Chapter 1V
Elementary Results on HY Py,

We have seen, in Chapter III, how admissible sets provide a tool for the study
of infinitary logic by giving rise to those countable fragments which are especially
well-behaved. In this chapter we begin the study of HYP, by means of the
logical tools developed in Chapter III.

1. On Set Existence

Given 9t we form the universe of sets Vg, on W and speak glibly about arbitrary
sets ae V. In practice, however, one seldom considers the impalpable sets of
extremely high rank. There is even a feeling that these sets have a weaker claim
to existence than the sets one normally encounters. Without becoming too
philosophical, we want to touch here on the question: If we assume 9t as given,
to the existence of what sets are we more or less firmly committed?

HY Py, is the intersection of all models gy of KPU™ and is an admissible
set above 9. There appears to be a certain ad hoc feature to HY Py, however,
since it might depend on the exact axioms of KPU™ in a sensitive way. You
would expect that if you took a stronger theory than KPU™* (say throw in Power,
or Infinity or Full Separation) that more sets from Vg would occur in all models
of this stronger theory. That, for I countable, this cannot happen, lends con-
siderable weight to the contension that HYPy, is here to stay.

Of the two results which follow, the second implies the first. We present
them in the opposite order for expository and historical reasons.

A set SN is internal for Wy =(M; A,E,...) if there is an aeA such that
S=ap={xeWUy|xEa}.

1.1 Theorem. Let M=<{M,R,,...,R,> be a countable structure for L. Let T be
a consistent theory (finitary or infinitary) which is £, on HY Py, and which has a
model of the form WUym=(M; A,E,...). Let SSM be such that S is internal for
every such model of T . Then SeHY Py,
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Proof. The proof is a routine application of Completeness and Omitting Types.
Given the above assumptions we see that there can be no model gy, of

T +Vv\/ ®(v)
where T' is T plus

(1) Vo [U() =\ pen v=P]
Diagram (9)

and @ is the set of formulas

{P¢vlpeStu{pev|p¢sy,

for then S would not be internal for g, The formulas in 7' and in $(v) are
members of the admissible fragment L} of L*  where A=HYP,=(M;4,¢e),
and where we have introduced p by some convention like p=<0,p>. By the
Omitting Types Theorem there is a formula o(v) of L} such that T'+ 3va(v)
is consistent but such that:

T'=Vo[o(v)—>pev], forall peS;

T'E=Vv[o(v)>pé¢v], forall pé¢S.
But then

S={peM| T =Yv(c(v)>PeD)}

so S is Z; on HYPy, by the Extended Completeness Theorem for L}. Similarly
1S is £, on HY Py, so S is A; on HYPy,. Thus Se HYPy, by A, Separation. [

Before stating our next result we need a more sophisticated notion of what
it means for a set aeVy, to be internal for Ugym=(M; A,E,...).

1.2 Definition. A set aeVy, is internal for ey =(M; A,E,...) if acW¢(M; A,E),
where we again identify #7(9; A, E) with its transitive collapse.

Note that for a=M this is equivalent to the existence of an xeA with
a=xg. Also notice that if a is internal and bea then b is internal.

1.3 Theorem. Let MM be countable and let ae Vg be a set which is internal for
every model

Wgp=(M; A,E,..)

of some consistent theory T, finitary or not, formulated in L*=L(g,...), KPU*<T.
If Tis ¥, on HY Py, then aeHY Py,

Proof. We prove the theorem by e-induction. By the comment above, if a is
internal for every model Uy, of T, so is every bea. By e-induction, each of
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these b is in HYPy,. That is, ac HYPy. A routine modification of the proof
of 1.1 shows that a is A; on HY Py, If we can prove that ac L(9,p) for some
B<o(HYPy) then, by A, separation, aclHYPy. Assume, on the contrary, that

O(M) = the least ordinal B such that a< L(I, B).
In any model gy, of T there would be a unique ordinal x such that
Wy = “x=least ordinal B such that ac L(M, B)”.

By X Reflection in g, and, by the absoluteness of L(,-), this x must be O(IN).
Hence T+ the following theory pins down O(9), contrary to Corollary 111.7.4.

Diagram (9N),
Vx [U(x)_} \/peM X =ﬁ]’

“ < is the order type of the e-precedessors of c”,

2) “c is the first ordinal such that L(M,c) is admissible* (if o> w)
or
(3) “c is the first limit ordinal’ (if o= w).

This theory is formulated in L(e,..., <,¢,P),cv. (The reason for the two cases
is that we do not yet know how to write “x is admissible” by a finite formula.)
We can write (2) as

Vx[x<c—\/ expy 0" ™?]. O

Thus we see that no matter how we strengthen KPU™* to an axiomitizable
theory T, we cannot assure that any set in Vo —IHY Py, should be internal to
every model Wgy, of T.

One could consider HYPy, as a new structure R and form HYPy, but it is
more natural, and essentially equivalent, to procced differently.

1.4 Definition. Let Ay =(IN; A,€) be transitive in V. Then HYP(Ay,) is the
structure (I; B,e) where

B=(\{B'|(MuA)eB,(M; B ,e) admissible} .
We consider HY Py, as a special case of HY P(Agy).

1.5—1.9 Exercises
1.5. Show that HYP(Ag) is admissible.

1.6. Show that every element aecHYP(A4) has a good X, definition with
parameters from MUAU{M,A}.
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1.7. Show that the obvious generalizations of 1.1 and 1.3 are true.

18. Let A/ =<{w,+,,0> and let X<w. Show that there is a T<L,,,
KPU*c T such that X is in every model 2, of T. This shows that the con-
dition that T be X, on HYPy, is necessary in 1.1 and 1.3.

1.9. Show that the hypothesis KPU* <= T can be dropped from Theorem 1.3.

[Hint: add a new e-symbol and a function symbol used to denote an e-iso-
morphism. |

1.10 Notes. Theorem 1.1 is a modern version of the Gandy-Kreisel-Tait Theo-
rem: For any consistent I1] T set of axioms for second order number theory, if
ac<w is internal to every model of T, then a is hyperarithmetic.

Theorem 1.3 was announced by Barwise in Barwise-Gandy-Moschovakis
[1971]. The part of it contained in Theorem 1.1 is due independently to Grilliot
[1972]. The improvement in 1.9 is due to Ville [1974].

2. Defining I1} and X} Predicates

Let M=(M,R,,...,R;> be a fixed infinite structure for a language L. An n-ary
relation S on M is 1} on M if it can be defined by a second order formula of
the form

S(pla--'9pn) lff VTI""’VTk (p(pla---,mel""’Tk)a

where ¢ is a first order formula of L(T;,...,T,), possibly containing parameters
from 9. More formally we should write this as: for all p,,...,p,e M, S(py,---,P,)
holds iff for all relations 7j,...,T; on IR,

(gﬁ, ’I{""’ E)F(p[pb’pn]

The negation of a IT! relation is called X! on M. Thus S is Z! iff it can be de-
fined by

S(p) iff AT, AT (. Ty, Th)

for some first order . If S is both I1} and ! on 9 then S is said to be A} on M.

This section is primarily concerned with techniques that can be used to
show that predicates are I1} or £} on M. The reason for discussing this material
can be seen by glancing at the next section.

2.1 Examples. (i) If A ={®,0,+,), then a set is A} over N iff it is hyper-
arithmetic. (This is the classical Souslin-Kleene theorem. See, €. g., Shoenfield
[1967].)
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(i) If M=(N,0,+,"> is a nonstandard model of arithmetic then the standard
integers form a TI} set but not, in general, a A} set:

x is standard iff VS [S(0) A Vy (S(y)—S(y+1))—S(x)].

(iii) If M=<G,0,+> is an abelian group then the torsion part T of G, the
set of elements of G of finite order, is I} on G:

xeT iff VS[SX)AVy(S()—S(x+y)~ SO)].

(iv) If M=<G,0,+> is an abelian group then the largest divisible subgroup D
of G is 1, but this time it is not so obvious.

xeD iff 3H [H a subgroup A H divisible A H(x)]
but the clause “H is divisible”, meaning
for all integers n, VyeH 3zeH, nz=y

cannot be expressed by a single first order sentence. It is still possible, though,
to write D out as a X} predicate. The student should try this before going on
in order to appreciate the machinery developed below. [

The last example is just the tip of an iceberg. In writing out I1} predicates
we frequently discover that we would like to use an extended first order formula
as defined in § IL2. (In writing out the X! predicate in 2.1(iv) we need the
co-extended predicate “H is divisible”.) It turns out we can allow ourselves this
freedom without changing the class of I1} predicates.

2.2 Definition. (i) An extended T1! predicate over MM is a predicate S(p,,...,p;
Sts-esSms 4y5...,a;, Py,...,B) defined by

(M, S,....,S,.; HEy,€, Py,...,P)EVT,,..., VT, VQ,,...,VQ ¢(5,d,5, T, P,Q),

for some extended first order formula ¢ which may have parameters in it from
MUHEy. (We use S, T for relations over M; P, Q for relations over MUHF,.)
(i) S is co-extended X} if it is in the dual class; that is, if it can be defined by

(M, S; HEyp, e, P)=3T 30 ¢(5,4,S, T, P,Q)
where ¢ is co-extended.

Thus extended I} predicates over M are not really predicates over I; they
are predicates of points in I, relations on I, sets in HF,, and relations on
HEy,. They are important as a tool for showing predicates over 9 are I1!. For
example, in 2.1(iv), it is clear that D is co-extended X!, so that D is ! over G
by 2.8 below.
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2.3 Lemma. If'S,, S, are extended I1} (respectively co-extended X}) so are (S, v S,)
and (S; A S,).

Proof. For example,

VT Y, T)AVT VQ O, T,Q)

is equivalent to
VTVT VA [Y(—,TA,TQ)]

as long as we first make sure T and T’ are distinct symbols. The part inside the
brackets is still extended first order. [

2.4 Lemma. If S is extended I1} (respectively, co-extended Xl) then —S is
co-extended T} (respectively, extended T11). [0

2.5 Lemma. If S=S(p,,...,p;,—) is extended I1} (co-extended X}) then so are

Si(Pise-sPim1o—) U YDiS(P1s--sPi-15 Pir—)
Sa(pisesPic1s—) M ApiS(pys-- s Piz s Pi—) -

Proof. 1t is hard to see the extended II! case directly, but we can prove the
co-extended X} case and then apply 2.4. If

S(p,—) iff 3Qy(p,—,Q)
then

Si(p1s--sPi-1,—) ff 3Q 3p; Y(p,—, Q)
and

Sy(pys--sPio1,—) ff Vp,3Q ¥(py,....pi,—, Q)
iff 3Q" Vp, ¥(py,..., 01—, Q'(...,p})

where the notation indicates that we have replaced the n-ary relation Q(t,,...,t,)
by the new n+1-ary Q'(ty,...,t,,p;) throughout . [

2.6 Lemma. If S=S(ay,...,a;,) is extended I1; then
Si(ay,....,a;_y,—) iff 3a;S(ay,...,q;_y,a;,—)
is extended T13. If S is co-extended Z{ then
S,(ay,...,a;—y,—) iff Va;S(ay,...,a;_1,0;,—)
is co-extended X1.

Proof. Again we do the extended X case and then apply 2.4. The proof is just
like the “hard” half of 2.5. Note that the easy half does not go through! [
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2.7 Lemma. If S=S(p,S,,...,S,,d,P,,...,P,) is extended T1i then so are
vS,S(-S,) and VP,S(_,P).
If S is co-extended X} then so are
3s,.S(—,S,,—) and 3P,S(_,P). O

2.8 Proposition. If S=S(p,,...,p;) is extended T1} (co-extended X}) and is really
a predicate over M, i.e. SSM’, then S is T1! over M (] over M).

Proof. Tt suffices to prove one of these and take negations, so we prove the X}
case. Typically S has a definition of the form
S(p) iff 3T 30 o(p.4.a,T.0)

where @ are some parameters from HFy, Ged, and ¢ is co-extended. The
quantifiers 37; can alway be treated as quantifiers over relations on HFy,, since
we can always say in ¢ that T; is a relation of urelements, so we restrict our-
selves to

S(p) it 3Q ¢(p,q,a,0)

where ¢ is co-extended. First we need to get rid of the parameter a. But every
acHFy can be defined over HF, by some extended formula y(x,q,,...,q,) so

S(ﬁ) lff Vx ['//(X’QI""’qr)_"aQ (P(ﬁ,q’x’Q)]

and the right hand side, by the above rules, is extended X!. We are therefore
down to the case

S(p) iff 3Q ¢(p,q,Q)

where Q is, say, 3-ary and ¢ is co-extended. Now the following are equivalent,
where i/ is the conjunction of the axioms of extensionality, pair and union and
the empty set axiom:

S(p),
HFg=3Q o(p,q,Q),

(HFy, Q)= ¢(p,q,Q), for some Q,
U, Q)= 0(p,q,Q), for some (Ugy, Q) with HFyz <=, Uen,
(U, Q)= (p,q,Q), for some (Ugy, Q) with A=
The structure Wy, can be have the same cardinality as 9 in the last two lines

since I is infinite. The equivalence of the third and fourth lines follows from
the fact that ¢ is co-extended so it drops down from 2y, to HFy, by I11.2.8. The
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equivalence of the fourth and last lines in a consequence of the fact that g
must be isomorphic to an end extension of HFy, if g, is a model of the axioms
mentioned. The last line can be rewritten as a X! relation on M without much
trouble. Let's assume that IM=(M,R> with R binary, to simplify things. We
introduce a lot of new relation symbols and define S,(M',R,A,E,F,Q) by

McM,

RcsM x M,

AsM, AnM =0,

Ec(M'uA)x A,

FcsMxM,

“F establishes an isomorphism between {M,R) and {M',R")”,
Qc=(M'UA)>.

Thus S, insures that ((M',R');A,E,Q) is isomorphic to an (Ugy,Q). Let
S,(M',A,E) assert that this structure satisfies Extensionality, Pair, Union and
Empty set; e.g. Pair can be expressed by

Vx Vy [A(x) v M'(x)) A (A(y) v M (y)
—3z(A2)AVw [wEzow=xVvw=y])].

Both S,, S, can be defined by first order sentences over I in the additional
symbols. Finally, we let ¢'(x,y) result from ¢(x,y) by rewritting it in terms of
the structure ((M',R’>, A,E,Q). For example € is replaced by E throughout.
Then we have

S(p) iff there are M',R",A,E,F,Q such that
S,(M,R',A,E,F,Q),
S,(M',A,E) and
3p' 39'(F(p.p) A Fla.4) A ¢'(P'.q)

which makes S =1 on M. 1[0

2.9 Examples. (i) It is worthwhile going back to look at some of the examples
in 2.1. In 2.1(ii) and 2.1(iii) the I1} predicates are actually extended first order.
For example, in 2.1 (iii),

x is torsion iff HFgFE3In(nx=0)
where nx is defined by recursion in HFy, just as usual:

0x=0,
n+1)x=nx+x
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where the 0 and + on the right hand side are the group 0 and group addition.
In 2.1(iv), D is not co-extended but it is co-extended X}, hence i by 2.8.

(ii) Another example that will come up later is where MM =M, ~> with ~ an
equivalence relation. Define

x<y iff card(x/~)<card(y/~).

This relation is I1}. (This is so simple that the above machinery is of little use.)
If each equivalence class is finite then < is also Z}:

“(x<y) iff HERE=3IaIb(a=x/~ Ab=y/~ acard(b)<card(a)),
which is extended first order so —(x<y) is I1} so x<y is 1. [

Let S(p,5) be a predicate of i-tuples p from 9N and m-tuples S of relations
over M. S is IT} on M if there is a ¢(p,S,T) such that

S(,8) iff (M,S)=VT,,...,VT, o(5,S,T).

Some authors refer to such predicates as second order I1{ predicates. The proof
of 2.8 may be modified in an obvious way to yield a little more.

2.10 Proposition. If S(7,S) is extended I1} then S is T} on M.
Proof. The extra relations S ride along for free. 0

Probably the most familiar example of a A} non-elementary set over A4~ is
the set of (Godel numbers of) true sentences of arithmetic. This kind of example
is very important. It is contained in the following proposition. Here K is some
finite language which is coded up in HF. To keep the notation (barely) manageable,
we restrict the statement of the propositions to the case where K has one binary
symbol r.

2.11 Proposition. Define a predicate S(N,R,@,s) by the conjunction:
(i) NeM; RENXN; ¢, seHFgy;
(ii) ¢ is a formula of K, s is a function with dom(s) 2 free variables (¢);
(ii)) Vxerng(s)N(x);
(iv) <N,RYFo[s].
Then S is both extended T1; and co-extended .

0w’

Proof. There is no trouble with (i)—(iii) since (i), (ii) are A; on HFy, and (iii)
is both extended and co-extended first order. The work comes in with (iv). Note,
however, that if this particular S is co-extended ! then it is also extended I1} since

S(N,R,¢,s) iff (i) A (i) A (ili) A Ix [x=<71,0> A IS(N, R, x,5)]
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and the right hand side is extended I1} by the various lemmas above. We prove
that S is co-extended X} by introducing another binary relation symbol Sat and
finding a co-extended first order S*(N,R,Sat) such that for N,R,¢,s satis-
fying (i)—(iii),

(N,RY=¢[s] iff 3ISat[S*(N,R,Sat)A Sat(e,s)] .

To write out S* we use s(p/v;) for
s (dom(s)— {v,})u{<v, P}

this being a A, operation of s, p and v;. Now define S*(N,R,Sat) by
Vo Vs [(i) A (ii) A (iii) -

if @ is atomic, say r(v;,v;), then R(s(v;),s(v;) <> Sat(e,s),
if o is (A,{¥,0}) then Sat(p,s)—Sat(y,s) A Sat(0,s),

if @ is (7,¥) then Sat(e,s)—Sat(y,s),

if @ is (,v,¥> then Sat(p,s)<Ip[N(p) A Sat(y,s(p/vy))]

with similar clauses for equality, \/, V. Note that the only unbounded existential
quantifier comes from the last clause and that quantifier is over urelements so
S* is co-extended first order. It clearly has the properties needed to finish our
proof. [0

3. I1} and A} on Countable Structures

We continue to consider a fixed infinite structure 9 =<{M,R;,...,R,>. Our goal
here is to show that if M is countable then the Al relations over MM are exactly
those relations in HY Py,. In view of IL5, this shows that the A] relations over
M are exactly those which are constructible from 9t by the time you come to
the first M-admissible ordinal.

We split the result in half to isolate the role of countability.

3.1 Theorem. Let MM be countable. If S is a T1} relation on M then S is T, on
HY Py,.

Proof. Consider the language LU{P} as coded in HY Py, with P a distinct con-
stant symbol for each pe M. Suppose S(p) iff M=VP ¢(p,q,P). Then S(p) holds
iff (06— @(p,q,P)) is valid, where o is the conjunction of the diagram of I and
Vx \/peM (X =_p)
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Thus S(p) holds iff the following is true in IHY Py,:
(o - ¢(p,q,P))
by the Completeness Theorem for countable, admissible fragments. Thus S is
Y, on HYPy,. 0O
3.2 Corollary. Let M be countable. If S is A} on M then SeHY Py,
Proof. Immediate from 3.1 and A, separation in HY Pg. [
The converse does not need the countability assumption.
3.3 Theorem. Let S be a relation on M. If S is £, on HY Py, then S is I1] on .

3.4 Corollary. If a relation S on M is in HY Py, then S is A} on M.

Proof. If SeHYPg, then S and —1S are £, on HY Py,. (Remember that parameters
from HY Py, are allowed in X, definitions.) [

Proof of 3.3 Let S(p) be X, on HY Py,. By Proposition I1.8.8 we can find a X;
formula ¢(x,q,M) such that the following are equivalent:

S(p),
HYP‘JR*:@[P,CI,M]’
(1) Uy =e[p,q,M] for every model Uy, of KPU™ (of cardinality card(M)).

The last line is true with or without the parenthetical phrase since card(M)
=card(HYPy). Now code up the language L(€) in HF. Call the resultung set
K, KeHF. Let kpu* be the set of codes of KPU* and let ¢ =¢(v;,v,,v;) denote
the code of itself. Thus ¢eHF and kpu* is a A, subset ot IHF by Theorem I1.2.3.
Our plan is to rewrite (1) as a IT} relation over M with the aid of 2.10 and 2.8.
Again we simplify notation by assuming 9t=({M,R)> with R binary. Now (1)
is equivalent to:

For all M,R, F and all A, E,

(@) if (M,RYZ(M,R)
and ({M',R'Y; A,E) is a structure of the appropriate kind, and

(3) if <M',R,A,E>=kpu”,

(4) then for some p',q',m, {M',R',A,E)>=q¢(p’,q,m) where F(p)=p, F(q)=q
and meA is such that x Em—M'(x) for all x.

Let S;(M',R,A,E,F) be just as in the proof of 2.8 so that S, is first order in
the symbols and S, expresses line (2). Let S,(M',R’,4,E) hold if

Vy [Yekpu®—»(M',R, A, E)=y].
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S, expresses (3) and is co-extended X} by 2.11, 2.6 and other lemmas. (It is not
necessarily extended I}, though, due to the Vi in front.) Line (4) can be written
in extended I1} form by 2.11. This makes S(p) of the form

VM',R',A,E,F[S; AS;,—S;]

where S, is first order, S, is co-extended X} and S3 extended IT} so S is extended
1} and hence I} by 2.8. O

3.5 Corollary. For any structure M=<{M,R,,...,R,>, countable or not, the rela-
tions S on M in HY P, are exactly the relations definable over MM by some formula
@(Vy5...s 0y, 4ys---»q,) Of the admissible fragment L, where A =IHY Py,

Proof. If S is defined by

S(pl"”’pn) iff w*:QD(le-’Pm‘h’--wqm)
where @eHYPy, then S is A, since = is A;. Thus SeHYPy, by A, separation.

To prove the converse, first assume I is countable. Since SeHYPy; we
can write

S(5) iff M=VT o(T,p)
iff MM=3T Y(T',p)

for some first order formulas ¢,y possibly with constants qj,...,q,,. We may
assume T, T’ are distinct symbols. Let ¢ be the sentence

/\ Diagram (M) A Vx \/ oy x=D.
The sentence

Vi, Uy [(6 AY(T 045, 0,)) > @(T, v4,...,0,) ]
is logically valid since for any T on IR, (M, T")=y(py,...,p,) implies S(pi,...,p,),
which in turn implies (MR, T)&= @(py,...,p,) for any T on M. By the Interpolation

Theorem of 111.6.1 there is a formula 6(v,,...,v,)e HY Py, 6 involving only the
symbols of L and any constants G in ¢ such that both

o AT, vq,...,0,) = O(vy,...,0,) and

Oy,..,0,) = O(T,0y,...,0,)
are valid. But then

S(pis---,pn) iff ME=O[pys...,0,]-

Thus the result holds if M is countable.
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To prove the result for uncountable 9 we apply the Lévy Absoluteness
Principle of I1.9. The theorem to be proved can be written out as

VIR VS [S< M" A Se HY Py, — 30 € HY Py (V5 M(S(5) > M =0(5)))]

so we need to see that the part within brackets can be written as a I predicate
in ZFC. Recalling that HY Py =L(x)y, for the first « to make L(x), admissible,
we can rewrite it as

ScM"AVa[L(2)y=KPU* A VB <o(L(B)p - KPU™)
A SeL(@)gy— 30(vy,...,v,)e L(a)n (Vie M, fe S&ME=0[p])]

The part within brackets here is clearly A, since = is A,. Thus the theorem is
a IT sentence and so it suffices to prove it for countable structures 9. 0

There are useful second order generalizations of the above theorems. For ex-
ample, generalizing 3.1 we get the following result.

3.6 Theorem. Let S(p, S) be a 1} predicate on a countable structure M. For every
admissible set A with Me A, SNA is X, on A. The Z, definition is independent of .

Proof. If S(p,S) holds iff (MM, S)=VT ¢(p,S,T), then S(p,S) holds iff
(6(S)— ¢(p,S, T)) is valid, where o(S) is

A\diagram (M, S) A Vx \/,cp (x=DP).
This is a countable sentence of L, so the proof given in 3.1 carries over. [

The second order generalization of 3.3 is not quite the converse of 3.6.

3.7 Theorem. Let S=S(ﬁ,§) be a second order predicate on I which is a X,
subset of HYPy,. Then S is TI! on M.

Proof. A simple modification of the proof of 3.3 suffices. Line (1) becomes
1) Wy, S)=o0[p,q,S,M], for every model Ay, of KPU™ and every S
which results in a modification of (4) to
4') then for some p',q',m,s, {(M',R',A,E>E=q@(p,q,s,m,) where

F(p)=p', F(q)=q', A(m) AVx [xEm—M'(x)] A A(s),

Vx [S(x)>3y(F(x)=y A yEs)]. [
3.8 Corollary. The set S defined by

S={ScM":ScHYPy,)

is TI} on M (as a second order predicate).
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Proof. S is A, on HY Py, since
xeS iff HYPyE=“x is a subset of M”

so S is 1} on M by 3.7. Note, however, that 3.7 will not allow us to conclude
that =S is 1} on 9 since S is not a subset of HY Py,; far from it. 0

3.9 Example. Let us return to consider nonstandard models of arithmetic. We
showed in §3 that the set of standard integers in a nonstandard model
M=(M,0,+,-> is IT} on M. Sometimes it is T} hence Al, sometimes not.
Recall that 4/ ={w,0, +,x).

i) For an M where the set of standard integers is X1 let M be a minimal
elementary extension of A": i.e., /<M but &/ <R<M implies & =N or
N=MP. Such M exist by results of Gaifman [1970]. In such an I we can de-
fine, for xeIN, '

x is standard iff IM, [ M, is the universe of a proper elementary submodel
of M and M y(x)].

This is extended X} by 3.10, hence X} by 3.8.

ii) For an 9M>.4#" where the set of standard integers is not A} hence not X},
choose a countable M with O(M)=w (by 11.8.7). The subsets of M in HY Py,
are exactly the first order definable sets (by 11.6.7) so the set of standard integers
are not in HY Py, and hence, by the results of this section, they are not A} on IR.
In fact, we see that for countable M, the set of standard integers is A} on 9 iff
O(M)>w. We will return to this example later. 0

3.10—3.12 Exercises

3.10. Let M be countable and let S,(p, P), S,(p, P) be predicates of pe M, P=M?,
each 1 on M. Assume that no pair (p,P) satisfies both S; and S,. Show that
there is a A} predicate S(p,P) containing S, but disjoint from S,. [Copy the
proof of 3.5 to find a O(p,P) in L, such that S(p,P) iff (I,P)=60(p,P) and then
show that S is A}.]

3.11. Recall Example 2.1(iv). Let a>w be any countable admissible ordinal.
Let p be any prime. Show that there is a countable p-group G with length (G)=«
such that G has a proper divisible subgroup but none in HYPg. For such a G
the largest divisible subgroup of G is thus ] but not IT}. [Use the YY-Com-
pactness Theorem. ]

3.12. Generalize the results of this section to show, for Ay, transitive, HFy, S Aqy:
i) If S is a relation on Ay, and S is £, on HYP(Ay,) then S is T1} on Agy.
ii) If Agy, is countable then the converse of i) holds.

3.13 Notes. Kripke and Platek proved that a subset X of HF is I1} over HF
iff X is £, over HYP(HHF) and hence that X is A} over HF iff XeHYP(HF).
This was generalized in Barwise-Gandy-Moschovakis [1971] by replacing HF
by any countable transitive set 4 closed under pairs. It is clear from the proof
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given there that Theorem 3.1 holds. It came as somewhat of a surprise that its
converse, Theorem 3.3, holds without any coding assumptions about the struc-
ture I, since the inductive definability approach (discussed in Chapter VI) does
not work in this complete generality.

4. Perfect Set Results

In this section we give a more sophisticated example of the interplay of model
theory and recursion theory showing how each subject can shed light on the other
and how logic on admissible sets sheds light on both. The results themselves will
not be used in the remainder of the book.

The following, a classical result on hyperarithmetic sets, is the effective version
(due to Harrison) of an even older result in descriptive set theory.

4.1 Theorem. If S<Power(w) is £} on A ={w,0,+,-> and card(S)<2%° then
S is a set of hyperarithmetic sets.

Compare this with two results from model theory. The first is due to Kueker
[1968].

4.2 Theorem. Let M=<{M,R,,...,R,> be a countable structure for a language
L and let P be an n-ary relation on M. If the set

S={Q|(M,P)=(M,Q)}
has card(S)<2¥° then
P={(X1, ey xn)lg‘R':(p[xla v Xy 15 ens qm]}
Jor some formula ¢ of L, ., and some qy, ..., q,eM.
(A formula ¢ is in L, , if it is in L, for some countable fragment L, of L ,.)
The next result is a theorem of Chang [1964 ], Makkai [1964], and Reyes [ 1968].
Chang and Makkai had a stronger hypothesis.

4.3 Theorem. Let ¢(P) be a finitary sentence of LU {P}. Assume that for each
countable model M there are fewer than 2%° relations P such that

(M, P)=o(P).

Then there are finitary formulas Y (%1, Vs, Un(Z V1o s Vi) Of Lo
such that for every model (MM, P) of ¢(P), there is ani, 1<i<m, and q,..., g, €M
such that

P={(xy,...,x,) I M=y, [%,qy, ..., q.]} -
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The conclusion of 4.3 can be restated as: the sentence

o(P)— \/1 <ismAV1rs yk.-vx[P(g)H'//i(ivyl’ ey yk.-)]

is logically valid.

These three results, while incomparable, are obviously quite similar. They
all begin with the assumption that a certain definable or X} class S has fewer
than 2%° elements and conclude that each element of S is definable in some way.
We want to show these results are more than merely analogous, that they are in
fact shadows of a single definability result about logic on admissible sets. First,

though, we prove a generalization of 4.1, because the proof is relevant to our
general result.

4.4 Theorem. Let M=<{M,R,,...,R;> be a countable structure and let S be a
second order T} predicate on M. If card(S)<2%° then SSHYPy, (and hence S is
countable).

Proof. After a trick the result falls right out of I11.8.2. Assume S& HY Py, Then
by 3.8 (and this is the trick), So=S—HYPy is £} and non-empty. We prove
that S, (and hence S) has cardinality 2¥°. Let us handle the case where S, is a
predicate of one relation:

So(S) iff (M, S)=AT (S, T).

Let U'=Lu{p:peM}u{S}, K=LU{T} and let L, K, be the countable
admissible fragments given by HY Py, If ¢ is

Diagram (M) AV x \/,em(x=P)

then o A @(S,T) is in K,. We claim that ¢ can have no model which is decidable
for L}. Such a model would be isomorphic to some structure of the form (M, S, T),
where S is A; on HYPy; and hence SeHYPy, whereas (I,S,T)=¢(S,T),
implies SeS,. Thus the result follows from I11.8.2. [

We now turn to consider the relationship between 4.2 and 4.4. If we apply
4.4 to the situation described in Theorem 4.2 we learn that if there are <2%°Q’s
with (I, P)=~ (M, Q), then each of these is A} on (I, P) which (while interesting
and not obvious from 4.2) says nothing about the original P. There are examples
(9, P) satisfying 4.2 but where P¢IHY Py, i.e., is not Al on 9, which rules out
one possible strengthing of 4.4 that would yield 4.2. To find the correct generali-
zation of 4.2, 4.3 and 4.4 we need a new definition.

4.5 Definition. A X! sentence of an admissible fragment L, is a second order
infinitary sentence of the form

12¢

where 2 is a set of symbols of L, 2e A, and ¢el,.
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If 2 is finite, the requirement 2 A is automatically true, and we could write
30¢(Q)
or
iQ,,...,3Q,¢(Q,,...,Q,).

In the infinite case, however, we should not think of 2 as being a well ordered
sequence of symbols. Note that even though we have written 2, the definition
actually permits function and constant symbols to occur in 2 as well as relations
symbols.

The following result has 4.2—4.4 as consequences. For ordinary (as opposed to
% 1) sentences of L, it is due to Makkai [1973]. For 4.4, though, it is the £} version
which matters. The proof is a minor variation on Makkai's theme, the Inter-
polation Theorem taking the part formerly played by Beth’s theorem.

4.6 Theorem. Let 32¢(P,9) be a X} sentence of the countable admissible fragment
L,. If for each countable structure M there are less than 2%° relations P such that

M, P)=32¢(P,2)
then there is a sentence o of L, of the form
Vier3Vss oo, 3, Y xp, o, VX, [P Xy ooy X) O WX g ooy X Vi ooy Vi) ]

which is a logical consequence of @(P,2), where each \; contains only symbols of
L not in 20 {P}.

The converse is obvious. In fact, the conclusion implies that every such P
is in any admissible set containing 9t and ¢ so there are <N, such P.

Note that Theorem 4.3 is the special case of Theorem 4.6 where L, is L,
and where the Q’s do not occur in ¢(P,2).

Before attempting to prove 4.6 it is good to get some idea of what it says by
applying it to prove 4.2 and strengthen 4.4,

4.7 Corollary. Under the assumption of Theorem 4.4 there is an S'€e HY Py such
that S<S'.

Proof. Suppose PeSiff(M, P)=3IQ ¢y(P,Q). Let ¢ be the conjunction of ¢, (P, Q),
diagram (M) and V x \/‘,e m(x=p). The hypothesis of 4.6 is satisfied so let ¢ be as
in the conclusion of 4.6, ¢ of the form

\/ie,EIyl,...,Ely,”iVxl,...,Vx,,[P(xl,...,x,,)<—>|ﬁi(x1,...,x,,,yl,...,ym)],

where each y; is in the language Ly {p|eM}. For each i€l and gq,...,q,eM
let
Pig={(Xy, .., )M=Y [ X1 s X G150 G} -
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Each P, ;e HYPy by A, Separation and, as an operation of i and ¢, P,z isa X
operation in HY Py, so we may form the set

S'={P,;liel,je M} HYPg,
by X Replacement and S<=S'. [

4.8 Theorem. Let M={(M,R,,...,R,> be a countable recursively saturated
structure (i.e. o(IHY Pg) = ). Let S be a second order £ predicate with card(S) <2°,
say S<Power(M"). There is a finite set of finitary formulas

‘//1(55,)’1>~-,ym,),u-, wk(g’yl,-“’ymk)

of L, such that for each SeS there is an i, 1<i<k, and elements q,, ..., qp,
of M so that S is defined by

S(x) iff M=y [X.qy, ... dm] -

Proof. Using 4.7 choose S’ so that S’ Power(M") and
ScS'eHYPy,.

Since o(HYPg)=w we have, by 11.7.3,

VSeS IyIg

[ is a formula of L, is an m-tuple of elements of M (where the free
variables of  are among v,,...,0,,,) so that for all x,,...,x,eM:

{Xpyenny Xpp€S ff ‘.mt=n//[x1,...,x,,,ql,...,qm]].

Since L is finite we can assume L, is coded up on HF. By X Collection in HY Py,
there is a finite set @ of formulas such that each iy can be chosenin ¢. 0

4.9 Example. Let A/ ={w,0,+,"> and let M be a countable recursively saturated
elementary extension of A". Then there are 2*° distinct M, such that

(1) M,<M, and

(i) M, is an initial segment of M.

Proof. Let
S={M,=M|M, is the universe of an M, with (i) and (i)} .

The techniques of § 2 show that S is £} on 9. Suppose, toward a contradiction,
that card(S)<2%. Then since weS, there is a formula ¥(x,qy,...,q,) With
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parameters from 9t such that

0= {x|MEY[x,q5,... 4]}
which is a contradiction. 0

Before turning to the proof of Theorem 4.6, we show how 4.8 can be used to
strengthen the Chang-Makkai-Reyes Theorem (4.3). The result is interesting
because of the light it sheds on the usual proofs of this theorem by means of
saturated (or special) models.

4.10 Corollary. Let ¢(P,Q) be a finitary sentence such that for each recursively
saturated countable model M, there are less than 2%° different P with

M, P)=3Qe(P,Q).
Then there is a finite list of finitary formulas y,(X,¥),..., ¥,,(X,y) such that

Fo(P.Q) > Vi<icn IVVE[PE) o Y(%,7)].

Proof. Suppose that the hypothesis holds but that the conclusion falls. Let T be
the theory

»(P,Q)
S AFVI[P(X) o y¥(X,5)], forall yel,,.

By the ordinary compactness theorem, this theory is consistent. By Theorem 11.8.8,
it has a countable recursively saturated model (9, P). But this structure 9 has
<2% P such that (M, P)=3Q¢(P,Q) so, by 4.8, each of these P’ (in particular
the original P) is definable, contradicting the fact that (9%, P) isa model of T. 0

4.11. Proof of 4.2 from 4.6. We must cheat a bit by quoting a result, Scott’s
Theorem, from Chapter VII. Let M, P,S be given as in 4.2 and suppose that
card(S)<2%. Let ¢(P) be the Scott sentence of (I, P) so that for all countable
structures (9, P’),

(D, P') = (P) iff (W, P) = (M, P').

(The sentence ¢(P) involves only constants from Lu{P}.) Thus there are, for
each model M, fewer than 2¥° P’ such that

(M, P)=o(P).
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From 4.6 we get a y(xy,..., X, ¥y, ..., V) such that for some q;,...,g,eM
M, P)EVX[PR) o V(X ooy X 1o -ovs Q) ] -

which yields the conclusion of 4.2. 1[I

Having no excuse for further procrastination, we begin the proof of 4.6.

4.12. Proof of 4.6. Since 4.6 implies 4.4 we expect to use considerations similar
to those used in proving 4.4, that is, the method of § II1.8. The chief difference
is that instead of constructing 2%° distinct models 9t we need one model with 2%°
distinct P such that

M, P)=32¢(P,2).

This accounts for the complications in the proof below. We prove the contra-
positive, so suppose ¢@(P,2) does not have any sentence of the desired form as a
logical consequence. Let us simplify matters by assuming that 2 has only one
relation symbol Q and, further, that P is unary. The proof will make it clear that
these assumptions do not really matter. Let

L°=L—{P,Q}, C={c,ln<w}, K°=L°UC, K=LuC.

Call a set s of sentences of K, special if the following conditions are fulfilled,
conditions (D 1)—(D7) coming from (C1)—(C7) of I11.2.2 respectively.

(D1) If pes then —¢p¢s.

(D2) If —pes then ~pes.

(D3) If \®es then ges for all ped.

(D4) If Vve(v)es then ¢(c)es forall ceC.

(D5) If \/®es then ges for some ped.

(D6) If Jvep(v)es then for some ceC, p(c)es.

(D7) If t is a basic term of L, and c,deC then:if (c=d)es then (d=c)es; if
¢(t), (c=t)es then ¢(c)es; for some eeC, (e=t)es.

(D8) If peK§ then gpes or —pes.

In the proof of the Model Existence Theorem we first constructed a set s, satis-
fying (D1)—(D7) and then showed that any set s satisfying (D1)—(D7) gave
rise to a unique canonical model M by the conditions

M=R(cy,...,c,) iff R(cy,...,C )ES.

Furthermore, this model was a model of each @es. We shall use these facts here.
Note that if a consistency property S has the property

(C8) if seS and ¢@eK} then su{p}eS or su{-p}eS

then the resulting s, will satisfy (D8) and hence will be a special set of sentences.
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Now recall the notation from § I11.8:

1 1 !
) ] ]
[} ] ]

00% 01

d is a typical node on the tree; dO extends d by putting a 0 on right end; d1a 1;
and b is a typical branch.

The level of a node is just its length as a sequence. The plan for the proof is to
attach a finite set s, of sentences of K, to each node d of the tree in a way that
insures the following conditions:

(1) {@(P,Q)} is placed at the bottom of the tree; i.e., s.>={p(P,Q)}.

(2) If b is any branch and s*=\J{s,|d a node on b} then s’ is a special set of
sentences of K,.

(3) Any two sets s, and s, on the tree are consistent with respect to the sentences
of K§; that is, if peK) and pes, then (T1@)¢s,.

(4) Distinct branches through the tree are inconsistent with respect to the
symbol P; that is, if b,, b, split at d then there is a constant symbol ¢ so that
P(c) is in 549, but TIP(c) is in sy.

Suppose we contrive to fulfill (1)—(4). The canonical model determined by a
branch b through the tree will have the form (9, P%,Q%) with ¢(P,Q) true by (1),
(2) and the above remarks on special sets. Furthermore, & =9 for all
branches by, b,. For if Rel® and R(c,,c,) holds in 9M” then R(c,,c,)es, for
some d on b; but then —1R(c,,c,) is never put into any s, on b,, by (3), so
R(c,,c,) is in some s, on b, by (D8) so R(c,,c,) holds in M2, Finally, if b,, b,
are distinct branches then P" # P*2 by (4). In other words we have one model M
with 2%° distinct P each satisfying

(M, P)=3Q ¢(P,Q)

and so we will have proved our theorem. Satisfying (1)—(4), though, is not so
trivial.

In order ultimately to satisfy condition (4), we would like to have a symbol P?
for each branch b thru the tree, but this would make our language uncountable.
Instead we introduce new relation symbols P? Q¢ for each node d on the tree.
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We think of P! as our original P with a ghostly superscript d just barely visible.
Our original P, Q are P%, Q% where d is the empty sequence, d= < >. We de-
note this expanded language by K’ and the admissible fragment by K4. As usual
we consider only formulas with finite many ¢’s and, this time, only finitely many
different P?s ans Q7s. A finite set s of sentences of K4 is g-consistent if all the
nodes occuring as ghostly superscripts in s lie on some branch (e. g., P°*° and
Q%1910 ¢could both occur in s but P°'® and Q' could not). If s is g-consistent
then § is the result of increasing all superscripts in s to the longest one appearing
in s. E. g, if 010 and 01010 are the only superscripts in s then § has all P°'° and
Q°9 replaced by P°'°1% and Q°'°1° We define a giant consistency machine S
by {si,...,s,}€S iff s,...,s, are each finite, g-consistent, and §;u---US, does
not imply any sentence of K§ of the form

(*) \/1 <i<n \/we‘l’.' [3J7 Vx Pdi(x)*—"//(x’)—")]
where each yel) and d, is the longest node in s;. (Note that if {s,,...,s,}€S
then §,u---US, is consistent which will give us (3) above.) Our hypothesis insures
us that

(5) {{@(P,Q)}}€S.

While S is not really a consistency property, it generates many of them.
(6) If {81y sSpsSp+1}ES then

S={s|{S1s-+»Sn 5} €S}

is a consistency property satisfying (C8) above.

Most of the clauses are routine. Let us check (C5) and (C8).

(C5) Suppose \/ @€seS, but that for each 0@, su{0}¢S so that
{S1seeesSpy SUL0}}ES.

Since s is g-consistent so is su{0} so the problem comes from (*). We must
have, for each 0e®, some g, of the form (*) such that

—
S0 Us,UsU 0} -ay.
Now, just as in the proof of the interpolation theorem, we can assume the oy
is given as a function of 0, a function in our admissible set (g, will be the dis-
junction of the ¢’s given by strong X replacement). But then o=\/,.¢ 0, is again
of the form (*), once you rearrange it a bit, and

§uUs, LSO,

a contradiction.
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(C8) Suppose ¢(c,,...,c,)eKS, that seS but neither su {¢(c,,...,c,)} nor
su{me(cy,...,c,)}eS. Then there are sentences g, o, of the form (*) such that

5,0 U, USH (cy,...,C,) > 0y
§,0US,USETP(Cy,...,C) 0T,
but then

§,U U, USHa VO,

and ¢, v o, is equivalent to a sentence of the form (*).
We now come to the crucial step which will yield (4) above.

(7) If {s1,...,5,} €S, if d is the longest node in s,, if d0,dl do not occur in
s U uUs,, and if ¢ is a constant symbol not in sy\U--Us, then

{Slﬁ' <3 Sp—-1,5,Y { PdO(C)}’ Snu{jpdl(c)}}
is in S.

We use the Interpolation Theorem for K, to prove (7). We invite the student
to try the case n=1 for himself before going on. We do the case n=2 because
it exhibits the problems that arise in general. Now, if (7) fails, the trouble cannot
arise from g-consistency since

S8, U {P(c)}, s,u{P(c)}

are g-consistent so it must be that there are sentences a,, 6,, 65 where g; is of
the form

\/lpe‘l’,' 3.}-; Vx [P,(X)H‘/I(X,y)]
(where Py is the symbol P? in §,, P, is P, Py is P?!), such that
(8) Slusm)}us@)} o, vo,Vva;.

We show that (8) implies {s;,s,}¢S by finding a sentence o of the form (*)
such that

5,US, 0.

Rewrite (8) as follows:
[51(P, Q1) A 7101(Py) A 55(P4°,Q%%) A T10,(P°) A P¥(c)]
- [52(P¥,Q%) A 1105(P) - P¥(c)]

where s,(P?°,Q%°) indicates the result of replacing P by P in §,. Notice that
the only symbols on both sides of the implication sign are in K°. By the Inter-
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polation Theorem there is a y(c,cy,...,c,) which is an interpolant. We may
write this as:

$1(P1, Q1) A 5,(P%°,Q%) A PY%c) - 6,(P) v 02(P¥) v i(c,Cys...., ), and
§2(Pd150-d1) A lp((:’cla"”cm) - Pdl(c) Vv O.S(F,dl)'

Now replace P°, Q% by P4, Q“ in the top line, P4*, Q%' by P Q? in the second
line. We obtain

8108y = a1(P) v 3,(PY) v a3(PY) v [PYc)=i(c,cys....C)]
Since ¢ does not occur in §,US, we get
$1U8,0,(P) v oy (P v a3(PY) v Jyy,..., 3y, Vx [PHx) (X, y1,e s Y]

and hence {s;,s,}¢S.
Now we are ready to decorate our tree. List the sentences of K§ as a sequence

¢0a¢1a"'9(pn""

in such a way that any node d appearing in ¢, is of level <n. List the terms
occuring in L,:

Lostiseeesbpsenn -
We work our way up the tree as follows. Place {¢(P,Q)} at < >. Assume
we have placed sets s, at every node d of level n so that d is the longest node
in s; and the set

{s4]d a node at level n}

is in our consistency machine S.

{o(P,Q)}

Given s,, we first take care of ¢, and ¢, (if ¢, happens to be g-consistent with s, )
as in the proof of the Model Existence Theorem, using (6), giving us some
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{S', 54,5 545,54,} €S.

We then apply (7) to get

{s'U{P®(c)}, s U{1P¥(c)}, 55,53,54} €S

and we let sy0=5U{P%(c)}, 55, =s'U{1P*(c)}. In this way we work our way
along level n+1 and on up the tree. We see that any finite set of nodes on the
tree is in S. This takes care of (3) since, otherwise, they would certainly imply
a formula of the form (*). Now that there is a set at each node, let the super-
scripts vanish and you will discover we have satisfied (1), (2), (3) and (4), proving
our theorem. [

4.13 — 4.17 Exercises

4.13. Show that Example 4.9 is not true without the assumption o(HY Py)=w.
[Let M be a minimal elementary extension of A =<®,0, +,>].

4.14. Let M={(M,0,+,-> be a countable nonstandard model of Peano arith-
metic with o(HY Py)=w. Show that there are 2%° initial segments of 9t which
are models of Peano arithmetic.

4.15. Improve 4.14 to get 2™ initial submodels of MM which are isomorphic to M.
[Hint: Use a theorem of Friedman [1973] to the effect that every countable
nonstandard model of Peano arithmetic is isomorphic to some initial segment
of itself.]

4.16. Use 4.4 to show that if a countable abelian group G has <2%° divisible
subgroups then they are all in HYP; and hence there are at most X, of them.
Give a direct group theoretic proof of this fact.

4.17. Extend Theorem 4.6 from simple sentences to X, theories. Similarly extend
the applications of 4.6 given above.

4.18 Notes. The results of this section are called perfect set results because one
always ends up constructing, by a tree argument, a perfect set of objects, perfect
in the topological sense.

5. Recursively Saturated Structures

Having discovered several interesting facts about structures MM with O(IM)=ow,
we take time in this section to relate this condition on HY Py, to more traditional
notions.
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Recall that a structure M=<M,R,,...,R,> for L is N -saturated if for every

k<w and every set &(x,vy,...,v,) of formulas of L, with free variables among
X,Uq,...,0, the following infinitary sentence is true in 9:

Vo, 0 [(Nwoesu@ 3% /\ Polx, vy, 0)) = Ix A\ B(x,0y,...,0,)]
where S,(®) is the set of all finite subsets of @.

5.1 Definition. The structure M=<{(M,R,,...,R,> for L is recursively saturated
if the above holds for all k<w and all recursive sets ®(x,vy,...,v,) of L,

Just as in the case of X -saturated we have the following lemma.
5.2 Lemma. Let M be recursively saturated and let &(x,,...,x,,v;,...,0,) be a

recursive set of formulas with free variables as indicated. The following infinitary
sentence is true in IN:

Vou,.., 0 [(Awoesy@ 3%t X /\ Po)—= Ixy,...,x, \ @]

Proof. The proof is by induction on n, the case n=1 being the hypothesis. It
clearly suffices to prove the result for @ satisfying the condition

D,eS,(P) implies N\ Pyed,

since we could close @ under finite conjunctions. Let Y(x,,...,X,,ty,...,0,) be
the set of all formulas

X, 41 P(Xpseees Xy Xyt 15 Useevs Vi)

for ¢e®. Suppose that g,...,q,eIM are such that

ME=Ixy,..u Xpiq \ Po(%,G)

for all ®,e®. By the induction hypothesis, there are p,,...,p,eM such that
ME=AP(Prs- P 1o di)

and hence

‘In‘:axn-i-l /\(pO(pl""vpmx7q1a"'9qk)

for all ®,eS,(®), since every such 3x,,, A\ P, is in ¥. But then since M is
recursively saturated there is a p,. ;€M such that

M'z¢(plv'“’pn+l’ql#-“»qk)- D
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The principal link between recursively saturated structures and admissible
sets is the following theorem of John Schlipf.

5.3 Theorem. Let M={(M,R,,...,R,> be a structure for L. I is recursively
saturated iff O(M)=w.

Proof. We prove the easy half first. Suppose that o(IHY Py) =w. Let ®(v,wy,...,w,)
be a recursive set of formulas of L,,. We may consider @ as a A, subset of HF
by 11.2.3. Since HF is A, on every admissible set, @ is also A; on HY Py, Let
d=qy,-..,q,€M be such that

M= A\ D(v,q,y,--.,q)) -
We need to find a finite subset @, of @ such that
M= A\ Polv, qrs---q0)-

Now, since
VpeM 3¢ [pe® A M="19[p.4]]

we have, by strong X Collection, a set b such that

(1) VpeM 3peb [pe® A M="10[p,q]]

and

(2) Voeb IpeM [pe® AM=10(p,4]].
From (2) we see that b= @ so let @ =b. P, is finite since it is in HY Py, is a
set of pure sets, and has finite rank. From (1) we see that ®,(v,4) is not satis-
fiable on M.

To prove the other half of the theorem, let 9 be recursively saturated. We
need to prove that L(IMM,w) is admissible; i.e., that it satisfies A, Collection.

Call a set aeL(IN,w) simple if there is a single term Z(vy,...,0;4,) built up
from 4#,...,%y, 2 such that each xea is of the form

xz*g’_(pls”"pksM)

for some p,,...,p,eM. Assume, for the moment, that we have established (3)
and (4):

(3) Every aeL(M,w) is the union of a finite number of simple sets;
4) If zeL(M,w) and if a simple, then L(M, w) satisfies
Vxea 3y ¢(x,y,z) > 3Ib Vxea Iyeb ¢(x,y,z2)

for all A, formulas ¢(x,y,z).
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Assuming this, let ¢(x,y,z) be a A, formula such that L(I,w) satisfies

Vxea 3y ¢(x,y,z).

Write a=a,u---Ua, where each g; is simple. Since
Vxea; Ay o(x,y,2)

holds in L(IM,w) there are sets by,...,b,, in L(M,w) such that
Vxea;Ayeb; o(x,y,z).

But then let b=b,u---Ub,. Then beL(IR,w) and
Vxea Ayeb ¢(x,y,2)

so L(IM, w) satisfies A, Collection.

To prove (3) note that in the proof of 11.7.7 we showed that for each n there
are a finite number of terms % !,...,#™ such that each xeL(9,n) is of the form

x=Fp,M)

for some i<m and some peM. If aeL(IM,n) then a=L(IM,n). Define, by
A, Separation, sets ay,...,a,, by
a;={xea|IPpeM x=F'(p,M)}.
Then a=a,u - va,,.
Finally we prove (4). Let ¢ be given. By I1.7.7 and I1.7.6 we may assume that
the only parameters in ¢ are M and some jeM. Given the simple set a let
F°vy,...,0,4,) be as given in the definition of simple. Let a=%(ry,...,r,, M)

for some r,,...,r,e M. Rather than prove (4) we prove its contrapositive. Let y
be ¢, so that we want to verify that L(9,w) is a model of

Vb 3IxeaVyeb y(x,y,4,M) - Ixea Vy Y(x,y,4,M).
Assume the hypothesis. In particular we have, for each m<w,
(S)m Ixea VyeLIM,m) o(x,y,q,M)

which becomes

() 3p1s-., €M [FO(5,M)eF ' (F, M) A Vye L(M,m) Y(x,y,4,M)].

g

This is a A, formula of j,§,7 so, by the effective version of I1.7.8, we can find a
formula ¥ ,(p,q,7) of L, equivalent to it. Note that by (5) we have

ME=EVor,.., 0 [YlVrse s Uy G F) W (V14 .., 0,45 7))
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whenever m>m’. By (6),, we see that
&= {Y,(v1,..., 0,4, F) | m<w}

is finitely satsfiable. Since it is clearly a recursive set (by the exercises at the end
of 11.7) and M is recursively saturated there are py,...,p,eM so that

M=y,(5,4.7)

for all m<w. Thus for this j, we have, setting x=%°p,M), xea, and for
all m<w,

VyeL(M,m) y(x,y,q, M)

and hence
VyeL(M,w) y(x,y,q,M)

as desired. [

Schlipf discovered 5.3 by generalizing the results 54 and 5.7 below.

5.4 Corollary. If M={M,R,,...,R}> is X,-saturated then O(M)=w. [

5.5 Corollary. If M=<{M,R,,...,R,)> is recursively saturated and P(x,vi,...,0,)
is any set of formulas of L, which is X, on HYPy, then M satisfies:

Vuy,..., 0 [(/\®oesw(<b) dx /\ d,)—Ix /\ ¢] .

Proof. The proof that o(IHY Py)=w implies M is recursively saturated actually
proves this stronger result. [

5.6 Corollary. For every infinite M=<{M,R,,...,R,> there is a proper elementary
extensipn N of M of the same cardinality such that M is recursively saturated.

Proof. Immediate from 5.3 and 11.8.6. [

The above corollary shows a contrast between the notions of recursively
saturated and Nj-saturated structures since there is no countable N,-saturated
elementary extension of A" ={(w,0, +,->. Of course one could also prove 5.6 by
a more standard model theoretic argument using elementary chains.

The following result shows that 5.3 can be improved for countable structures.
It shows that if 9t is countable and o(HY Py)=w then I is saturated for certain
sets of X} formulas.

5.7 Theorem. Let IM=(M,R,,...,R;> be a countable structure for L with
OM)=w. Let K=Lu{S,,...,S,} and let P(x,,...,X, V5.,V S1,-..,S,) be a
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set of formulas of K, which is £, on HYPy. The following infinitary second
order sentence holds in M:

V01 es Uk [(/\@oesui@) 3S15:Sm 311 0sX, \ Do(%,5,S)) > 3S,...., S, 3xy 0 x, \ D]
Proof. We use Theorem II1.5.8. Let q,,...,q,e M be given so that
M=3S,,....S,, Ixe, X, A\ Po(X,S, g1, )

for all ®,eS(P). We can assume that Ku{c,,...,c,,d,,...,d,} is coded up on
HF. Let T be the theory

®(c,,...,Cpndys A Spi- s S,)

Introduce symbols p for pe M as usual and let T'={y} be the conjunction of

/\Diagram (9t)
VX \Vperm X=P
dl Zah"'ﬁdk=ak’

For every finite subset Ty of T, Tyu T’ has a model, so TuT" has a model. This
model is isomorphic to some

(O, Sy, s Sps Pise-sPus Qs+ qk)
with

(M, Sy,.... S )EP[Prse. s Pi oG5 - O
5.8—5.14 Exercises

5.8. Show that every recursively saturated structure is w-homogeneous.

5.9. Suppose M is uncountable. Show that o(HYPy)=w iff for all relations
Ti,..., T, on M there is a countable recursively saturated structure M with

OLTIN,...,IN) <, T,,....T,).

5.10. Show that the predicate

“M is recursively saturated”
is absolute (A,) for models of KPU + Infinity but that the predicate
“M is N-saturated”

cannot be expressed by a X formula.
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5.11 (J. Schlipf, J.-P. Ressayre). Let « be an admissible ordinal and let A =L(«).
Let L be a language with a finite number of symbols. A structure M for L is
a-recursively saturated iff for every set @(x,v,,...,v,) of sentences of L, which
is A; on A the following sentence holds in IM:

Vo, U [(Asoesa@y 3% /\ Polx, vy,...,0) = Ix A\ D(x,vy,...,04)]

where S,(@)={P,=P|P,cA}.

(i) Prove that if L(a)y is admissible then 9 is a-recursively saturated.

(ii) Prove that O(9N)=the least a« such that o is recursively saturated. (This
result, due to J. Schlipf, strenghtens a special case of a theorem of J.-P. Ressayre.
Schlipf's proof uses notions from Chapters V and VI.) Makkai has translated
Ressayre’s result into our setting to show that for o countable, admissible and
greater than w, L(a)y is admissible iff 9 is a-recursively saturated and satisfies
the following condition: Suppose ¢, ,(v;,...,v,) is an a-recursive function of 8, y.
Suppose further that for some p,,...,p,eM and some f,<o:

mu:/\ﬂ<ﬂo \/y<z (/)ﬂ,y(ﬁ)~

Then there is a y,<a such that

‘JJH: /\ﬂ<ﬂ0 \/)'<}’o (pﬂ,y(ﬁ)~

5.12. Show that I is N -saturated iff
(1) o(HY Pyp) = w.
(ii) for every X cw, (HY Py, X) is admissible.

5.13. In this exercise we sketch some interesting connections between recursively
saturated models of Peano arithmetic and models of nonstandard analysis. To
simplify matters, we identify analysis with second order arithmetic (a standard
perversion among logicians). Thus we add to the first order language of number
theory new second order variables X, X,,... and a membership symbol € which
can hold between first order objects and second order objects ((x;eX)) is a
formula but (X;ex;) isn’t). The axiom of induction asserts:

VX [0eX AVx(xeX —>(x+1)e X)— Vx(xe X)].

(Warning: when working in systems weaker than the one described here it is
often necessary to replace this single axiom by an axiom scheme.) The axiom
of comprehension asserts the following, for every formula @(x,y,,...,y):

vy 3x [Vx(xe X = o(x, y1,.... y)].

By analysis we mean the usual axioms of Peano arithmetic plus the axiom of
induction and the axiom of comprehension. (Of course there is no need to include
the first order form of induction since it follows from our second order axioms.)
A model of analysis consists of a pair (9t,#), where # is a collection of subsets
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of the first order structure 9N, which makes all the axioms of analysis true. Any
such model of analysis gives rise to a model M of Peano arithmetic, but not
every model of arithmetic can be expanded to a model of analysis. A model of
nonstandard analysis is a model (M, ) of analysis with M not isomorphic to the
standard model of arithmetic.

i) Prove that if (M, ) is a model of nonstandard analysis, then N is recursively
saturated.

ii) Let M be a nonstandard countable model of arithmetic. Let

H =) { AN, #)E=analysis} .

Prove that either # is empty or that J# consist of exactly the definable subsets
of M. [This is easy from (i) and Theorem 1.1.]

5.14. Prove that there are two nonisomorphic countable recursively saturated
elementary extensions of A" =<w, +,x).

5.15 Notes. It is not known whether or not there is a complete theory T in an
finite language such that all models of T are recursively saturated but T is not
No-categorical.

6. Countable IMM-Admissible Ordinals

Since this chapter concerns the interplay of model theory and recursion theory,
it seems appropriate to discuss one of the first applications of infinitary logic
to the theory of admissible ordinals.

Let /" ={w,0,+, >. Most countable admissible ordinals « (other than w)
that arise in recursion theory are of the form

oa=0((A",R))

for some relation R on w. The question arose: Is every countable admissible
o, a>w, of the above form? Sacks eventually answered this in the affirmative
by means of “perfect set” forcing. His proof remains unpublished since Friedman-
Jensen [1968] presented a simple proof of the result by means of the Barwise
Compactness Theorem. We extend this theorem as follows.

6.1 Theorem. Let M=<{M,R,,...,R,> be a countable infinite structure and let o
be a countable ordinal. The following are equivalent:

(1) o is M-admissible;

(ii) for some relation S on I,

a=0(M,S),
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(iii) for some linear ordering < of M,
a=0(M, <)
and the order type of the largest well-ordered initial segment of < is a.
Proof. The implications (iii)=>(ii) and (ii)=>(i) are obvious. To prove (i)=>(iii)

we borrow a fact from Section V.3:

(1) If r<axa is a linear ordering, r an element of an admissible set A, and
if B is the length of a well-ordered initial segment of r then B<o(A).

This could be proved now, but it is easier to wait for the Second Recursion
Theorem. Let o be IM-admissible. Then there is a countable admissible set
A=Ay above I with

a=0(Ag)

by I1.3.3. Let K be the language L* plus new constant symbols c, r, and X for
each xeAgqy. Let K, be the admissible fragment of K_, given by Agy. Let T
be the theory which asserts:

KPU*

Diagram (A )

“M is the set of all urelements”

Vo[vea -\ i v=%X] (for all acAgy),

“c is an ordinal’

c>R (for all f<u),

“r is a linear ordering of M of order type en(c x c)’.

T has a model of the form

(wt, H(wl)imaeaa’r)
for any well-ordering r of M of order type . By III.7.5 T has a model

(M; B,E,c,r)
with a=0W¢(M; B,E). Let Agy=#7(M;B,E) which is an admissible set by
the Truncation Lemma. Since r&M x M, re Ay so Ag is actually admissible
above (I, 7). Hence a>o(IHYPgy ,,). But r has an initial segment of order type a

(by T) so, by (1) applied to HYPgy ,,, a<o(HYPgy,). We let < be r. [

6.2—6.5 Exercises
6.2. Let (M, <) be as in 6.1(iii). Show that HY Py -, is a model of —1Beta.
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6.3. Prove (1) above.

6.4. Let Ay, be countable, admissible above M with o(Ag)>w. Find a larger
admissible set By, above M with the same ordinal such that Bg, is locally
countable; i. e.,

By, =Va (“a is countable”).
[Hint: Use the YY Compactness Theorem and Theorem I1.7.5.]

6.5 (Schlipf). Prove that for every countable admissible ordinal 8 there is an
elementary extension M of A'=<(w,0,+,x) such that f=0(HYPy). [Hint: i)
Show that if 9t is not recursively saturated and the set {n<w|M="“n divides K"}
codes a well-ordering of w, and if « is the length of the well-ordering, then
o(HY Py)>o. ii) Show that if 9 is a model of Peano arithmetic generated by a
single element k, usually written 9 =_4"[k], then 9 is not recursively saturated.]

6.6 Notes. Theorem 6.1 and Exercise 6.4 are just two of many results that can
be proved by either forcing arguments or by compactness arguments. See the
appendix for a few references. Kunen has recently removed the hypothesis of
countability from 6.5.

7. Representability in M-Logic

One of our principle results in this chapter, Theorems 3.1 and 3.3, identifies the
relations on I which are £, on HY Py, as the I1; relations on I, as long as M
is countable. In Chapter VI we will search for the absolute version of this result.
The results of this section will be of central importance in this search.

The reader should recall the notions of representability used to characterize
the r. e. and recursive sets. The following are the infinitary analogues.

7.1 Definition. Let M be an L-structure, T a set of finitary sentences of L* which

are consistent in M-logic, ¢(vy,...,v,) a finitary formula of L* and S an n-ary
relation on IR.

i) We say that ¢(vy,...,v,) strongly represents S in T by the M-rule if, for
all qy,...,q,€M,
S(4y,---,q,) implies Trgqe(G;y,...,q,), and
-18(qy,---»q,) 1implies Ttg0(Qy,...,q,);

whereas it weakly represents S in T using the M-rule if for all q,,...,q,eM

S(qy5---»q,) T THgre@y,...,0,).
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ii) We say that ¢(vy,...,v,) invariantly defines S in T in M-logic if for all
qis---sg,€M
S(qy5-.-,q,) 1implies TrFEgeQy,...,q,)
=18(qy,..-,4,) 1implies T=g19(Qy,...,q,)

where as it semi-invariantly defines S in T in M-logic if for all ¢,,...,q,eM

S(ql""’qn) lff T':Wl(p(ah"'?an)'

The following is an immediate consequence of the IM-Completeness Theorem.
7.2 Proposition.

S¢rongly representable = invariantly definable

weakly representable = semi-invariantly definable
and, if M and L are countable, the converses hold. [

These are excellent examples of notions which agree in ordinary recursion
theory but which diverge, yield two interesting distinct notions, in generalized
recursion theory.

7.3 Theorem. Let M={(M,R,,...,R,> and let S be a relation on M.
i) If Sis X, on HY Py, then S is weakly representable in KPU* using the M-rule.
i) If SeHYPy, then S is strongly representable in KPU™" using the M-rule.

Proof. Our language L* for M-logic consists of Lu{p|peM} as in II1.3.2(ii).
We prove the results for countable 9. In Chapter VI we will show that the
results are absolute. We prove (i) first. Choose ¢(xy.....X,,py,....pr, M) as in

I1.8.8. We can rewrite this using the relation symbol M in place of the single
set M. Thus we have, for ¢,,...,q,e M

S@pse.nqy) W KPU* =g o(@ys....GpuB oo P M)

which, by 7.2, gives the desired result.
Now we prove (ii). Let us assume S is unary to simplify notation. Using 11.5.15
let o(x,py,...,p,,M) be a good X, definition of S so that

]HYP_cmt=(p[S,p1,---,PmM]
and

Wgp=3x @(x,pyy...,pp M)
for all models Ay, of KPU™, and hence

KPU* 4 3!x 0(x,p1,...,B,,M)
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by the M-completeness theorem. We claim that S is strongly represented by the
formula y(v) given by

3x [@(x,P 15---P M) AvEX].

If S(g) holds then Wy =y(q) for all models Wy, of KPU™ so KPU* g4 y(q).
If —1S(g) then, for any W yp=KPU™, since Wonk=(S) A ! x @(x), gy =—1(q) and
hence, KPU" -4, —(q). O

We now prove a strong converse to Theorem 7.3. The first time through this
result the student should think of T as KPU™ or some strong extension of it
in L*¥ given by an r.e. set of axioms.

7.4 Theorem. Let T be a set of finitary sentences of L* which is £, on HY Py
and is consistent in M-logic. Let S be a relation on IN.

(i) If S is strongly representable in T using the M-rule then SeHY Py,

(i) If S is weakly representable in T using the M-rule then S is £, on IHY Py,

Proof. First note that (ii)=> (i) since S strongly representable implies S and —S
are weakly representable so S and 1S are X, on HYPy, so S is A; and hence
SeHYPy, by A Separation. We prove (ii) for the case where 9t and L* are
countable leaving the absoluteness of 7.4 to Chapter VI. Let ¢(v,,...,v,) weakly
represent S in T. Then we see that the following are equivalent:

S(q1>-+5qn)>

THg @@y, 0n)
TEqe@y,-.-,qn),
TEY(@,..-.qn)-

I.e., the infinitary sentence ¥(dj,...,q,) is a logical consequence of T, where

‘l/(al""9an) is
/\ Diagram () A Vo [M () >\/eyr =51~ @(@1.....G).

The sentence ¥(qy,...,q,)€ HYPy and the map (qy,...,q,)~ ¥(@y,...,0,) 1S X,
definable so, by the Extended Completeness Theorem, S is £, on HYPy. [

It should be obvious from the proof of 7.4 that there was no real reason to
demand that T be a set of finitary sentences. It is just that we only bothered to
define 4, for finite sentences. T could have been a set of sentences each in
IHY Py, as long as T is £, on HY Py, and the proof would go through unchanged.

One might well ask about what happens to invariant and semi-invariant
definability in the uncountable case where they no longer coincide with the
representability notion. They turn out to be significant classes of predicates,
ones we study in Chapter VIIIL.
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7.5 Exercise. Let M=(M,R,,...,R,> be a structure for L. Let L™ be as in 7.3.
i) Assume that we have added a X function symbol F to L* for the operation
F(x,y)=xu{y} and a constant symbol @ for the empty set. Show that each
xeHFy, is denoted by a closed term ¢, of L*.
i) Show that SSIHFy, is X, on HY Py, iff S is weakly representable in KPU*
using the M-rule.

7.6 Notes. The representability approach to the hyperarithmetic sets goes back
to Grzegorczyk, Mostowski and Ryll-Nardzewski [1961].








