination hypothesis guarantees that cι
depends on b over M for all z G /. Thus, pwt(p) < pwt(q). By (ii) and the
fact that M is an a—model, wt(p) < wt(q), completing the proof.
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The proof of (i) leads us to ask if the weight of any stationary type is actu-
ally < κ(T). However, even when T is superstable it is not clear that stp(a/A)
has finite weight. It is at least conceivable that there are ̂ .—independent sets
of size n for arbitrarily large n witnessing that wt(a/A) > n. This will be
shown to be impossible in the next subsection in a lengthy argument.

The next result links the weight of a union of two sets to the weights of
the component sets.

Proposition 5.6.5 (Additivity). Let T be stable and B = {J{Bi : i < a}
a family of sets. Then

(i) wt{B/A) < ^2wt(Bi/A U £<*), where BKi = \J{ Bύ : j <i}, and
(ii) If {Bi : i < a} is A-independent then wt(B/A) = ^wt(Bi/A).

Proof, (i) Replacing A by a larger set Ar independent from B over A such that
pwt(B/Af) = wt(B/A), it suffices to show pwt(B/A) < Σwt{Bi/A U £<*).
Without loss of generality, A = 0. Let { a : i G / } be an independent family
witnessing that pwt(B) > \I\. We will write 7 as a union of a disjoint family
of sets Ji, i < α, such that {CJ : j G Ji} witnesses that wt^Bi/B^) > \Jι\.
Since |/| = Σi<a \Ji\ this proves the necessary inequality.

Preliminarily, we choose by recursion, Ii C /, for i < α, a maximal subset
of Ip = Π?<2 Ij s u c n that { Cj : j G Ii } U {B<i+i} is independent. The sets
Ii, i < a, form a descending chain of subsets of / whose intersection is empty
since every c* depends on B = Ba. Let Ji — ip \/$. (Intuitively, Ji is what is
lost from the chain at stage i). Since f]i<a 1% = 0, \Ji<a J% — I and the J^'s
certainly form a pairwise disjoint family. The definition of the chain of sets
directly implies that Cjά = { Ck : k G Ij } is independent from 2?<i+i, and Cj
depends on Bi over Bκi U Cij for every j £ Ji. Thus, the pre-weight of Bi
over B<iUCij is > \Ji\. By the independence of Cij from B<i+ι we conclude
that wtiBi/B^) > \Ji\. This proves (i).

(ii) Replacing A by a larger set if necessary and then letting A = 0 it
suffices to show (by (i)) that pwt(B) > Σi<aP

wt(Bi)' L e t ci = {<% '- 3 € Ji}
be an independent family such that c* depends on Bi for all j . Without
loss of generality, d is independent from {Bj U Cj : j ^ i} over B*. By
the transitivity of independence, { Bi U C* : i < a } is independent. Thus,
C = Uz<α ̂  ^s independent and each element of C depends on B. Since
\C\ = Έi<a \Ci

As the following corollary suggests we can expect a reasonable dimension
theory on the realizations of a weight 1 type.

Corollary 5.6.4. Let T be stable and B a collection of sets such that
wt(B/A) = 1, for all B e B. Let B = {Bi: i G / } and C = {Cj : j G J }
be maximal A—independent subsets of B. Then, \I\ = \J\.

Proof. By Proposition 5.6.5(ii), wt(\jB/A) = \I\. Since B is a maximal
independent subset of β, Cj depends on B over A, for all j G J, hence
\J\ < wt(B/A) = \I\. For the same reasons, |/| < \J\.
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Definition 5.6.7. If p e S(A) is stationary and has weight 1, then all bases
for p in C (where C is some set) have the same cardinality by the corollary.
We call this cardinality the dimension of p in C, denoted dim(p, C).

In the next subsection we show that in a stable theory in which PWT(p) C
ω, for all stationary p, a stationary type p is domination equivalent to a finite
product of weight 1 types. This goes a long way towards reducing all problems
about types vis-a-vis orthogonality and domination to the class of weight 1
types, as well as giving a good dimension theory on <£.

Remark 5.6.7. While weight 1 types do have dimension, they have a weakness
in one area. A frequently used feature of dimension on strongly minimal sets
is its additivity: If φ is a strongly minimal formula defined over A and N D M
are models with A C M, dim(φ(N)/A) = άim(φ(N)/M) + dim(φ(M)/A).
There are weight 1 types on which a corresponding additivity result fails
(even for a—models). We can eliminate this pathology by working with a
special class of weight 1 types called regular types. We will prove that every
weight 1 stationary type in a superstable theory is domination equivalent to
a regular type, giving us this more robust dimension theory in superstable
theories.

We end with two corollaries which address the issue of linking the dimen-
sions of different weight 1 types.

Corollary 5.6.5. IfT is stable andp, q are stationary types withp of weight
1, thenpj^q 4=> p < q. Thus, if q also has weight 1, pj.q <=>> p • #.

Proof. It follows directly from the definitions that p < q => pjLq for
any two stationary types. Supposing p and q to be nonorthogonal let M be
an a—model on which both p and q are based and α, b realizations of p, g,
respectively, which are dependent over M (see Lemma 5.6.l(i)). Suppose,
towards a contradiction, that a is not dominated by b over M. Then there is
a c independent from b over M which depends on a over M. This is impossible
since wt{a/M) = 1. Thus, p < q.

Corollary 5.6.6. Let T be stable, M an a—model and p, q £ S(M) weight
1 types.

(i) If p J_ <?, then for all K > \M\ there is an a—model N D M such that
dim(p, N) = K and dim(q, N) = 0.

(ii) IfpJ-q, then for all a—models N D M, dim(p, N) = dim(q, N).

Proof. The reader is asked to combine the relevant results in the exercises.

Thus, all of the questions on page 274 can be answered quite satisfactorily
for dimension on weight 1 types over a—models.
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5.6.4 Finite Weight

For T a stable theory let

PWT(T) = \J{PWT(p) : p a stationary type in Γ}.

(In this definition we allow only types, not *—types.) In this subsection we
study weight and domination in a stable theory in which PWT(T) c ω. This
class of theories includes the superstable theories (see Remark 5.6.5). The key
result, which follows, goes a long way towards reducing any type to weight 1
types (at least as far as orthogonality, domination and dimension go).

Theorem 5.6.1. Let T be a stable theory with κ(T) regular and PWT(T) C
ω.

(i) Then every stationary type in T has finite weight.
(ii) Moreover, given a stationary type p there are weight 1 types q\,..., qn

(where n = wt{p)) such that pD^(g). . .(g)g n .

Corollary 5.6.7. Every stationary type in a superstable theory has finite
weight.

All of the work in the proof goes into showing (ii); (i) will follow quickly
using some previously established facts about weight and domination.

Remark 5.6.8. Suppose T is stable, wt(a/A) = 1 and a depends on b over A.
Then α is dominated by b over A. (Suppose, to the contrary, that there is a
c independent from b over A such that c depends on a over A. Then the pair
6, c witnesses that wt(a/A) > 2; contradiction.)

The following proposition, due to Tapani Hyttinen [Hyt95], is the key.
The proof given here is largely due to Pillay.

Proposition 5.6.6. Let T be stable and p a stationary type. If there is no
weight 1 stationary type q dominated by p then for some nonforking extension
p1 ofp,K0ePWT(pf).

Proof. Let Ao be a set over which p is based. Certainly p has weight > 1,
so there is a set A\ such that pwt{p\A\) > 1. Choose b realizing p\A\ and
elements αi, c\ such that

(*) {αi,cχ} is A\— independent, b depends on a\ over A\ and b depends on
c\ over A\.

Suppose there is a set A\\ D A\ such that

δvL 4 n , a X An and aAn S, «i (5.9)
Λo Aι M

Then, {αi,ci} is An—independent, b depends on a\ over An and b depends
on c\ over An- Iterating this process, let A\ C An C ^4iα C . . . , a < λ be
a chain of sets such that for A[ = \Ja<x A\a and all a < β < λ,
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b X A'l7 ci X A/3 and cxA!x X αi.
Ao Aα A\

Thus, λ < Λ(Γ). By choosing the Aiα's to be a maximal chain and replacing
A\ by Ai we can require (in addition to (*)) that

(**) there is no set B D A\ such that

&J.J3, cλχB and cλB X aλ. (5.10)

Without loss of generality, Ai is an α—model.

Claim. wt(cι/A{) > 2.

Suppose wt(cι/Aι) = 1. Since 6 depends on ci over Ai, c\ is dominated by
6 over A\. This contradicts that p does not dominate a weight 1 stationary
type, to prove the claim.

We chose A\ to be an a—model, so pwt{c\/A\) > 2 (Lemma 5.6.4(ii)). Let
{α2,C2} be an Ai— independent set such that c\ depends on α2 over A\ and
c\ depends on c2 over A\. Choose α2 and c2 so that c2a2 is independent from
bc\a\ over Ac\. Thus, {α2,c2,αi} is A1—independent. Let B = A\ U {c2}.
Then ci depends on B over Ai and a\ is independent from ciB over A\. By
(**), 6 depends on B over Aχ; i.e., b depends on c2 over A\. As above there
is a set A2 D Ai such that

- 6 is independent from A2 over Ao,
- {αi,α2,c2} is A2—independent,
- 6 depends on any element of {αi, α2, c2} over A2 and
- there is no set B D A2 such that

& 1 5 , c2 X B and c 2 5 X ^i«2-

Continuing in this manner yields elements αi,α 2,α3,... and sets A\ C
A2 C A3 C ... such that, letting A = \Jj<ω Aj, for each i < ω, b is indepen-
dent from A over Ao, {αi,..., α̂ } is A^—independent and independent from
A over Ai, and 6 depends on aι over each Aj, j > i. Thus, { α̂  : i < α;} is
A—independent and 6 depends on each aι over A. Since tp(b/Λ) is a nonfork-
ing extension of p the proposition is proved.

Corollary 5.6.8. Let T be a stable theory such that PWT(T) C ω. Then
for any a—models M C N, M φ N, there is a a G N\M such that tp{a/M)
has weight 1.

Proof. See Exercise 5.6.14.

Lemma 5.6.5. Suppose that T is stable with κ(T) regular, M is an a—model,
B D M and p G S(B) is a weight 1 stationary type nonorthogonal to M. Then
there is a weight 1 type q G S(M) domination equivalent to p.
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Proof. Let Bo C B be a set of cardinality < κ(T) such that p is based on
acl(Bo). Let A C M be a set of cardinality < κ(T) such that Bo and M are
independent over 4̂ (which exists since κ(T) is regular) and pjί A. Since M
is an α—model there is a 5 i C M realizing stp(B0/A). Since i?o and B\ are
J4—independent, Proposition 5.6.2 indicates that p\acl(Bo) is nonorthogonal
to its conjugate p' over acl{Bι). Weight is preserved under conjugacy, so p'
also has weight 1. Thus, q = pf\M is a weight 1 type nonorthogonal to p.
On weight 1 types nonorthogonality is the same as domination equivalence
(Corollary 5.6.5). This proves the lemma.

Proof of Theorem 5.6.1. We prove part (ii) first. Without loss of generality,
p e S(M) for an a—model M.

Claim. Let N D M be an a—model and C C N a maximal M—independent
set of realizations of weight 1 types in S(M). Then N is dominated by C
over M.

Let M1 be a maximal subset of TV which is dominated by C over M. Notice
that M' is an a—model. (Let M" C N be the a—prime model over M1\ By
Proposition 5.6.3, M" is dominated by Mf over M, hence by C over M. The
maximality of M' forces M" to equal M'.) Suppose, towards a contradiction,
that M' φ N. By Corollary 5.6.8 there is an a e N\M' such that wt(a/M') =
1. If tp(a/M') is orthogonal to M, M' U {α} is dominated by M' over M,
contradicting the maximality of M'. Thus, tp(a/Mf) is nonorthogonal to M,
yielding a g G 5(M) of weight 1 domination equivalent to tp(a/M') (by
Lemma 5.6.5). Proposition 5.6.4 then gives a b e N such that tp(b/Mf)
is a nonforking extension of q. Then C U {b} is an M—independent set of
realizations of weight 1 types, contradicting the maximality of C to prove
the claim.

Let a be a realization of p, N the a—prime model over M U {a} and
C c iVa maximal M—independent set of realizations of weight 1 types over
M. Since every element of C depends on a over M (Corollary 5.6.1) and
pwt(p) is finite, C is finite. Let C = {ci,...,cn} and qι = tp(ci/M), for
1 < i < n. Since C is finite Proposition 5.6.3 implies that a • C (M). The
type of C over M is r = gi ® .. . ® gn, so p • r, proving (ii).

(i) Let p be a stationary type and q\,..., qn weight 1 types such that
p • (ft®.. .®ςrn. By Proposition 5.6.5(ii), wt(qι®.. .<8>gn) = n. Part (i) now
follows from (ii) and Lemma 5.6.4(iv) (which says that domination equivalent
types have the same weight). This proves the theorem.

As stated in Remark 5.6.7 a full-featured dimension theory requires an
additivity condition which may fail for weight 1 types. Simply knowing that
every type in a superstable theory has finite weight does, however, have its
applications. A good example is the following theorem by Lachlan, whose
original proof (before weight was developed) was much harder.
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Theorem 5.6.2 (Lachlan). A countable superstable theory has 1 or in-
finitely many countable models.

Proof. Assume, to the contrary, that T is a countable superstable theory
which is not No—categorical, but has finitely many countable models. By
Lemma 2.3.1, T has a countable model M which realizes every complete
type over 0 and is prime over a finite set a. Let n = wt(a). Since T is not
Ho—categorical there is a nonisolated type p G 5(0). Let b = {ί>o? >&n}
be an independent set of realizations of p. Since M realizes p we may as
well assume that b G M. Since tp(bi) is nonisolated and tp(bi/a) is isolated
Corollary 5.1.9 indicates that a X bi, for all i < n. The independence of
{6o,..., 6n} now contradicts that wt(a) = n to prove the theorem.

Remark 5.6.9. The alert reader will notice that the Baldwin-Lachlan The-
orem is a special case of this theorem. Indeed, parts of the proof of the
Baldwin-Lachlan Theorem given earlier are restricted versions of the proof
of Lachlan's result.

Historical Notes. The concepts of orthogonality and weight are due to
Shelah and found in [She90]. The domination relation on sets and types was
developed by Lascar in [Las82]. Our exposition owes a great debt to Makkai
[Mak84]. Theorem 5.6.1 is found for regular types (instead of weight 1 types)
in [She90], The generalization to stable theories with PWT(T) C ω was done
by Pillay, with the key step due to by Hyttinen. Theorem 5.6.2 was proved
by Lachlan in [Lac73] with an alternative proof found in [Las76].

Exercise 5.6.1. Prove Lemma 5.6.1(ii).

Exercise 5.6.2. Let p be a stationary type based on a set A, r a stationary
type nonorthogoήal to p and rf a conjugate of r over A. Show that r' is also
nonorthogonal to A.

Exercise 5.6.3. Prove Lemma 5.6.2(iii).

Exercise 5.6.4. Prove Lemma 5.6.3.

Exercise 5.6.5. Prove Proposition 5.6.3.

Exercise 5.6.6. Prove that x < y is transitive on stationary types and
x Ξ V defines an equivalence relation.

Exercise 5.6.7. Suppose that p and q are strongly minimal types in a stable
theory. Prove that pjLq if and only if p • q (without using Corollary 5.6.5).

Exercise 5.6.8. Suppose that M D N are α-models, p, q G S(N) are dom-
ination equivalent and / is a basis for p in M. Show that there is a basis J
for q in M such that \J\ = \I\.
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Exercise 5.6.9. Prove Corollary 5.6.2.

Exercise 5.6.10. Prove Remark 5.6.6.

Exercise 5.6.11. Let p be a weight 1 type nonorthogonal to 0 and p' a
conjugate of p over acl{$). Prove that pjLp'.

Exercise 5.6.12. Alter the vector space example (Example 5.6.3) slightly
to produce two strongly minimal types p and q such that p^ !l_ q, p i q^,

Exercise 5.6.13. Prove Corollary 5.6.6.

Exercise 5.6.14. Prove Corollary 5.6.8.






