
Chapter IV

Elementary Results on

We have seen, in Chapter III, how admissible sets provide a tool for the study
of infinitary logic by giving rise to those countable fragments which are especially
well-behaved. In this chapter we begin the study of HYP^ by means of the
logical tools developed in Chapter III.

1. On Set Existence

Given $R we form the universe of sets Wm on 9JΪ and speak glibly about arbitrary
sets aeVm. In practice, however, one seldom considers the impalpable sets of
extremely high rank. There is even a feeling that these sets have a weaker claim
to existence than the sets one normally encounters. Without becoming too
philosophical, we want to touch here on the question: If we assume $R as given,
to the existence of what sets are we more or less firmly committed?

IHYP^oj is the intersection of all models 21̂  of KPU+ and is an admissible
set above 90Ϊ. There appears to be a certain ad hoc feature to JHYP^, however,
since it might depend on the exact axioms of KPU+ in a sensitive way. You
would expect that if you took a stronger theory than KPU+ (say throw in Power,
or Infinity or Full Separation) that more sets from V^ would occur in all models
of this stronger theory. That, for 9DΪ countable, this cannot happen, lends con-
siderable weight to the contension that IHYP^ is here to stay.

Of the two results which follow, the second implies the first. We present
them in the opposite order for expository and historical reasons.

A set S^afl is internal for <Hm = (yjl; A,E,...) if there is an aεA such that

1.1 Theorem. Let $R = <M, #!,..., #,> be a countable structure for L. Let T be
a consistent theory ffinitary or infinitary) which is Σί on HYP^ and which has a
model of the form ^^ = (501; A,£,...). Let S^M be such that S is internal for
every such model of T . Then
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Proof. The proof is a routine application of Completeness and Omitting Types.
Given the above assumptions we see that there can be no model 9IOT of

where T is T plus

(i) vv[u(v)^yp€Mv=ji]
Diagram (9W)

and Φ is the set of formulas

{pφv\peS}v{pev\pφS}9

for then S would not be internal for 91 .̂ The formulas in T and in Φ(t ) are
members of the admissible fragment LJ of L£ω where A = ΉYPaR = ($R; 4,e),
and where we have introduced p by some convention like p = <0,p>. By the
Omitting Types Theorem there is a formula σ(v) of L| such that T' + 3ι;σ(ι?)
is consistent but such that :

r t= Vt; [σ(ι;)->pet;], for all

T> Vt; [σ(ι?Hp <£*;], for all

But then

S = {pe2R|ri=Vι;(σ(ι;)->peι;)}

so S is Σ! on HYP^ by the Extended Completeness Theorem for LJ. Similarly
-ιS is Σ! on HYP^ so S is Δx on HYP^. Thus SelHYP^ by Δt Separation. D

Before stating our next result we need a more sophisticated notion of what
it means for a set aeW^ to be internal for 91̂  = (Sft A, £,...).

1.2 Definition. A set aeW^ is internal for 91̂ , = (2R A, E, . . .) if α e ̂ 7(9K X, £),
where we again identify i^/(^R',A,E) with its transitive collapse.

Note that for a^M this is equivalent to the existence of an xeA with
a = x. Also notice that if a is internal and bea then b is internal.

1.3 Theorem. Let ^01 be countable and let αeV^ be a set which is internal for
every model

of some consistent theory T, βnitary or not, formulated in L* = L(e, . . .), KPU+ c: T.
If T is Σί on IHYP^, then αeHYP^.

Proof. We prove the theorem by e-induction. By the comment above, if a is
internal for every model 91̂  of T, so is every be a. By e-induction, each of
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these b is in HYP^. That is, a^MYPm. A routine modification of the proof
of 1.1 shows that a is ̂  on JHYP^. If we can prove that αcL(5DΪ,β) for some
j5<o(HYPaϊί) then, by Δ: separation, aeMΎPm. Assume, on the contrary, that

O(9Jl) -the least ordinal β such that a^

In any model (Άm of T there would be a unique ordinal x such that

aO TN"x = least ordinal β such that αc

By Σ Reflection in 31̂  and, by the absoluteness of L( , ), this x must be
Hence T+ the following theory pins down 0(5)1), contrary to Corollary HI. 7.4.

Diagram (9Jt),

" < is the order type of the e-precedessors of c",

(2) "c is the first ordinal such that L(9Jl,c) is admissible" (if α>ω)

or

(3) "c is the first limit ordinal9 (if α = ω).

This theory is formulated in L(e,..., <,c,p)peΛf. (The reason for the two cases
is that we do not yet know how to write "x is admissible" by a finite formula.)
We can write (2) as

Thus we see that no matter how we strengthen KPU+ to an axiomitizable
theory T, we cannot assure that any set in Y^ — HYP^ should be internal to
every model ^^ of T.

One could consider HYP^ as a new structure 91 and form ΉYP^ but it is
more natural, and essentially equivalent, to proceed differently.

1.4 Definition. Let AOT = (SBl;X,e) be transitive in VOT. Then HYPίA^) is the
structure (2R; B,ε) where

B = (~}{B'\(MvA)eB',((mιBf,e) admissible}.

We consider IHYP^ as a special case of HYP(Aαn).

1.5 — 1.9 Exercises

1.5. Show that MΎP(Am) is admissible.

1.6. Show that every element aEMΎP(Ayn) has a good Σί definition with
parameters from Mu,4u{M,,4}.
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1.7. Show that the obvious generalizations of 1.1 and 1.3 are true.

1.8. Let yΓ = <ω, +, ,0> and let X<^ω. Show that there is a
KPU+^T such that X is in every model 91̂  of T. This shows that the con-
dition that T be Σ1 on HYP^ is necessary in 1.1 and 1.3.

1.9. Show that the hypothesis KPU+cΓ can be dropped from Theorem 1.3.
[Hint: add a new e-symbol and a function symbol used to denote an e-iso-
morphism.]

1.10 Notes. Theorem 1.1 is a modern version of the Gandy-Kreisel-Tait Theo-
rem: For any consistent Πj T set of axioms for second order number theory, if
a^ω is internal to every model of T, then a is hyperarithmetic.

Theorem 1.3 was announced by Barwise in Barwise-Gandy-Moschovakis
[1971]. The part of it contained in Theorem 1.1 is due independently to Grilliot
[1972]. The improvement in 1.9 is due to Ville [1974].

2. Defining Π} and Σ} Predicates

Let $R = <M,R1 ?...,KZ> be a fixed infinite structure for a language L. An rc-ary
relation S on 9W is Π{ on $R if it can be defined by a second order formula of
the form

S(Pl,...,Pn) iff VT1,...,VTk(p(p1,...,Pn,T1,...,Tt),

where φ is a first order formula of L(Ίl9...,Ίk), possibly containing parameters
from $)ϊ. More formally we should write this as: for all p1?...,pn6M, S(pl5...,pn)
holds iff for all relations T^...,Tk on 9K,

The negation of a Π} relation is called Σ\ on 501. Thus S is Σj iff it can be de-
fined by

S(p) iff 3T1,...,3Tk^(p,T1,...,Tk)

for some first order ψ. If S is both Π{ and Σ} on 5R then S is said to be Δ} on 9ER.
This section is primarily concerned with techniques that can be used to

show that predicates are Πj or Σj on 9JI. The reason for discussing this material
can be seen by glancing at the next section.

2.1 Examples, (i) // ^Γ = <ω,0, +,•>, then a set is Δ} over Jf iff it is hyper-
arithmetic. (This is the classical Souslin-Kleene theorem. See, e. g., Shoenfield
[1967].)
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(ii) // 9Ϊ = <ΛΓ,0, +, •> is a nonstandard model of arithmetic then the standard
integers form a Π} set but not, in general, a Δ} set:

x is standard iff VS [S(0)Λ Vy(S(y)^S(y + ί))^S(xf].

(iii) // 9Jl = <G,0, -h> is an abelian group then the torsion part T of G, the
set of elements of G of finite order, is Π} on G:

xεT iff V

(iv) // 9JΪ = <G,0, +> is an abelian group then the largest divisible subgroup D
of G is Σ}, but this time it is not so obvious.

xεD iff 3fί [H a subgroup AH divisible Λ/f(x)]

but the clause "H is divisible", meaning

for all integers n, Vye// 3ze#, nz=y

cannot be expressed by a single first order sentence. It is still possible, though,
to write D out as a Σ} predicate. The student should try this before going on
in order to appreciate the machinery developed below. D

The last example is just the tip of an iceberg. In writing out Π} predicates
we frequently discover that we would like to use an extended first order formula
as defined in §11.2. (In writing out the Σ} predicate in 2.1 (iv) we need the
co-extended predicate "H is divisible".) It turns out we can allow ourselves this
freedom without changing the class of Π} predicates.

2.2 Definition, (i) An extended Πj predicate over S[R is a predicate S ( p ί 9 . . . 9 p i 9

S1,...,Sm,Λ1,...,fl/,P1,...,/i) defined by

(aRΛ^.^ HF^^^

for some extended first order formula φ which may have parameters in it from
,,. (We use S, Γfor relations over M; P, Q for relations over MuίHF^.)

(ii) S is co-extended Σ} if it is in the dual class; that is, if it can be defined by

3Q φ(p,a,S,Ύ9 P,Q)

where φ is co-extended.

Thus extended Π} predicates over ΪR are not really predicates over 9JΪ; they
are predicates of points in 2R, relations on $R, sets in HF^ and relations on
HR0J. They are important as a tool for showing predicates over 9K are Π}. For
example, in 2.1 (iv), it is clear that D is co-extended Σ}, so that D is Σ} over G
by 2.8 below.
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2.3 Lemma. //S1? S2 are extended Yl\ (respectively co-extended Σ}) so are (8l v S2)
and (Sl Λ S2).

Proof. For example,

VT ιA(— , T) Λ VT' VQ θ(_, Γ, Q)

is equivalent to

VT VT' VQ [>(— ,Ό Λ Θ(_,T Q)]

as long as we first make sure T and T are distinct symbols. The part inside the
brackets is still extended first order. D

2.4 Lemma. // S is extended Π} (respectively, co-extended Σ}) then — iS is
co-extended Σ\ (respectively, extended Π}). D

2.5 Lemma. // S = S(p1,...,pί, _ ) is extended Πj (co-extended Σ}) then so are

S^P!,. ..,&._!,_) ijff Vpf 8(0!,. ..,?;_!, pί5_),

S2(p1,...,p ί_1,__) zjff apiSKp!,...,^.!,^,—).

Proof. It is hard to see the extended Πj case directly, but we can prove the
co-extended Σ} case and then apply 2.4. If

S(p,_) iff 3QιMp,__,Q)
then

S^P!,...^-!,—) iff 3Q3PίιA(p,_,Q)
and

S2(p1,...,pί_1,_) iff

iff 3Q'Vpi^(p1,...,pί,_,Q'(...,pi))

where the notation indicates that we have replaced the π-ary relation Q(ί ι,...,ίw)
by the new n + l-ary Q /(ί1,...,fw,p f) throughout ψ. D

2.6 Lemma. // S = S(α1,...,0/ , _ ) is extended H{ then

is extended Π}. // S is co-extended Σ} ί/zen

S2(α1?. ..,«;_!,__) zjίΓ V^.Sίfl!,...,^-!,^,—)

is co-extended Σj.

Proof. Again we do the extended Σ} case and then apply 2.4. The proof is just
like the "hard" half of 2.5. Note that the easy half does not go through ! D
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2.7 Lemma. // S = S(p>,S1,...,Sm,α,P1,...,P,J) is extended Π} then so are

V5mS(_S__) and VPΠ S(_, PΛ) .

// S is co-extended Σ} f/zen so are

3SmS(__,Sm,_) am* 3PΛ S(_, Pπ) . D

2.8 Proposition. // S = S(/?1,...,pί) is extended Πj (co-extended Σ}) ami is rea//y
a predicate over 9K; i. e. S^M\ then S is Π{ over 9JI (Σ{ ouer 9W).

Proof. It suffices to prove one of these and take negations, so we prove the Σ}
case. Typically S has a definition of the form

S(p) iff 3T3Qφ(p9q9a,f,Q)

where a are some parameters from HF^, qeW, and φ is co-extended. The
quantifiers 37] can alway be treated as quantifiers over relations on HF^, since
we can always say in φ that 7) is a relation of urelements, so we restrict our-
selves to

S(p) iff lQφ(p,q,a,Q)

where φ is co-extended. First we need to get rid of the parameter a. But every
aεMFm can be defined over HF^ by some extended formula ψ(x,qί9...,qr) so

S(p) iff Vx[ψ(x,ql,...,qr)^lQφ(p,q,x,Q)']

and the right hand side, by the above rules, is extended Σ{. We are therefore
down to the case

S(p) iff 3Qφ(p,q,Q)

where Q is, say, 3-ary and φ is co-extended. Now the following are equivalent,
where ψ is the conjunction of the axioms of extensionality, pair and union and
the empty set axiom:

S(P),

TO,,,

(ΉFm,Q)\=φ(p,q9Q)9 for some β ,

(2ϊ«>β)l=φ(P,9>α), for some (9ϊw,β) with H

(^aR5β)^^(P^,Q)? for some (9ίTO,β) with 2I

The structure 2ITO can be have the same cardinality as 9W in the last two lines
since 9JΪ is infinite. The equivalence of the third and fourth lines follows from
the fact that φ is co-extended so it drops down from 81TO to HF^ by II.2.8. The
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equivalence of the fourth and last lines in a consequence of the fact that 21̂
must be isomorphic to an end extension of HF^ if 21̂  is a model of the axioms
mentioned. The last line can be rewritten as a Σj relation on $R without mucii
trouble. Let's assume that $R = <M,K> with R binary, to simplify things. We
introduce a lot of new relation symbols and define S^(M',R',A,E,F,Q) by

^M, 4nM'=0,

FίΞMxM',

"F establishes an isomorphism between <M,R> and <M',jR'>",

Thus Sx insures that «M',R'>; A,E,Q) is isomorphic to an (51 ,̂0. Let
S2(M',y4,£) assert that this structure satisfies Extensionality, Pair, Union and
Empty set; e. g. Pair can be expressed by

Vx Vy [A(x) v M'(x)) Λ (A(y) v M'(y))
-»3z(A(z)Λ Vw [wEz<->w = x v w =

Both Sl5 S2 can be defined by first order sentences over 9Jί in the additional
symbols. Finally, we let φ'(x,y) result from φ(x,y) by rewritting it in terms of
the structure «M',R'>,^,£,Q). For example e is replaced by E throughout.
Then we have

S(p) iff there are M',K',v4,£,F,Q such that

S2(M'9A,E) and

3p' 3ς[' (F(p, p') Λ F((^, ̂ ) Λ φ'(p'9 q'))

which makes S Σ} on 9W. D

2.9 Examples, (i) It is worthwhile going back to look at some of the examples
in 2.1. In 2.1(ii) and 2.1 (Hi) the Πj predicates are actually extended first order.
For example, in 2.1(iii),

x is torsion iff

where nx is defined by recursion in HF^ just as usual:

Ox = 0,



2. Defining Π} and Σ} Predicates 121

where the 0 and + on the right hand side are the group 0 and group addition.
In 2.1 (iv), D is not co-extended but it is co-extended Σ}, hence Σ} by 2.8.

(ii) Another example that will come up later is where ΪR = <M, ~> with ~ an
equivalence relation. Define

x<y iff caτd(x/~)<card(y/~).

This relation is Π}. (This is so simple that the above machinery is of little use.)
If each equivalence class is finite then < is also Σ{:

~Ί(x<y) iff M¥m\=^aΆ(a = x/^ Λb=y/~ Λ card (b)*ζ card (α)),

which is extended first order so ~\(x<y) is Π} so x<y is Σ}. D

Let S(p, S) be a predicate of z-tuples p from 9K and m-tuples S of relations
over 5R S is Π} on 9W if there is a φ(p,S, f) such that

S(p,S) iff (9M9S)NVT1,...,VTM^p,S,T).

Some authors refer to such predicates as second order Π} predicates. The proof
of 2.8 may be modified in an obvious way to yield a little more.

2.10 Proposition. // S(p,S) is extended Π} then S is Π\ on 9K.

Proof. The extra relations S ride along for free. D

Probably the most familiar example of a Δ} non-elementary set over Jf is
the set of (Gδdel numbers of) true sentences of arithmetic. This kind of example
is very important. It is contained in the following proposition. Here K is some
finite language which is coded up in HF. To keep the notation (barely) manageable,
we restrict the statement of the propositions to the case where K has one binary
symbol r.

2.11 Proposition. Define a predicate S(N,R,φ,s) by the conjunction:
(i) ΛΓcM; R^NxNi <p,seWlFm;

(ii) φ is a formula of Kωω, 5 is a function with dom(s)^free variables (φ);
(iii) Vxerng(s)ΛΓ(x);
(iv) <N,Λ>l=φ[s].

Then S is both extended Π} and co-extended Σ}.

Proof. There is no trouble with (i) — (iii) since (i), (ii) are Δx on HF^ and (iii)
is both extended and co-extended first order. The work comes in with (iv). Note,
however, that if this particular S is co-extended Σ} then it is also extended Π} since

S(N9R,φ,s) iff (i) Λ (ii) Λ (iii) Λ 3x [x = <^,φ> Λ -ιS(ΛΓ,Λ,x,s)]
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and the right hand side is extended Π} by the various lemmas above. We prove
that S is co-extended Σ} by introducing another binary relation symbol Sat and
finding a co-extended first order S*(N,R,Sat) such that for N,R,φ,s satis-
fying (i)— (iii),

To write out S* we use 5(̂ /1;;) for

sf(dom(s)-{t;ί})u{<ι;ί,p>},

this being a Δt operation of s 9 p and t;f. Now define S*(N9R9Sat) by

Vφ Vs [(i) Λ (ii) Λ (iii) ->

if φ is atomic, say r(vi9Vj), then R(s(Vi),s(Vj))<-+Sat(<p,s)9

i f φ i s <Λ,{^,0}> then Sat(φ,s)*-+Sat(ψ,s)ΛSat(θ9s),

if φ is <~Ί,I/^) then Sat(φ,s)<^->—\Sat(ψ,s),

i f φ i s (B9vi9\l/y then S0ί(φ,s)<->3p[ΛΓ(p)Λ Sat(ιl/,s(p/Vi))]

with similar clauses for equality, \/, V. Note that the only unbounded existential
quantifier comes from the last clause and that quantifier is over urelements so
S* is co-extended first order. It clearly has the properties needed to finish our
proof. D

3. Π{ and Δ{ on Countable Structures

We continue to consider a fixed infinite structure 3R = (M9Rί,...,Rly. Our goal
here is to show that if $R is countable then the Δj relations over 2ft are exactly
those relations in IHYP^. In view of II.5, this shows that the Δ} relations over
$R are exactly those which are constructible from Sϋt by the time you come to
the first 9W-admissible ordinal.

We split the result in half to isolate the role of countability.

3.1 Theorem. Let 9JΪ be countable. If S is a H\ relation on 9JΪ then S is Σ! on

Proof. Consider the language Lu{P} as coded in HYP^ with p a distinct con-
stant symbol for each peM. Suppose S(p) iff 9JIN VP φ(p,q, P). Then S(p) holds
iff (σ-xp(p,q, P)) is valid, where σ is the conjunction of the diagram of $R and
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Thus S(p) holds iff the following is true in

by the Completeness Theorem for countable, admissible fragments. Thus S is
Σ! on HYP^. D

3.2 Corollary. Let 9JΪ be countable. If S is Δ} on 9K then

Proof. Immediate from 3.1 and Δt separation in HYP^. D

The converse does not need the countability assumption.

3.3 Theorem. Let S be a relation on 9K. // S is Σl on HYPOT then S is Π\ on 3R.

3.4 Corollary. // a relation S on 9JI is in HYP^ then S is Δ} on 9ΪΪ.

Proof. If SelHYPaR then S and ~\S are Σί on HYP^. (Remember that parameters
from HYPvCT are allowed in Σt definitions.) D

Proof of 3.3. Let S(p) be Σi on HYP^. By Proposition II.8.8 we can find a Σ!
formula φ(x,q,M) such that the following are equivalent:

S(p)9

(1) 3lswl=<p[>,g,M] for every model 9ITO of KPU+ (of cardinality card(M)).

The last line is true with or without the parenthetical phrase since card(M)
= card(HYR0i). Now code up the language L(e) in HF. Call the resultung set
K, KeHF. Let kpu+ be the set of codes of KPU+ and let φ = φ(vί9v29v3) denote
the code of itself. Thus φeHF and kpu+ is a Δ! subset ot ΉF by Theorem .11.2.3.
Our plan is to rewrite (1) as a Π} relation over $R with the aid of 2.10 and 2.8.
Again we simplify notation by assuming 9K = <M?JR> with R binary. Now (1)
is equivalent to:

For allM,R,F and all A,E,

(2) if <M',/θ!<M,,R>
and «M',.R'>; A,E) is a structure of the appropriate kind, and

(3) if <M',Λ',yl,E>Nkpu+,

(4) then for some p'9q',m, (M',R',A,Eyt=φ(pf,q',m) where F(p) = p', F(q) = q'
and me A is such that x Em<^>M'(x) for all x.

Let S^M'.R'.A^E^F) be just as in the proof of 2.8 so that Sx is first order in
the symbols and S: expresses line (2). Let S2(M',R,A,E) hold if

Vψ[\l/eίpu+-+(M'9R',A,E)\=ιl/'].
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S2 expresses (3) and is co-extended Σ} by 2.11, 2.6 and other lemmas. (It is not
necessarily extended Π{, though, due to the Vι^ in front.) Line (4) can be written
in extended Π} form by 2.11. This makes S(p) of the form

where Si is first order, S2 is co-extended Σ} and 83 extended Πj so 5 is extended
Π} and hence Π} by 2.8. D

3.5 Corollary. For any structure yJl = (M,R1,...,Rιy, countable or not, the rela-
tions S on $R in HYPM are exactly the relations definable over 501 by some formula
φ(vί,...,vn,qί,...,qm) of the admissible fragment LA where A^

Proof. If S is defined by

S , , iff

where φeHYP^ then S is Δx since N is Δr Thus SelHYP^ by Δ: separation.
To prove the converse, first assume $01 is countable. Since SeHYP^ we

can write

S(p) iff

iff attN=3Γ^(T',p)

for some first order formulas φ,ψ possibly with constants q1 ?...,qm. We may
assume T, T are distinct symbols. Let σ be the sentence

/\ Diagram (OR) Λ Vx \/peM x = p .

The sentence

Vι> l5 . . . , vn [(σ Λ ψ(T, ι;1? . . . , vn)) -+ φ(T, vί9 . . . , t J]

is logically valid since for any T on 9JI, (^R,T')\=φ(p^...,pn) implies S(p1,...,pπ),
which in turn implies (3Λ9T)\=φ(pί9...,p^ for any Ton 9Jί. By the Interpolation
Theorem of ΠI.6.1 there is a formula 0(u1,...,t;ll)eIHYPaR5 θ involving only the
symbols of L and any constants q in φ such that both

σ Λ ιA(T, vί9 . . . , vn) -> 6(1?!, ...,υn) and

are valid. But then

S(Pl,...9pJ iff

Thus the result holds if 9JΪ is countable.



3. Π j and Δ} on Countable Structures 125

To prove the result for uncountable $01 we apply the Levy Absoluteness
Principle of Π.9. The theorem to be proved can be written out as

so we need to see that the part within brackets can be written as a Π predicate
in ZFC. Recalling that HYP^^Lΐα)^ for the first α to make L(a)m admissible,
we can rewrite it as

The part within brackets here is clearly Δ: since N is Δx. Thus the theorem is
a Π sentence and so it suffices to prove it for countable structures 9JΪ. D

There are useful second order generalizations of the above theorems. For ex-
ample, generalizing 3.1 we get the following result.

3.6 Theorem. Let S(p,S) be a Πj predicate on a countable structure 9K. For every
admissible set A with Me A, SnA is Σ! on A. The Σ^ definition is independent of A.

Proof. If S(p,S) holds iff (SR,S)N=VT φ(p,S,T), then S(p,S) holds iff
(σ(S)-xp(p,S,Γ)) is valid, where σ(S) is

Λdiagram (9W, S) Λ Vx \/peM (x = p) .

This is a countable sentence of Looω so the proof given in 3.1 carries over. D

The second order generalization of 3.3 is not quite the converse of 3.6.

3.7 Theorem. Let S = S(/?,S) be a second order predicate on 9W which is a Σί

subset of HYP^. Then S is Π{ on 9K.

Proof. A simple modification of the proof of 3.3 suffices. Line (1) becomes

(!') (^OT,S)Nφ|>,g,S,M], for every model 9ΪOT of KPU+ and every S

which results in a modification of (4) to

(4') then for some p',q',m9s, (M',R'9A,Ey\=φ(pf,q',s9m9) where

F(p) = p'9 F(q) = q'9 A(m) Λ Vx [xJEw<->M '(x)] Λ A(s)9

Vx [S(x)<r+3y(F(x) = y* yEs)] . D

3.8 Corollary. The set S defined by

is Π} on $R (as a second order predicate).



126 IV. Elementary Results on

Proof. S is Δ0 on HYP^ since

x e S iff HYRm 1= "x is a subset of M"

so S is Π} on ΪR by 3.7. Note, however, that 3.7 will not allow us to conclude
that — iS is Π} on 2R since — iS is not a subset of ΉYP^; far from it. D

3.9 Example. Let us return to consider nonstandard models of arithmetic. We
showed in § 3 that the set of standard integers in a nonstandard model
$R = <M,0, + , •> is Π} on ΪR. Sometimes it is Σ{ hence Δ}, sometimes not.
Recall that Jf = <ω,0, +,x>.

i) For an 9JΪ where the set of standard integers is Σ} let $R be a minimal
elementary extension of Jf\ i.e., Jf<W but Λ^X9K9W implies ^ = $1 or
9l = $R. Such $R exist by results of Gaifman [1970]. In such an 2R we can de-
fine, for xe9W,

x is standard iff 3M0 [M0 is the universe of a proper elementary submodel
ofSFΪandM0(x)].

This is extended Σ} by 3.10, hence Σ} by 3.8.
ii) For an $R>,/Γ where the set of standard integers is not Δ} hence not Σ},

choose a countable ΪR with 0(331) = ω (by II.8.7). The subsets of 9JI in HYP^
are exactly the first order definable sets (by II.6.7) so the set of standard integers
are not in HYP^ and hence, by the results of this section, they are not Δ} on SCR.
In fact, we see that for countable M , the set of standard integers is Δ} on $R iff
O($R)>ω. We will return to this example later. D

3.10—3.12 Exercises

3.10. Let ΪR be countable and let S1(p,P),S2(p,P) be predicates of peM, PC M2,
each Σ} on $R. Assume that no pair (p,P) satisfies both Si and S2. Show that
there is a Δ} predicate S(p,P) containing SL but disjoint from S2. [Copy the
proof of 3.5 to find a θ(p,P) in LA such that S(p,P) iff (9K,P)t=0(p,P) and then
show that S is Δ}.]

3.11. Recall Example 2.1 (iv). Let α>ω be any countable admissible ordinal.
Let p be any prime. Show that there is a countable p-group G with length (G) = α
such that G has a proper divisible subgroup but none in HYPG. For such a G
the largest divisible subgroup of G is thus Σj but not Π}. [Use the FT-Com-
pactness Theorem.]

3.12. Generalize the results of this section to show, for A^ transitive,
i) If S is a relation on A^ and S is Σl on HYP(Aαϊl) then S is Π} on A^.

ii) If ASH is countable then the converse of i) holds.

3.13 Notes. Kripke and Platek proved that a subset X of HF is Π} over HF
iff X is Σ! over HYP(HF) and hence that X is Δj over HF iff XeΉYP(HF).
This was generalized in Barwise-Gandy-Moschovakis [1971] by replacing HF
by any countable transitive set A closed under pairs. It is clear from the proof
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given there that Theorem 3.1 holds. It came as somewhat of a surprise that its
converse, Theorem 3.3, holds without any coding assumptions about the struc-
ture 9JI, since the inductive definability approach (discussed in Chapter VI) does
not work in this complete generality.

4. Perfect Set Results

In this section we give a more sophisticated example of the interplay of model
theory and recursion theory showing how each subject can shed light on the other
and how logic on admissible sets sheds light on both. The results themselves will
not be used in the remainder of the book.

The following, a classical result on hyperarithmetic sets, is the effective version
(due to Harrison) of an even older result in descriptive set theory.

4.1 Theorem. //S^Power(ω) is Σ} on yΓ = <ω,0, +,•> and card(S)<2K° then
S is a set of hyperarithmetic sets.

Compare this with two results from model theory. The first is due to Kueker
[1968].

4.2 Theorem. Let 9Jl=(M,Rί,...,Rly be a countable structure for a language
L and let P be an n-ary relation on M. If the set

has card(S)<2K° then

for some formula φ of Lωιω and some qi9 ..., <?meSOt.

(A formula φ is in Lωιω if it is in LA for some countable fragment LA of Looω.)
The next result is a theorem of Chang [1964], Makkai [1964], and Reyes [1968].

Chang and Makkai had a stronger hypothesis.

4.3 Theorem. Let φ(P) be a finitary sentence of Lu{P}. Assume that for each
countable model 9JI there are fewer than 2*° relations P such that

Then there are finitary formulas ^(x,;^, ..., yk\ ..., \l/m(x9yl9 ..., ykj of Lωω

such that for every model ($0Ϊ,P) of φ(?\ there is an i, l^i^m, and q^ ..., qk.e3Jl
such that
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The conclusion of 4.3 can be restated as: the sentence

is logically valid.
These three results, while incomparable, are obviously quite similar. They

all begin with the assumption that a certain definable or Σ} class S has fewer
than 2*° elements and conclude that each element of S is definable in some way.
We want to show these results are more than merely analogous, that they are in
fact shadows of a single definability result about logic on admissible sets. First,
though, we prove a generalization of 4.1, because the proof is relevant to our
general result.

4.4 Theorem. Let 9Jl = <M,R l9 ...9Rty be a countable structure and let S be a
second order Σ\ predicate on 9JI. // card(S)<2*° then S^HYP^ (and hence S is
countable).

Proof. After a trick the result falls right out of III.8.2. Assume S£ HYP^. Then
by 3.8 (and this is the trick), S0 = S — HYP^ is Σ} and non-empty. We prove
that S0 (and hence S) has cardinality 2*°. Let us handle the case where S0 is a
predicate of one relation :

S0(S)iff(ΪR,S)l=3T<p(S,T).

Let L' = Lu{p:peM}u{S}, K=Lu{T} and let LA, KA be the countable
admissible fragments given by HYP^. If σ is

Diagram(aR) Λ Vx \JpeM(x = p)

then σ Λ φ(S,T) is in KA. We claim that σ can have no model which is decidable
for LA. Such a model would be isomorphic to some structure of the form (9Jί, 5, Γ),
where S is Δ x on HYP^ and hence SeHYP^, whereas (2R,S,Γ)t=(p(S,T),
implies 5eS0. Thus the result follows from III.8.2. D

We now turn to consider the relationship between 4.2 and 4.4. If we apply
4.4 to the situation described in Theorem 4.2 we learn that if there are <2K°Q's
with (aR,P)^(9W,β), then each of these is Δj on (9M,P) which (while interesting
and not obvious from 4.2) says nothing about the original P. There are examples
(9ΪΪ,P) satisfying 4.2 but where P^HYP^, i.e., is not Δί on ΪR, which rules out
one possible strengthing of 4.4 that would yield 4.2. To find the correct generali-
zation of 4.2, 4.3 and 4.4 we need a new definition.

4.5 Definition. A Σ\ sentence of an admissible fragment LA is a second order
infinitary sentence of the form

where £L. is a set of symbols of L, =2e A, and φe LA.
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If Ά is finite, the requirement JeA is automatically true, and we could write

or

In the infinite case, however, we should not think of SL as being a well ordered
sequence of symbols. Note that even though we have written J, the definition
actually permits function and constant symbols to occur in Ά as well as relations
symbols.

The following result has 4.2 — 4.4 as consequences. For ordinary (as opposed to
Σ{) sentences of LA it is due to Makkai [1973]. For 4.4, though, it is the Σ} version
which matters. The proof is a minor variation on Makkai' s theme, the Inter-
polation Theorem taking the part formerly played by Beth' s theorem.

4.6 Theorem. Let 3 Jφ(P, j2) be a Σ} sentence of the countable admissible fragment
LA. If for each countable structure 90Ϊ there are less than 2K° relations P such that

then there is a sentence σ of LA of the form

which is a logical consequence of <p(P, J), where each φi contains only symbols of

The converse is obvious. In fact, the conclusion implies that every such P
is in any admissible set containing 9Jί and φ so there are ^ X0 such P.

Note that Theorem 4.3 is the special case of Theorem 4.6 where LA is Lωω

and where the Q's do not occur in φ(P, J).
Before attempting to prove 4.6 it is good to get some idea of what it says by

applying it to prove 4.2 and strengthen 4.4.

4,7 Corollary. Under the assumption of Theorem 4.4 there is an S'eHYP^ such
that S^S'.

Proof. Suppose PeSiff(9JΪ,P)l=3Q(/>0(P,Q). Let φ be the conjunction of <p0(P,Q),
diagram (9JΪ) and V x YpeM(x = p). The hypothesis of 4.6 is satisfied so let σ be as
in the conclusion of 4.6, σ of the form

where each fa is in the language Lu {p| eM}. For each ie/ and qί9...,qm.eM
let
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Each Pi-eMYPm by Δ x Separation and, as an operation of ί and q, Pi $ is a
operation in HYP^ so we may form the set

by Σ Replacement and S^S'. D

4.8 Theorem. Let $)l = (M,Rl,...,Rιy be a countable recursively saturated
structure (i. e. o(]HΎPm) = ω). Let She a second order Σ\ predicate with card(S) < 2*°,
say S^ Power (Mn\ There is a finite set of finitary formulas

Ψι(x,yι,...,ymι),...,ιl/k(x,yl9...9ymj)

of Lωω such that for each SeS there is an i, l^i^k, and elements qι,.. ,qmi

of $R so that S is defined by

s(χ) iff

Proof. Using 4.7 choose S' so that S' c Power (MM) and

Since o(HYPaR) = ω we have, by II.7.3,

[I/MS a formula of Lωω,g is an m-tuple of elements of M (where the free
variables of ψ are among ϋ l 9...,ι;π + m) so that for all x1,...,xπeM:

<xl9...,xnyeS iff

Since L is finite we can assume Lωω is coded up on HF. By Σ Collection in
there is a finite set Φ of formulas such that each ψ can be chosen in Φ. D

4.9 Example. Let .yΓ = <ω,0, +,•> ana let $R be a countable recursively saturated
elementary extension of Jf. Then there are 2*° distinct 9J10 such that

(i) 9Jί0-<9JΪ, and
(ii) 50Ϊ0 is an initial segment of 501.

Proof. Let

S = {M0 c MI MO is the universe of an 9J10 with (i) and (ii)}.

The techniques of § 2 show that S is Σ} on 501. Suppose, toward a contradiction,
that card(S)<2K°. Then since ωeS, there is a formula ψ(x,qι, .9qj with
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parameters from 9Jί such that

which is a contradiction. D

Before turning to the proof of Theorem 4.6, we show how 4.8 can be used to
strengthen the Chang-Makkai-Reyes Theorem (4.3). The result is interesting
because of the light it sheds on the usual proofs of this theorem by means of
saturated (or special) models.

4.10 Corollary. Let φ(P, Q) be a βnίtary sentence such that for each recursively
saturated countable model 9JΪ, there are less than 2K° different P with

(9W,P)N=3Q(p(P,a).

Then there is a finite list of finitary formulas ψ^x^y), ..., ψm(x,y) such that

Proof. Suppose that the hypothesis holds but that the conclusion falls. Let T be
the theory

x,;y)], for all

By the ordinary compactness theorem, this theory is consistent. By Theorem II. 8. 8,
it has a countable recursively saturated model ($R,P). But this structure 9JI has
<2K°F such that (9M,P')t=3Q<p(P,Q) so, by 4.8, each of these P (in particular
the original P) is definable, contradicting the fact that (9W, P) is a model of T. D

4.11. Proof of 4.2 from 4.6. We must cheat a bit by quoting a result, Scott's
Theorem, from Chapter VII. Let 9W,P,S be given as in 4.2 and suppose that
card(S)<2K°. Let φ(P) be the Scott sentence of (2R,P) so that for all countable
structures (3JΓ, P'),

(The sentence φ(P) involves only constants from Lu{P}.) Thus there are, for
each model 9JΓ, fewer than 2K°P' such that
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From 4.6 we get a ^(xl9 ...,xπ, y l 5 . . . ,y m ) such that for some ^1 ?...,

which yields the conclusion of 4.2. D

Having no excuse for further procrastination, we begin the proof of 4.6.

4.12. Proof of 4.6. Since 4.6 implies 4.4 we expect to use considerations similar
to those used in proving 4.4, that is, the method of § III.8. The chief difference
is that instead of constructing 2*° distinct models $R we need one model with 2*°
distinct P such that

This accounts for the complications in the proof below. We prove the contra-
positive, so suppose φ(?,£) does not have any sentence of the desired form as a
logical consequence. Let us simplify matters by assuming that 2L has only one
relation symbol Q and, further, that P is unary. The proof will make it clear that
these assumptions do not really matter. Let

|_°=L-{P,Q}, C = {cjw<ω}, K°=L°uC, K = L u C .

Call a set s of sentences of KA special if the following conditions are fulfilled,
conditions (Dl)— (D7) coming from (Cl)— (C7) of 111.2.2 respectively.

(Dl) If φes then ~Ίφφs.
(D2) If -ηφes then ~φes.
(D3) If /\Φes then φes for all φeΦ.
(D4) If Vvφ(v)es then φ(c)es for all ceC.
(D5) If \/Φes then φes for some φeΦ.
(D6) If 3vφ(v)es then for some ceC, φ(c)es.
(D7) If t is a basic term of LA and c,deC then: if (cΞΞd)es then (d = c)es; if

φ(ί), (cΞΞί)es then φ(c)es; for some eeC, (e^i)es.
(D8) If φeK A then φes or

In the proof of the Model Existence Theorem we first constructed a set sω satis-
fying (Dl) — (D7) and then showed that any set s satisfying (Dl) — (D7) gave
rise to a unique canonical model $R by the conditions

9WNR( C l , . . . ,c n ) i f fR( C l , . . . , c π )e5 .

Furthermore, this model was a model of each φes. We shall use these facts here.
Note that if a consistency property 5 has the property

(C8) if seS and φeK A then su{φ}eS or su{-Ίφ}eS

then the resulting sω will satisfy (D 8) and hence will be a special set of sentences.
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Now recall the notation from § III.8:

d is a typical node on the tree; dO extends d by putting a 0 on right end; dί a 1
and 6 is a typical branch.

The level of a node is just its length as a sequence. The plan for the proof is to
attach a finite set sd of sentences of KA to each node d of the tree in a way that
insures the following conditions:

(1) {<p(P,Q}} is placed at the bottom of the tree; i. e.9 s<> = (φ(P,Q)}.

(2) // b is any branch and sb = \J{sd\d a node on b} then sb is a special set of
sentences of KA.

(3) Any two sets sd and sd, on the tree are consistent with respect to the sentences
of Kj; that is, if φeK£ and φεsd then (—\φ)φsd,.

(4) Distinct branches through the tree are inconsistent with respect to the
symbol P; that is, if ί?l5 b2 split at d then there is a constant symbol c so that
P(c) is in sd0, but ~πP(c) is in sdl.

Suppose we contrive to fulfill (1)—(4). The canonical model determined by a
branch b through the tree will have the form (Wlb,Pb

9Q
b) with φ(P,Q) true by (1),

(2) and the above remarks on special sets. Furthermore, SQl̂ 1 = W*2 for all
branches bί,b2. For if ReL° and R(c1,c2) holds in Wlbί then R(c1?c2)esd for
some d on b1 but then —ιR(c1,c2) is never put into any sd> on b2, by (3), so
R(c l 5c2) is in some sd, on b2 by (D8) so R(c1,c2) holds in $R&2. Finally, if bί9 b2

are distinct branches then Pbl φ Pb2 by (4). In other words we have one model 5DΪ
with 2K° distinct P each satisfying

and so we will have proved our theorem. Satisfying (1)—(4), though, is not so
trivial.

In order ultimately to satisfy condition (4), we would like to have a symbol Pb

for each branch b thru the tree, but this would make our language uncountable.
Instead we introduce new relation symbols Pd, Q.d for each node d on the tree.
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We think of Pd as our original P with a ghostly superscript d just barely visible.
Our original P, Q are Pd, Qd where d is the empty sequence, d = < >. We de-
note this expanded language by 1C7 and the admissible fragment by K^. As usual
we consider only formulas with finite many c's and, this time, only finitely many
different P^s ans Q^s. A finite set s of sentences of K^ is g-consistent if all the
nodes occuring as ghostly superscripts in s lie on some branch (e. g., P010 and
QOioio could both occur in s but poio and Qoii could not) If s is 0_consistent

then s is the result of increasing all superscripts in s to the longest one appearing
in s. E. g., if 010 and 01010 are the only superscripts in s then s has all P010 and
Q010 replaced by P01010 and Q01010. We define a giant consistency machine S
by (s1,...,sπ}eS iff sί9...,sn are each finite, g-consistent, and ^u us,, does
not imply any sentence of K| of the form

(*) Vi^" V^, [βy Vx Pdi(x)~ψ(x,y)-]

where each φel!^ and ά{ is the longest node in s f. (Note that if {s^. .jsJeS
then s^u us,, is consistent which will give us (3) above.) Our hypothesis insures
us that

(5) {{φ(P,Q)}}eS.

While S is not really a consistency property, it generates many of them.
(6) // (s1,...,sπ,sn + 1}ES then

S = {s|{s l5...,sπ,s}eS}

is a consistency property satisfying (C8) above.

Most of the clauses are routine. Let us check (C 5) and (C 8).

(C5) Suppose \/<9eseS, but that for each ΘeΘ, sv{Θ}φS so that

{Sί,...,sn,sv{θ}}φS.

Since s is g-consistent so is su{0} so the problem comes from (*). We must
have, for each 0e<9, some σθ of the form (*) such that

Now, just as in the proof of the interpolation theorem, we can assume the σθ

is given as a function of θ, a function in our admissible set (σθ will be the dis-
junction of the σ's given by strong Σ replacement). But then σ = \/θeθ σθ is again
of the form (*), once you rearrange it a bit, and

a contradiction.
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(C8) Suppose φ(c1,...,c/ J)eK2, that sεS but neither sv{φ(ci9...,cn)} nor
su{— ιφ(c1,...,cJ}eS. Then there are sentences σ1? σ2 of the form (*) such that

but then

vσ 2

and σί v σ2 is equivalent to a sentence of the form (*).
We now come to the crucial step which will yield (4) above.

(7) // {s l5...,sπ}eS, if d is the longest node in sn, if dO, di do not occur in
SiU us,,, and if c is a constant symbol not in s^ us,, then

{s1,...,sπ_1,sπu{P'i0(c)},snu{^P'ίl(c)}}

is in S.
We use the Interpolation Theorem for KA to prove (7). We invite the student

to try the case n = ί for himself before going on. We do the case n = 2 because
it exhibits the problems that arise in general. Now, if (7) fails, the trouble cannot
arise from ^-consistency since

are ^-consistent so it must be that there are sentences σ t, σ2, σ3 where σt is of
the form

(where Pί is the symbol Pd in S l 5 P2 is Pd°, P3 is Pdl), such that

(8) s1U52u{Pd°(c)}^52u{-ΊP ί ί l(c)}Hσ1 v σ 2 v σ 3 .

We show that (8) implies {s l5s2}£S by finding a sentence σ of the form (*)
such that

Rewrite (8) as follows :

Λ s

where s2(Pίί0,Qίί0) indicates the result of replacing ?d by Pdo in s2. Notice that
the only symbols on both sides of the implication sign are in K°. By the Inter-
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polation Theorem there is a ^(c,c1?...,cm) which is an interpolant. We may
write this as :

51(P1,QjΛ52(P^Qd 0)ΛPd 0(c)-.σ1(P1)vσ2(Pd 0)v (A(c,c1,...,cJ, and

Now replace Pd°, Qd° by Pd, Qd in the top line, Pdl, Qdl by Pd, Qd in the second
line. We obtain

51u52^σ1(P1)vσ2(Pd)vσ3(Pd)v[Pd(c)^ιA(c,c1,...,cJ].

Since c does not occur in s tus2 we get

and hence {sl5s2}£S.
Now we are ready to decorate our tree. List the sentences of K| as a sequence

in such a way that any node d appearing in φn is of level ^n. List the terms
occuring in L A :

We work our way up the tree as follows. Place (φ(P,Q)} at < >. Assume
we have placed sets sd at every node d of level n so that d is the longest node
in sd and the set

{sd\d a node at level n}

is in our consistency machine S.

Given sdl we first take care of tn and φn (if φn happens to be ^-consistent with sdl)
as in the proof of the Model Existence Theorem, using (6), giving us some
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{s',sd29sd3,sd4}eS.

We then apply (7) to get

{5'u{Pd0(c)},5'u{-lPdl(c)},52,53,54}6S

and we let sdl0 = s'u{Pd°(c)}, sdl l=s/u{"iPdl(c)}. In this way we work our way
along level n +1 and on up the tree. We see that any finite set of nodes on the
tree is in S. This takes care of (3) since, otherwise, they would certainly imply
a formula of the form (*). Now that there is a set at each node, let the super-
scripts vanish and you will discover we have satisfied (1), (2), (3) and (4), proving
our theorem. D

4.13 — 4.17 Exercises

4.13. Show that Example 4.9 is not true without the assumption o(ΉYPyΛ) = ω.
[Let 901 be a minimal elementary extension of ~/Γ = <ω,0, +, •>].

4.14. Let 50Ϊ = <M,0,+, •> be a countable nonstandard model of Peano arith-
metic with o(HYP5p,) = ω. Show that there are 2*° initial segments of 9Jί which
are models of Peano arithmetic.

4.15. Improve 4.14 to get 2*° initial submodels of 9ϊl which are isomorphic to 9JI.
[Hint: Use a theorem of Friedman [1973] to the effect that every countable
nonstandard model of Peano arithmetic is isomorphic to some initial segment
of itself.]

4.16. Use 4.4 to show that if a countable abelian group G has <2K° divisible
subgroups then they are all in HYPG and hence there are at most K0 of them.
Give a direct group theoretic proof of this fact.

4.17. Extend Theorem 4.6 from simple sentences to Σί theories. Similarly extend
the applications of 4.6 given above.

4.18 Notes. The results of this section are called perfect set results because one
always ends up constructing, by a tree argument, a perfect set of objects, perfect
in the topological sense.

5. Recursively Saturated Structures

Having discovered several interesting facts about structures $R with 0(501) = ω,
we take time in this section to relate this condition on HYP^ to more traditional
notions.
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Recall that a structure 9M = <M,R1,...,R/> for L is N0-saturated if for every
k<ω and every set Φ ( x 9 v ί 9 . . . 9 v k ) of formulas of Lωω with free variables among
x9vί9...9υk the following infinitary sentence is true in 9JI:

where Sω(Φ) is the set of all finite subsets of Φ.

5.1 Definition. The structure $R = <M,^1,...,^ί> for L is recursively saturated
if the above holds for all k<ω and all recursive sets Φ(x,Vι,...,vk) of Lωω.

Just as in the case of K0-saturated we have the following lemma.

5.2 Lemma. Let 9J? be recursively saturated and let Φ(xl,...,xn,vl,...,vk) be a
recursive set of formulas with free variables as indicated. The following infinitary
sentence is true in $R:

Proof. The proof is by induction on n9 the case n = 1 being the hypothesis. It
clearly suffices to prove the result for Φ satisfying the condition

Φ0eSω(Φ) implies /\ΦQeΦ,

since we could close Φ under finite conjunctions. Let Ψ(xl9...9xn9vί9...,vk) be
the set of all formulas

for φeΦ. Suppose that qί9...9qke3Jl are such that

for all Φ0eΦ. By the induction hypothesis, there are p l 9 . . . 9 p n G ( S Ά such that

and hence

for all Φ0eSω(Φ), since every such 3xπ + 1/\Φ 0 is in Ψ. But then since 9JΪ is
recursively saturated there is a pn + 1eϊR such that

!,...,̂ !,̂ ,...,̂ ). D
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The principal link between recursively saturated structures and admissible
sets is the following theorem of John Schlipf.

5.3 Theorem. Let Wl = (M,Rl7...,Rιy be a structure for L 9JΪ is recursively
saturated iff

Proof. We prove the easy half first. Suppose that o(ΉΎP,ΰl) = ω. Let Φ(ι;,w1,...,wk)
be a recursive set of formulas of Lωco. We may consider Φ as a Δ! subset of IHF
by II.2.3. Since ΉF is \ on every admissible set, Φ is also Δj on HYP^. Let
g = g1,...,gke

sDίί be such that

We need to find a finite subset Φ0 of Φ such that

Now, since

VpeM 3

we have, by strong Σ Collection, a set b such that

(1) VpeM

and

(2)

From (2) we see that frcφ so let Φ0=b. Φ0 is finite since it is in HYP^, is a
set of pure sets, and has finite rank. From (1) we see that Φ0(v,q) is not satis-
fiable on 2R.

To prove the other half of the theorem, let 9Jί be recursively saturated. We
need to prove that L(9^,ω) is admissible; i.e., that it satisfies Δ0 Collection.
Call a set αeL(93ϊ,ω) simple if there is a single term &:(vί,...,vk+ί) built up
from J^,...,J^y, Q) such that each xeα is of the form

for some p^...,pkeM. Assume, for the moment, that we have established (3)
and (4):

(3) Every αeL(9Jl,ω) is the union of a finite number of simple sets;

(4) // zeL($0ΐ,ω) and if a simple, then L($ft,co) satisfies

Vxef l 3y φ(x,y,z)-+ 36 Vxeα 3yeb φ(x,y,z)

for all Δ0 formulas φ(x,y,z).
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Assuming this, let φ(x,y,z) be a Δ0 formula such that L(50l,ω) satisfies

Vxea 3y φ(x,y,z).

Write a — al\j'"^jam where each at is simple. Since

holds in L($R,ω) there are sets bl,...,bm in L(9ϊl,ω) such that

But then let b = blu- vbm. Then beL($ft,co) and

Vxeα 3yεb φ(x,y,z)

so L(ΪR,ω) satisfies Δ0 Collection.
To prove (3) note that in the proof of II.7.7 we showed that for each n there

are a finite number of terms Jrl,...,JΓ/M such that each xeL(9Ji,rc) is of the form

for some ί^m and some pεM. If aeL(9K,n) then α^L(9W,n). Define, by
Δ0 Separation, sets aί9...,am by

Then a = al^j "^jam.
Finally we prove (4). Let φ be given. By Π.7.7 and Π.7.6 we may assume that

the only parameters in φ are M and some qeM. Given the simple set a let
JΓ°(f1,...,ι;n+1) be as given in the definition of simple. Let α = «^"1(r1,...,rk,M)
for some r1,...,rfceM. Rather than prove (4) we prove its contrapositive. Let ψ
be —ιφ, so that we want to verify that L(9Jl,ω) is a model of

Vέ>

Assume the hypothesis. In particular we have, for each m<ω,

(5)m 3xe

which becomes

(6)m 3Pl,...,

This is a Δ0 formula of p,q,r so, by the effective version of Π.7.8, we can find a
formula \l/m(p,q,r) of Lωω equivalent to it. Note that by (5) we have
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whenever m^m'. By (6)m we see that

Φ = {ψm(vί9...,vn,q,r)\m<ω}

is finitely satsfiable. Since it is clearly a recursive set (by the exercises at the end
of II.7) and 50Ϊ is recursively saturated there are /71?...,pπe9JΪ so that

for all m<ω. Thus for this p, we have, setting x = 3?0(p,M), xεa, and for

all m<ω,

and hence

as desired. D

Schlipf discovered 5.3 by generalizing the results 5.4 and 5.7 below.

5.4 Corollary. // 50i = <M,#1?. ..,#,> is K0-saturated then 0(50l) = ω. D

5.5 Corollary. // 50ί = <M,R1,...,JR/> is recursively saturated and Φ(x,v1,...,vk)
is any set of formulas of Lωω which is Σ^ on IH ΎPm then 50Ϊ satisfies :

Proof. The proof that o(HYPaπ)=ω implies 50Ϊ is recursively saturated actually
proves this stronger result. D

5.6 Corollary. For every infinite $R = <M,Λ1,...,K/) there is a proper elementary
extension 5ft of 50Ϊ of the same cardinality such that 91 is recursively saturated.

Proof. Immediate from 5.3 and II. 8. 6. D

The above corollary shows a contrast between the notions of recursively
saturated and K0-saturated structures since there is no countable N0-saturated
elementary extension of Jf =<ω,0, +, •>. Of course one could also prove 5.6 by
a more standard model theoretic argument using elementary chains.

The following result shows that 5.3 can be improved for countable structures.
It shows that if 501 is countable and o(HYPαR)=ω then 501 is saturated for certain
sets of Σ} formulas.

5.7 Theorem. Let y$ί = (M,Rγ,...,Rΐ) be a countable structure for L with
0(50ί) = ω. Let K=Lu{S l 5...,Sm} and let Φ(x1,...,x l l,t; lJ...,ι;fc,S1,...,SJ be a
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set of formulas of Kωω which is Σl on IHYP^. The following infinitary second
order sentence holds in TO:

)̂̂ ,.̂
Proof. We use Theorem III.5.8. Let ql9...,qkeM be given so that

for all Φ0eSω(Φ). We can assume that Kv{cl9...9cn9dί9...9dk} is coded up on
HF. Let T be the theory

Φ(c l 5...,cπ,d1,...,dk,S l s...5SJ.

Introduce symbols p for peM as usual and let T' = {ψ} be the conjunction of

ΛDiagram(TO)

For every finite subset 7^ of Γ, TQ\jT' has a model, so TuT' has a model. This
model is isomorphic to some

(Wl,Sί9...9Sm9pί9...9pn9ql9...9qk)

with

5.8 — 5.14 Exercises

5.8. Show that every recursively saturated structure is ω-homogeneous.

5.9. Suppose 9JΪ is uncountable. Show that o(HYPan)=ω iff for all relations
T i 9 . . . 9 T k on Wl there is a countable recursively saturated structure 91 with

5.10. Show that the predicate

"TO is recursively saturated"

is absolute (ΔJ for models of KPU + Infinity but that the predicate

"TO is K0-saturated"

cannot be expressed by a Σ formula.



5. Recursively Saturated Structures 143

5.11 (J. Schlipf, J.-P. Ressayre). Let α be an admissible ordinal and let A = L(α).
Let L be a language with a finite number of symbols. A structure 9JΪ for L is
α-recursively saturated iff for every set Φ(x9vί9...,vk) of sentences of LA which
is Δ! on A the following sentence holds in 9JZ:

where SΔ(Φ) = {Φ0

(i) Prove that if Lΐα)^ is admissible then 9JΪ is α-recursively saturated.
(ii) Prove that O(9Jl) = the least α such that α is recursively saturated. (This

result, due to J. Schlipf, strenghtens a special case of a theorem of J.-P. Ressayre.
Schlipf s proof uses notions from Chapters V and VI.) Makkai has translated
Ressayre' s result into our setting to show that for α countable, admissible and
greater than ω, Lfa)^ is admissible iff $R is α-recursively saturated and satisfies
the following condition: Suppose φβ^(vί,...,vn) is an α-recursive function of β, y.
Suppose further that for some /?!,..., pπe$R and some /?0<α:

Then there is a y0

< α sucn tnat

5.12. Show that Wi is K0-saturated iff
(i) 0(IHYPOT) = ω.

(ii) for every X^ω, (HYP^,^) is admissible.

5.13. In this exercise we sketch some interesting connections between recursively
saturated models of Peano arithmetic and models of nonstandard analysis. To
simplify matters, we identify analysis with second order arithmetic (a standard
perversion among logicians). Thus we add to the first order language of number
theory new second order variables Xί9X2,... and a membership symbol e which
can hold between first order objects and second order objects ((x^Xj) is a
formula but (J^-ex,) isn't). The axiom of induction asserts:

(Warning: when working in systems weaker than the one described here it is
often necessary to replace this single axiom by an axiom scheme.) The axiom
of comprehension asserts the following, for every formula φ(x,yί9...,yk):

Vy 3x [Vx(xeX*-*φ(x,y1,...9yk))'].

By analysis we mean the usual axioms of Peano arithmetic plus the axiom of
induction and the axiom of comprehension. (Of course there is no need to include
the first order form of induction since it follows from our second order axioms.)
A model of analysis consists of a pair (9l^f), where Jf is a collection of subsets



144 IV. Elementary Results on

of the first order structure 91, which makes all the axioms of analysis true. Any
such model of analysis gives rise to a model 91 of Peano arithmetic, but not
every model of arithmetic can be expanded to a model of analysis. A model of
nonstandard analysis is a model (91, ffl) of analysis with 91 not isomorphic to the
standard model of arithmetic.

i) Prove that if (91, Jf) is a model of nonstandard analysis, then 91 is recursively
saturated.

ii) Let 9Ϊ be a nonstandard countable model of arithmetic. Let

tf = ΠI tf IW ̂ ) 1= analysis} .

Prove that either ffl is empty or that Jf consist of exactly the definable subsets
of 91. [This is easy from (i) and Theorem 1.1.]

5.14. Prove that there are two nonisomorphic countable recursively saturated
elementary extensions of yΓ = <ω, +,x>.

5.15 Notes. It is not known whether or not there is a complete theory T in an
finite language such that all models of T are recursively saturated but T is not
K0-categorical.

6. Countable 9JI-Admissible Ordinals

Since this chapter concerns the interplay of model theory and recursion theory,
it seems appropriate to discuss one of the first applications of infinitary logic
to the theory of admissible ordinals.

Let yΓ = <ω,0, +, •>. Most countable admissible ordinals α (other than ω)
that arise in recursion theory are of the form

for some relation R on ω. The question arose: Is every countable admissible
α, α>ω, of the above form? Sacks eventually answered this in the affirmative
by means of "perfect set" forcing. His proof remains unpublished since Friedman-
Jensen [1968] presented a simple proof of the result by means of the Barwise
Compactness Theorem. We extend this theorem as follows.

6.1 Theorem. Let 9Jl = <(M,JR1,...,JR ί) be a countable infinite structure and let α
be a countable ordinal The following are equivalent:

(i) α is ^-admissible;

(ii) for some relation S on SOΐ,
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(iii) for some linear ordering •< of 9K,

and the order type of the largest well-ordered initial segment of < is α.

Proof. The implications (iii)=>(ii) and (ii)=>(i) are obvious. To prove (i)=>(iii)
we borrow a fact from Section V.3:

(1) // r^axa is a linear ordering, r an element of an admissible set A, and
if β is the length of a well-ordered initial segment of r then

This could be proved now, but it is easier to wait for the Second Recursion
Theorem. Let α be 501-admissible. Then there is a countable admissible set
A = A<m above 501 with

α =

by II.3.3. Let K be the language L* plus new constant symbols c, r, and x for
each xeA^. Let KA be the admissible fragment of Kr jθω given by A^. Let T
be the theory which asserts :

KPU +

Diagram (A^)

"M is the set of all urelements"

Vv \_vea -+\/xeav=~x] (for all αeA^),

"c is an ordinaΓ

c>β (for all j8<α),

"r is a linear ordering of M of order type en(c x c)".

T has a model of the form

(aR HK^e.α,!-)

for any well-ordering r of M of order type α. By IΠ.7.5 T has a model

with QL = oiT/(3R'9B,E). Let A'm = iT/(Wl'9B,E) which is an admissible set by
the Truncation Lemma. Since r^MxM, reA^ so A^ is actually admissible
above ($R,r). Hence α^0(HYP(aR >r)). But r has an initial segment of order type α
(by T) so, by (1) applied to HYP(αR5r), α^o(HYP(TOfr)). We let X be r. D

6.2—6.5 Exercises

6.2. Let (2R, X) be as in 6.1 (iii). Show that HYP(OTf< } is a model of ^Beta.
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6.3. Prove (1) above.

6.4. Let Agtn be countable, admissible above 9JΪ with o(Aari)>ω. Find a larger
admissible set B^ above 50Ϊ with the same ordinal such that B^ is locally
countable; i. e.,

ΪBm\=Va ("a is countable").

[Hint: Use the YΫ Compactness Theorem and Theorem Π.7.5.]

6.5 (Schlipf). Prove that for every countable admissible ordinal β there is an
elementary extension SR of yΓ=<ω,0, + ,x> such that p = o(WL\Pm). [Hint: i)
Show that if 501 is not recursively saturated and the set {n<ω\Wl\="n divides fe"}
codes a well-ordering of ω, and if α is the length of the well-ordering, then
o(HYP9[ϊί)>α. ii) Show that if 501 is a model of Peano arithmetic generated by a
single element /c, usually written 50ϊ = yΓ[/c], then 50} is not recursively saturated.]

6.6 Notes. Theorem 6.1 and Exercise 6.4 are just two of many results that can
be proved by either forcing arguments or by compactness arguments. See the
appendix for a few references. Kunen has recently removed the hypothesis of
countability from 6.5.

7. Representabίlίty in Wl-Logic

One of our principle results in this chapter, Theorems 3.1 and 3.3, identifies the
relations on 501 which are Σj on HYP^ as the Π} relations on 501, as long as M
is countable. In Chapter VI we will search for the absolute version of this result.
The results of this section will be of central importance in this search.

The reader should recall the notions of representability used to characterize
the r. e. and recursive sets. The following are the infinitary analogues.

7.1 Definition. Let 50Ϊ be an L-structure, Ta set of finitary sentences of L+ which
are consistent in 50ϊ-logic, φ(vί9...,υj a finitary formula of L+ and S an π-ary
relation on -501.

i) We say that φ(vl9...,υn) strongly represents S in T by the 9W-rule if, for
all ,...,

S(ql9...,qn) implies Tt-mφ(qί9...,qJ, and

-iS(gl5...,4n) implies Γh-aR-κp(q1,...,qn);

whereas it weakly represents S in T using the $R-rule if for all

S(qi9...,qn) iff
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ii) We say that φ(υi9...9υj invariantly defines S in T in 9Jί-logic if for all

S(ql9...,qn) implies

-\S(qί9...,qn) implies

where as it semi-ίnvarίantly defines S in T in 9Pΐ-logic if for all

%!,..., αj iff ΓNaπφ(q1,...,qJ.

The following is an immediate consequence of the 9Jl-Completeness Theorem.

7.2 Proposition.

Strongly representable => invariantly definable

weakly representable => semi-invariantly definable

and, if $R and L+ are countable, the converses hold. D

These are excellent examples of notions which agree in ordinary recursion
theory but which diverge, yield two interesting distinct notions, in generalized
recursion theory.

7.3 Theorem. Let Wl = (M,R1,...,Rιy and let S be a relation on 9K.
i) IfS is Σl on HYP^ then S is weakly representable in KPU+ using the Wl-rule.

ii) If SeΉYPw then S is strongly representable in KPU+ using the ^ft-rule.

Proof. Our language L+ for SR-logic consists of Lu{p|peM} as in III.3.2(ii).
We prove the results for countable 9K. In Chapter VI we will show that the
results are absolute. We prove (i) first. Choose φ(xl,.,.,xn,pί,...,pk,M) as in
II.8.8. We can rewrite this using the relation symbol M in place of the single
set M. Thus we have, for

%1;...,αJ iff

which, by 7.2, gives the desired result.
Now we prove (ii). Let us assume S is unary to simplify notation. Using II. 5. 15

let <?(*,/?!,. ..,/?„, M) be a good Σΐ definition of S so that

and

for all models M^ of KPU+, and hence
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by the $R-completeness theorem. We claim that S is strongly represented by the
formula ψ(v) given by

3x[φ(x,p1,...,pπ,M)Λi;Ex].

If S(q) holds then 8ίOTN^(q) for all models Wm of KPU+ so KPU+
If -ι%) then, for any 9laϊ ίNKPU+, since <Άm\=φ(S)Λ 3!x<p(x),SIOTN-ι^(q) and
hence, KPU+ h-OT-ι^(q). D

We now prove a strong converse to Theorem 7.3. The first time through this
result the student should think of T as KPU+ or some strong extension of it
in L* given by an r. e. set of axioms.

7.4 Theorem. Let T be a set of βnίtary sentences of L+ which is Σί on
and is consistent in tyJl-logic. Let S be a relation on 9JΪ.

(i) // S is strongly representable in T using the Ώl-rule then SeΉYP
(ii) // S is weakly representable in T using the Wl-rule then S is Σx on

Proof. First note that (ii)=>(i) since S strongly representable implies S and -ηS
are weakly representable so S and ~iS are Σί on HYP^, so S is Δr and hence
SelHYP^ by Δ Separation. We prove (ii) for the case where $R and L+ are
countable leaving the absoluteness of 7.4 to Chapter VI. Let φ(vί,...,vn) weakly
represent S in T. Then we see that the following are equivalent:

S(ql9...,qn),

I.e., the infinitary sentence ^(q1?...,qπ) is a logical consequence of T, where
(A(q1 ?...,qw) is

/\ Diagram (9K) Λ Vv [M (v)^\/peM v = p] -> φ(q1? . . . ,qπ) .

The sentence ^(q1,...,qπ)eHYPS[ϊί and the map (^1,...,^n)ι-^^(q1,...,qπ) is Σt

definable so, by the Extended Completeness Theorem, S is Σ: on HYP^. D

It should be obvious from the proof of 7.4 that there was no real reason to
demand that T be a set of finitary sentences. It is just that we only bothered to
define 1-̂  for finite sentences. T could have been a set of sentences each ia
HYR0J as long as T is Σ1 on HYP^ and the proof would go through unchanged.

One might well ask about what happens to invariant and semi-invariant
definability in the uncountable case where they no longer coincide with the
representability notion. They turn out to be significant classes of predicates,
ones we study in Chapter VIII.



7. Representability in 501- Logic 149

7.5 Exercise. Let 9Jί = <M,^1,...,.R/> be a structure for L Let L+ be as in 7.3.
i) Assume that we have added a Σ function symbol F to L* for the operation

F(x,y) = xv{y} and a constant symbol 0 for the empty set. Show that each
xeHFgpj is denoted by a closed term tx of L+.

ii) Show that S^ HF^ is Σ1 on HYP^ iff S is weakly representable in KPU +

using the 5Dl-rule.

7.6 Notes. The representability approach to the hyperarithmetic sets goes back
to Grzegorczyk, Mostowski and Ryll-Nardzewski [1961].






