
PartD

Higher Types

Chapter 7

Computations Over Two Types

In Chapter 4 we started our study of computation theories on domains of two
types 31 = (A, S9 S> where A = S u Tρ(S) and S is a coding scheme for S.
Given a normal list L on 31 we defined a recursion theory PR(L) generalizing
Kleene recursion in higher types, and all of Chapter 4 was aimed at proving the
following result (Theorem 4.4.1):

(a) PR(L) is /7-normal, hence admits a selection operator over N,
(b) A is weakly but not strongly L-finite, i.e. the L-semicomputable relations

are not closed under 3x e Ύp(S).
(c) S is strongly L-finite, i.e. the L-semicomputable relations are closed under

The ultimate goal of this chapter is to see how far properties (a)-(c) determine
normal recursion in higher types. In this study we meet a new and characteristic
feature of computations on two types which was entirely absent in the general
study of finite theories on one type (Chapter 3), viz. reflection.

7.1 Computations and Reflection

The setting is a computation theory Θ on 31 = <̂ 4, S9 S> satisfying properties
(a)-(c), such theories are called normal. Since we are on two types, Θ also allows
functional evaluation

f(x,y,σ) = x(y\

if x e Tp(5) and ye S. We also have extended our functional substitution

The code set C is assumed to be equal to N.
The reader should at this point recall Definitions 4.1.1, 4.1.2, 4.1.4 as well as

Remark 4.1.5. Also recall the need of including the equality relation on S in the
general case.

168 7 Computations Over Two Types

7.1.1 Definition. A computation theory Θ on 91 = (A9 S, S> is called normal if

(i) the equality relation on S is Θ-computable,
(ii) A is weakly and S is strongly Θ-finite,
(iii) Θ is /7-normal.

As usual in the "finite" case we work with the norm or length function | | θ

rather than with the subcomputation relation. Our computation theories are
single-valued so we shall abbreviate \a,σ9z\θ to \a, σ\θ or in some cases to

IW WU
Let N c X c A, and Ord(Z) = {\e9 σ\θ : {έ?}β(σ)| and σ a list from X). We

introduce

κx = sup Ord(Z)
λx = order-type of Ord(Z).

We shall be interested in the special cases X = N9 Nu {xl9..., xm}9 S, Sv
{xl9..., xm}9 A. Letting σ be the list xl9..., xm9 κx will be denoted by κ°9 κσ

9 κs

9

κs'σ9 κθ9 respectively. And similarly for λx.

7.1.2 Remark. There is a well-known connection between prewellorderings and
the ordinals κx. In particular, if N £ X £ 4̂, then κx is the supremum of the
lengths of the pwo's with domain ^ A which are Θ-computable in elements from
X. The supremum is not attained.

And if X admits a pairing scheme <MX, KX9 Lx} Θ-computable in elements
from X, then λx is the supremum of the lengths of the pwo's with domain ^ X
which are Θ-computable in elements from X. Again the supremum is not attained.

From this we may conclude that if X = N9 Nu {xl9..., xm}9 S9 Su

{xi, ..>,Xm}> then

λx < κx < κθ.

If σ = (Xl9...., Xm)9 then λσ ^ λs*σ < κσ.

Detailed proofs of these facts are given in lemmas 20 and 21 of Moldestad
[105]. To give the flavor of such proofs we include a brief hint for the first case.
Let P be a pwo which is Θ-computable in σ = (xl9..., xn), where xl9.. .9 xme X
and domP ^ A. First find an index ex such that {ei}θ(*> σ) ^ 0 if x e d o m P ,
and if xeάomP then \el9 y9 σ|β < \el9 x9 σ\θ for all y below x in the pwo P.
Next, let e2 be an index such that {e2}θ(σ)l and \el9 x9 σ|θ < \e29 σ\θ for all
* e d o m Λ e . g . l e t W β (σ) - £(/) , where/(x) - fe}e(x, σ)if x e d o m ? , / W - 1,
otherwise. Obviously, κ x > |e2, σ|θ ^ | P | . Conversely, given any v < κx, there
is a computation in a list σ from Z, (e}θ(σ), such that \e9 σ\θ > v. The subcomputa-
tion tree below {e}θ(σ) gives a pwoP such that | P | = \e9 σ|θ > v.

We now turn to a brief study of reflection phenomena in higher types. This

7.1 Computations and Reflection 169

notion was introduced in recursion theory by G. E. Sacks and further developed
by L. Harrington in his thesis [53]. A Kechris in a set of unpublished notes from
MIT [74] developed the general theory, see also his account in [76]. For the use
of reflection in forcing arguments in higher types, see G. Sacks [143]. As we saw
in Section 3.3, similar reflection properties are also of great importance for the
general theory of inductive definability.

A computation-theoretic approach was developed by J. Moldestad [105]; we
shall follow his account. As an introduction we present the following simple result.

7.1.3 Simple Reflection. For all e, σ: If3x-\e, x, σ|θ < /cs σ, then 3x- \e, x, σ\ < κσ.

The premiss simply says:

le'eN 3seS[{e'}(s9 σ)j Λ 3x-\e, x, σ|θ < \e\s, σ|θ].

This is a Θ-semicomputable relation of σ : "3Λ;" can be expressed by the E func-
tional since A is weakly Θ-finite. " ϋ s e S " ' can be handled since S is strongly
Θ-finite, and "3ef e iV" is no problem since Θ is /7-normal, and we have selection
over N.

7.1.4 Definition. Let μ be an ordinal ^ K (= κθ). μ is called σ-reflecting if for
alle:

If 3x- \e, x, σ\ < μ, then 3x> \e, x9 σ\ < κσ.

σ is here a list of elements from A. Note that the σ-reflecting ordinals are an
initial segment. And K is not σ-reflecting for all σ if A is not strongly Θ-finite.

7.1.5 Remark. As remarked above we shall not develop the general theory of
σ-reflecting ordinals, but only that part of the theory which is needed for the
characterization results of Section 7.2. But we cannot resist mentioning the
following characterization of strong Θ-finiteness:

Let B c A be Θ-computable. Then B is strongly Θ-finite iff for all e9σ: if
3x e B-{e}θ(x, σ) ψ , then 3x e B \e, x, σ|θ < κσ. (For a proof and further refine-
ments, see Lemma 25 in Moldestad [105].)

7.1.6 Further Reflection. κs'p σ is σ-reflecting.

Here P = {(e, τ> : {e}θ(τ9 σ) φ , r is a list from £}. Note that P has a natural
pwo of length λs'σ.

The proof of 7.1.6 will be a consequence of the following four propositions.
We shall compare λs σ with the ordinal \x\ for any pwo x on S. Let pwos(;c) mean
that x is a pwo with domain £ S.

Proposition 1. "pwos(;c) Λ |JC| < λ s ' σ " is Θ-semicomputable as a relation ofx, σ.

170 7 Computations Over Two Types

The statement is equivalent to

pwos(x) Λ 3yeS[yeP Λ Vz e dom(x)[\z\x < \y\P]]9

where the notations | \x and | | P are self-explanatory. Note that the relation
pwos(X) is Θ-computable.

Proposition 2. If pwos(x) and \x\ ^ λs'σ, then P is Θ-computable in x, σ and
parameters from S.

First compute an x' such that \x'\ > λ s σ. Then there exists redom(x') such
that \r\x> = Xst<τ. From x, σ, r we can decide P.

Proposition 3.IfP is Θ-computable in σ, x and parameters from S9 then κStP'σ ^
κS,x,σ

Proposition 4. "3y- \e, y, σ|θ < κ

s'x'σ" is Θ-semicomputable as a relation ofe9 σ9 x.
There is an index e for this relation such that \e, e, σ, x\θ > inf{|e, y9 σ|θ : y e A}.

The statement is equivalent to

3e' eN3re S[{e'}θ(r9 x9σ)± Λ 3y- \e9 y9 σ|θ < \e'9 r9 x9 σ|θ].

F r o m these four propositions further reflection easily follows. So assume that
3y \e9 y9 σ\ < κs>p-σ. Define the following relation

^(σ,jc) iff pwOsOt) Λ [|JC| < λ s ' σ v 3y\e9y9σ\ < κs>*-σ].

(i) By Propositions 1 and 4 R(σ9 x) is Θ-semicomputable. There is an index /
for R such that if R(σ, x) and |* | ^ λs-σ, then

\f σ, x\θ > inf{|β, y, σ|θ : y e A}.

(ii) From Propositions 1-3 and the assumption we conclude that if pwos(x),
then R(σ, x) is true. Hence we can assume that λx {f}θ(σ, x) is total. Let {g}(σ) ^
E(λx {f}(σ, x)), then \g, σ\e j and \g, σ\θ > \f σ, x\θ for all x.

(iii) There is some x such that pwos(jc) and |JC| ^ λs'σ. Combining (i) and (ii)
we get

** > \g> σ U > |/, σ, x\B > inf{|e, y9 σ|θ : j^ e A}.

Hence we conclude 3y \e9 y9 σ\θ < κσ

9 which completes the proof of 7.1.6.
Further reflection has the following compactness property as a corollary.

7.1.7 Compactness. Assume that B is a set of subsets of S and that B is Θ-semi-
computable in some list σ. Assume that B has as element a non-empty subset a0 of

7.2 The General Plus-2 and Plus-1 Theorem 171

S such that a0 is Θ-semicomputable in σ. Then B contains a subset of S which is
non-empty and ©-computable in σ.

We indicate the proof. If α0

 e B let aβ be the approximation to a0 up to length
less than μ. Let g be an index such that if \y\ = μ9 then au e B iff {g}(y, σ) ψ .

If we can show that 3y-\g9 y, σ|β < /cp'σ, then by further reflection 3y-
\g9 y> σ | β < * σ And from this we get a subset ατ c α0 such that ατ e B and ατ

is ©-computable in σ.
But since κp 'σ > /cs'σ, let j be a computation {e}(P9 σ) such that κp σ > | y\ >

κs>σ. Then α,y, = α0 because 7 is convergent and |j>| > κs-σ, and |^,^, σ| < κp-σ

because y = <e, P, σ>.

7.2 7%e General Plus-2 and Plus-1 Theorem

We start by fixing some notations. Let θ be a normal theory on 31 = <Λ, S, S>:

sc(Θ) = {X c 4̂ : X is Θ-computable},
sc(Θ, σ) = {Z c 4̂ : X is Θ-computable in σ},
en(Θ) = {Z c A : X is Θ-semicomputable},
S-en(Θ) = {X^ S: Xis Θ-semicomputable}.

7.2.1 Theorem. Let Θ be a normal theory on 31. Then there exists a normal list L
such that S-en(Θ) = S-en(L) and sc(Θ, r) = sc(L, r) for all r e S.

This is an abstract version of the plus-2 theorem of Harrington [53].
Harrington's original version was a reduction result: Starting out with a normal
functional G of type >n + 2 he constructed a functional F of type n + 2 such that

nen(G) = nen(F). The proof used the fact that Tp(«) is strongly finite in G. Theorem
7.2.1 is an improvement, here we assume that A, which in the concrete setting of
higher types corresponds to Tp(«), is weakly Θ-finite. And in general we should
not assume more since Tp(«) is not strongly PR(n+2is)-finite. Thus Theorem 7.2.1
gives a kind of characterization result which we will supplement in Section 7.3.

We follow the detailed proof in Moldestad [105]. Moldestad's proof is patterned
on the original Harrington proof in [53]. However, one refinement is necessary in
order to go from strong to weak finiteness in the assumption; this refinement is
the joint effort of Harrington and Moldestad.

We have also labelled the theorem a "ρlus-1" result. A plus-1 result was first
proved by G. Sacks [143]. He generalized the notion of an abstract 1-section to
the appropriate notion of abstract k + 1-section, and constructed by a forcing-
type argument a functional F giving a concrete representation of the abstract
k + 1-section. And Further Reflection 7.1.6 was an essential ingredient in his
proof. In the present setting the starting point is different, viz. a normal theory Θ
thus we have both the section and the envelope. The section result is, as we shall

172 7 Computations Over Two Types

see, a consequence of the result about envelopes, and the proof is an exercise
in the use of reflection principles. We leave it to the reader to decide on how
different the forcing construction of Sacks' is from the present construction.
Note in this connection that the notion of abstract k + 1-section is not entirely
" p u r e " , there is something semicomputable involved.

We divide the proof of Theorem 7.2.1 into several parts:

7.2.2 Some Preliminary Material. Let P = {ζe, σ> : {e}θ(σ) j and σ is a list from
S}. The ordinals \e, σ|θ, where (e,σ}eP, are called Q-subconstructive. Their
order-type is λ = Xs; let (ηv: v < λ> be an enumeration of the Θ-subconstructive
ordinals.

We will construct a normal list L consisting of the equality relation on S,
the quantifier functional E, and a functional G which shall code up information
about S-en(Θ). G will be constructed in stages Gτ, each Gτ being a partial ap-
proximation to G containing sufficient information to generate the set Hτ =
{<e, σ> : \e, σ|L < r, σ a list from A). If r < T', then Gτ> will be an extension of Gτ.

G will be defined by

if fe \^J dom Gτ

otherwise.

Finally, let μv be an enumeration of the Ίu-subconstructive ordinals.

7.2.3 Further Preliminary Material. Let Gτ and Hτ be given. We note that

Hτ + 1 = {<e, σ> : all immediate subcomputations of {e}L(σ) are in Hτ}.

We observe that if Ax{e}t(x, σ) is total and <e, x, σ> e Hτ for all x, then we must
define G on this function at stage r + 1 if we have not previously done so. Thus
we l e t / = Xx'ie^ix, σ)edom Gτ+1 and set Gτ + 1(f) = 0 or 1. Gτ+1 is called a
trivial extension of Gτ if dom Gτ + 1 = dom Gτ u {/:/as above} and Gτ + 1(f) = 0
i f / e d o m Gτ+1 — Gτ.

7.2.4 On How G Shall Contain Information About the S-en(0). Not every extension
should be trivial. Let r be L-subconstructive, in fact, let T = μv for some v < λ.
Information about the »S-en(Θ) will be coded into Gτ at this stage.

If x e Θ and \x\θ ^ ηv, we shall take some function/^ where y e PR[L] and
Mi. = H-v and such that fxy φ dom Gu, μ < τ. We then let fxy e dom Gτ and set

Gτ(fXy) = I-

¥τomfxy and Gτ we shall recover information about x inside L in order to get
S-en(Θ) c S-en(L). And fxy should be L-computable in x, y when y is an
L-computation of length T.

Such functions fxy exist:

Proposition 1. Let L be any normal list. Let y be an L-computation of length τ.

7.2 The General Plus-2 and Plus-1 Theorem 173

For each x e A there is a total function fxy such that fxy is h-computable in x9 y
and ίfx Φ x', thenfxy φ fx,y. Iffxy = λt-{e}i/ί, σ)for some e, σ then r < \e, t, σ|L

for some t e A.

We indicate briefly the proof. Let τ + be the least limit ordinal ^ r. The set
of L-computations with length < r + is L-computable in y. Let/ y be defined by
the following instructions: (i) fy(u) = 0, if u is not of the form <e, σ>. If u =
<e, σ>, then ask if \e, t, a |L < τ + for all t\ (ii) If the answer is no, let fy(u) = 0.
(iii) If the answer is yes, let fy(u) be different from {e}i,«e, σ>, σ).

fy is recursive in L, y. And if / = λt {e}jit, σ) is a total function such that
K U Hi* < τ + for all t, then/and fy differs at t = <e, σ>.

We can now define/^:

, teS

Then fxy is L-computable uniformly in x, y. And /^j, φ fx>y \ϊ x φ x'. Let fxy =
λt'le}^, σ) for some e, σ. It is not difficult to see that we can obtain fy from
fxy. There is, in fact, an index e' such that fy — λί {£'}i,(A σ) a n d k'» ^ σ l t <
k, ,̂ σ|L + ω, for all t. If |e, ί, σ | L < r for all ί, then \e\ t, σ^ < τ + for all ί.
This means that / = Aί-fc'^O, σ) would have to differ from fy at <e', σ>, but

7.2.5 Toward the Definition of Gτ. Actually, we have almost arrived. Suppose Gβ

is defined for μ < r. Then H^ is constructed for μ < τ. Note that we can decide
from [Ju<τHu whether τ is L-subconstructive.

In the subconstructive case let y e PR[L] such that \y\^ = τ. If r = μv, v < λ,
let x e Θ and |x | θ ^ ηv. Define G° as the "zero-extension" of \Jβ<τ Gu

u:

o otherwise.

Then L° = E, G°, =s is a normal list. Choose /*„ according to Proposition 1.
Then fxy is L°-computable in x, y, hence L-computable in x, y since G° is L-
computable in y, &ndfxy φ dom Gu for any μ < τ.

7.2.6 Defining Gτ. Suppose Gw and Hu are defined for all μ < τ. There are two

cases in the definition of Gτ.

Case 1. There exists an ordinal v < λ such that v is the order-type of all ordinals
< r which are L-subconstructive, i.e. {μp : μp < r} = {μp : /> < v < λ}.

I. T w hsubconstructive, i.e. r = μv. Let

174 7 Computations Over Two Types

for all x, y such that x e Θ, |JC|Θ ̂ ηv and y e PR[L] and \y\^ = T, where fxy is
chosen according to 7.2.5 above. Note that we always include trivial extensions
whenever relevant.

II. r is not \j-subconstructive, i.e. τ < μv. Let

ε = ηv - SUpfop : p < v}.

We ask the following question: Does there exist an ordinal π such that τ < π ^
r + ε and 77- is IΛsubconstructive ?

If the answer is yes: Let GT = U^<τ G^ if T is a limit ordinal, and let Gτ be
the trivial extension of Gu if r = μ 4- 1.

If the answer is no: Let Gτ be defined as in subcase I.

Case 2. Otherwise: Let Gτ = U#<τ Gtf if T is a limit ordinal, and let Gτ be the
trivial extension of Gu if T = /x + 1.

This completes the definition of Gτ9 and from the sequence Gτ we define G as
in Section 7.2.2 above.

7.2.7 Proposition 2. TTze order-type of the 1,-subconstructive ordinals is ^ λ.

This should not come as a surprise. In fact, this is the way we have arranged
the construction of G. Nevertheless, assume that v = order-type of the L-sub-
constructives <λ.

Let T = sup{μp : p < v}; τ is not L-subconstructive. Back to the construction
of Gτ: We must be in subcase II of case 1, and the answer to the question is no!

Let x e Θ, \x\9 = ηv, and xe S. Then G(fxy) = 1 for all y such that | j>|L = T.
And

T = least ordinal T such that Byfl.ylt = r Λ G(fxy) = 1] .

We should not forget to point out that there exists such y e PR[L].
We have now set the stage for an application of further reflection. Let Q code

all L-computations with arguments from S. By Theorem 7.1.6 κQtX is x-reflecting
and κQ'x > κSfX = κs = T, where the last equality follows from our assumption,
and κs'x = κs since XE S.

Let m be an index such that {w}L(β, x) j and \m9 Q, x | L > κStX = r. Then

< K&xlϊ, Λ

By reflection, omitting a few pedantic details, we conclude

M\yU < * A G{fxy) = i].

But this is impossible by the definition of T.

7.2.8 Proposition 3. S-en(Θ) c S'-enίL) α«ί//or Λ// /• e 5, sc(Θ, r) c sc(L, r).

7.2 The General Plus-2 and Plus-1 Theorem 175

Let XE S-en(Θ); then r e X iff <e, r> eP for some index e. Since we have
enough subconstructives on the L-side we are in the "normal" case 1, I and
conclude

reX iff < e , r > e P iff lyeS[yePR[L] Λ G(/< e, r > y) = 1].

Hence XeS-en(L).
For the section part, note that if Xe sc(Θ, r) then we have indices el9 e2 such

that

xeX iff {ei}9(x,r)l.
xφX iff {e2Mx,r)\.

From this construct an index e such that λx {e}θ(x, r) is total and \e, x, r\θ ^
inf{|e1? x, r | θ , |e2, x, r | θ} Then we compute ^(λx {e}θ(x, r)) to get a Θ-subcon-
structive level larger than the ordinals associated to eλ and e2 when they are
defined. This can be matched by an L-subconstructive level. As above, this allows
us to conclude that both X and A — X are L-semicomputable in r.

7.2.9 Toward the Second Half of the Theorem. For the converse we need to
analyze the construction of G and hence of PR[L] inside Θ. We fix some notation

η = SUp{?7v : v < λ} = κ%
μ = SUp{μv : v < λ} < #c£.

Proposition 4. (a) There exists a total ^-computable function f and a partial
^-computable p such that:

(i) If\e, a | t < μ, then {e}L(σ) ~ {f(e)Uσ).
(ii) If |x | L < μ or \y\j, < μ, then p(x,y)\, and Λ : G P R [L] Λ \y\^ < μ Λ

| * k < \y\is=>Pθc9y) ^ 0. \y\j. < μ A | x | t > \y\^ =>p(x,y) - 1.
(b) There exists a total ^-computable function f and a partial ^-computable

function p1 such that:

(i) (4W ^ M β ^ n
(where P is the set defined in 7.2.2).

(ϋ) If \X\ΊL < *L or |^ | L < K^, then p'(x,y)\, and xePR[L] Λ {x^ ^
\y\j.^p\x9y) - o. |χ | t > b i t => p'(χ,y) ^ 1.

The proof being an exercise in the use of the second recursion theorem is long
and very computational. The overall strategy is as follows (we restrict ourselves
to part (a) for the moment). Let p < μ and suppose that MiXσ) — {/(e)}β(σ) for
all e, σ such that \e, σ|L < p and that p(x, y) is defined and has the right value
when inf(|x |L, |>>|L) < p. When \e, σ|L = p we shall describe {f(e)}θ(σ) in terms
of {f(e')}θ(σ) and p(xf,/), where {e'}jiσ) is an immediate subcomputation of
{e}L(σ) and infflx'lt, \y'\j) < p When infOx^, \y\ύ = p we shall describe

, a ' | L < p.

176 7 Computations Over Two Types

In the construction of / t h e case to worry about is an application of G, so
suppose \e, σ|L = p and

By the induction hypothesis {e'}i/w> σ) — {f(e')}β(u> σ) f°Γ all w. We must now be
able to decide inside Θ if λw {e'}jiμ, σ) = fxy for some x, y, and if this is true
calculate G(fxy). We ask five questions (and note that by construction λw

Question 1: Are there x, y such that |>>|L < p and λu{e'}τJ(u, σ) = f x y Ί

NO:SetG(λw{e%(u9σ)) = 0

YES: Go to question 2.

Question 2: Let T < p be the ordinal such that for some x and y, r = \y\^ and
fxy = λw {e'}iXw, σ). Is there an ordinal v < λ such that μξ < r when f < v and

NO: Set Gίλw ^ ^ w , σ)) = 0
YES: G o t o question 3.

Question 3: Let v, r be as above. Is there an x such that |x | θ < ηv and λw

{e'hJίu, σ) =Λy, where |.y|L = r?

NO: Set GίAi/.^'^w, σ)) = 0
YES: G o t o questions

Question 4: Is r L-subconstructive ?

YES: Set G(Xu-{e%(u, σ)) = 1
NO: Go to question 5.

Question 5: Let ε = ηv — supfoξ: ξ < x}. Is there an ordinal π such that T < π ^
T + ε and 7r is L°-subconstructive ?

YES: Set G(λu {e'}jίu, σ)) = 0
NO: Set G(λu {e%(u, σ)) = 1.

Each question must now be analyzed inside Θ. As an example we make some
comments on the first question. We see that

iff M\yU < \e'9u,σ\j)
iff 3

Observe that λw p(y, (e\ u, σ» is total, hence 3u can be expressed by the is-func-
tional, which means that the relation | j>|L < p is Θ-computable, uniformly in e, σ.

7.2 The General Plus-2 and Plus-1 Theorem 177

To describe fxy, information about L-computations of length < | jμ| ̂ is needed.
By the induction hypothesis this can be obtained from λeσ{f(e)}θ(σ) and p when
I J I ^ < p. In this case there is an index ex such that/* y = λule^^u, x,y,f(e), σ).
We then have to decide the question

M X b k < P A fxy = λu{f(e'Mu, σ)).

And this we argued that we can do, using E to express the quantifiers 3x3y.
Question 2 is trivial in this case since p < μ. It is when we come to part (b)

of the proposition that we have to ask questions about P, hence the need to
include P as argument. Also note that by bounding the search in question 5 we
need not assume strong finiteness of the total domain A. With these hints we wish
the reader the best of luck with the remaining details of the proof.

Remark. We need some more notation and a simple computational result (which
actually is used in the proof of part (b) of the proposition).

We recall that P is the complete Θ-semicomputable set over S. Let Q be the
corresponding L-set over S.

If r e Q, then | r | L = μv for some v, let \r\Q = v, and set \r\Q = order-type of
the L-subconstructives if r $ Q.

If r eP, then \r\θ = ηv for some v, let | r | P = v, and set \r\P = order-type of
the Θ-subconstructives if r φ P.

A simple computation from Proposition 4 shows that

" r e ? A se Q A |Λ | L < μ A \r\P = \s\Q"9

is a Θ-semicomputable relation.

7.2.10 Proposition 5. The order-type of the L-subconstructive ordinals is λ.

We shall assume not and reflect down to a contradiction. So let there be an
soe Q such that \SQ\J, = μλ.

Some technical preliminaries are needed in order to reflect. Let λ' ^ λ and
set P' = Pλ. = {reP:\r\P < λ'} and η = sup{^p + 1 : p < λ'}. UsingP' in place
of P we construct a functional G' and a list L'. Note that G' and G agree up to
μ, where μ = sup{/χp + 1 : p < λ'}. And the functions / ' and p' of Proposition
4 (b) act the same way with respect to P' as they do with respect to P.

We can now set the stage for the reflecting statement. Let e1 be a Θ-index
for the following statement which says that λ' is the order-type of the L'-sub-
constructives below | Ϊ O | I /

(i) ô is an L'-computation Λ Vr eP'3s(\r\P = \s\Q A {s^ < |.?o|i/) Λ
(M i , < M i / - > 3 r e P ' (| r | I i = \s\Q)).

There further exist indices e2, e3, and e4 such that
(ii) {e2}(P\s0)\ iίfΛ oisanL'-computation, in which case l^o|L' < \e2,P\s0\θ.
(ϋi) Wβ(/"U and\e3,P'\θ>η'.
(iv) {e^}θ(Pf,s0)\ iff s0 is an L'-computation, in which case \e^P\so\θ >

178 7 Computations Over Two Types

e4 is constructed from e2 and e3.

The Reflecting Statement: The statement has three parts: There exists an λ' < λ
such that:

(b) s0 is a convergent L'-computation and λ' is the order-type of the L'-sub-
constructives below | J O | I / ;

(c) if r $ x, then η' + | J O | I / < \r\β.

Part (a) of the statement can simply be expressed as "JC £ P and Vr, r\r ex Λ
k Ί β < kle -^ r ' e JC)". Part (b) is statement (i) above. Part (c) can be replaced
by Vr(rφx-+ \r\β > |e4, x, so\e), which implies (c) when x = P'. Let e5 be an
Θ-index for these statements and define

Then P eE and by the compactness result 7.1.7 there exists a, proper initial segment
P' =Pλ> of P, i.e. λ' < λ, such that P ' e B .

Thus s0 is a convergent L'-computation, λ' is the order-type of the L'-sub-
constructives below | s 0 | i/ and if r φP\ then ηf + |*SΌ|L' < klβ

We have reflected in order to show that s0 is secured at an earlier stage than
μλ. To do this we must go back to the construction of G and Gr. We remarked
above that Gp and G'p are equal for all p < μ = sup{/χp + 1 : p < λ'}. If we could
extend this up to all p < | J O | I / , then we would get | J O | L = \SQ\U = Mλ' < H-λ =
kok This will then be the desired contradiction which shows that the order-type
of the L'-subconstructives is at most, and hence equal to, λ.

It remains to fill in some of the details of this sketch.
Let T = μ. Note that the L- and Lr-subconstructives agree below τ and have

the same order-type λ'. And T is L-subconstructive iff it is L'-subconstructive
(see 7.2.5). And by part (b) of the reflecting statement | so|i/ is the λ'-th L'-
subconstructive.

Claim. Gp = G'pforαll p < \so\^.

If T = 15Ό If, which is the case if r is L-subconstructive, then the claim follows
from our preliminary remarks. So suppose r < | so|i/

 τ is then not L-subconstruc-
tive. We shall prove that Gτ = G'τ.

In the construction of G'τ we are in case 2 for the first time. In the construction
of Gτ we are in case 1 since the order-type of the L-subconstructive ordinals < r
is λ' and λ' < λ. Further, we are in subcase II because T is not L-subconstructive.
The functional G° in the list L° is the same as G\ hence s0 is a convergent L°-
computation, | J O |L ' = koL°> a n < i kok° is the first ordinal > τ which is L°-
subconstructive.

Let ε = ηy - supί^^,: p < λ'}. By (c) in the reflecting statement η + \so\jo <
| r | Θ if rφP'9 i.e. if | r | β ^ ηλ>. Hence η + \so\jθ < ηλ,. By definition η =
supfop + 1 : p < λ'}. Hence supί^ : p < λ'} + |JO |L° < ^λ' From this we conclude
that

7.3 Characterization in Higher Types 179

koL° - T <ηλ. - supfo,: p < λ'},

or

τ < \SQ\J* < r + ε.

But this means, since |5Ό|L° is L°-subconstructive, that the answer to the question
in II of case 1 is yes. We conclude that Gτ = G'τ, and, in fact, that Gp = G'p for
all p less than the next IΛsubconstructive, which is | SΌ|I/

This proves the claim.
This means that the L'-computations of length <|SΌ|I/ are identical to the

L-computations of length <|.$Ό|I/5 which means that \SQ\V = l̂ olt And this is
impossible as explained above. The proof of Proposition 5 is complete.

7.2.11 Proposition 6. S-en(L) c S-en(Θ) and for all reS, sc(L, r) ^ Sc(Θ, r).

Let H = {(e, σ> : {^(σ) j Λ \e, a | t < μ}. By Proposition 5 we know that
μ = sup{τ: T is L-subconstructive} = sup{μv: v < λ}. If Xe S-en(L), then there
is an index e such that

r e X iff <e,r>e#.

H, which is not necessarily a subset of S, is easily reduced to en(Θ), viz.

xeH iff 3reS3seS(reP Λ seQ Λ \s\L < μ A

k|p = \S\Q Λ l^lt < | j | 0 .

By the remark under 7.2.9 and part (a) of Proposition 4 we see that H is Θ-
semicomputable.

For the final part observe that if Xesc(L, r)9 then there are indices el9 e2

such that

xe X iff ζel9 x,r}eH
xφX iff <e29x,r>eH,

because the lengths can be dominated by an L-subconstructive level, see the
similar proof of Proposition 3 in 7.2.8.

And, if the reader has not yet noticed, Propositions 3 and 6 prove Theorem
7.2.1!

7.3 Characterization in Higher Types

Theorem 7.2.1 is in a well-defined sense a lifting of the plus-1 Theorem 5.4.24
from one to higher types. Of course, something more is added. In one type,

180 7 Computations Over Two Types

specifically over ω, there are no subindividuals S9 hence there is no 5-enveloρe
part to Theorem 5.4.24. And proofs are quite different.

On the other hand, with minor changes the proof of Theorem 5.4.7 which
characterizes Spector theories over ω, generalizes to higher types.

7.3.1 Theorem. Let Θ be a normal theory on 31. Then Θ is equivalent to PR[L]
for a normal list LiffΘ is not Θ-Mahlo.

Only minor changes are needed in the previous proof. First we need to modify
Definition 5.4.1.

7.3.2 Definition. Let Θ and Ψ be normal computation theories on 21. We define

Ψ <χ Θ iff en(Ψ) <= en(Θ) Λ 3x[ιcf < /eg].

Over ω the ordinal /c$, x e ω, would just be the ordinal of the Spector theory.
Corresponding to the Fattening Lemma 5.4.4 we have the following result.

7.3.3 Fattening Lemma. Let Θ be normal and L a ^-computable list such that
VJC[/C£ = /eg]. Then there is a normal list L' such that Θ ~ PR[L'].

The proof is the same, we just have to relativize to a parameter from the
domain A at certain places. For example, Definition 5.4.5 of Ord(/) by the follow-
ing. Let/be a total unary function from A -> S. Then Ord(/) is the least ordinal
T such that for some e,y,f= λx{e}θ(x, y) and τ = \el9 e, y\θ. (Here eλ is an index
such that {ejeie, y)ψ iff λx-{e}(x, y) is total, in which case \e, x, y\θ < \el9 e, y\β

for all x.)
We now construct Go exactly as in the proof of 5.4.4 and let L' = L, G, E9 =s.

We immediately conclude that en(L') c en(Θ).
To prove the converse we introduce a relativized version of K, viz. for ye A,

let

κy = sup{Ord(/);/is L'-computable inj>}.

And corresponding to the claim we now have: κy = /eg for all y ε A.
From this claim the fattening lemma immediately follows: Suppose {e}θ(σ) j .

By the claim there is an index m such that f = λt {mj^t, (e, σ» is total and
\e9 σ|β < Ord(/).

By construction of Go we see that

G0«Xt.{m}v(t, <β9 σ», e9 σ» - Mβ(σ) + 1.

Using selection over N9 we pick an m as a function of e, σ, which gives us, exactly
as before, the converse inclusion, viz. en(Θ) ^ en(L').

7.3.4 Definition. A normal theory Θ on 31 is called Θ-Mahlo if for all normal and
Θ-computable lists L, PR[L] < x Θ.

7.3 Characterization in Higher Types 181

Theorem 7.3.1 now follows as before. If Θ ~ PR[L] for a normal list L, then
L is Θ-computable, and Θ, obviously, cannot be Θ-Mahlo, using L as a counter-
example. Conversely, suppose that Θ is not Θ-Mahlo. Then there exists a Θ-
computable list L such that PR[L] is not < i than Θ. Since by the Θ-computability
of L, en(L) ^ en(Θ), this means that VJC[/C£ = /eg]. The fattening lemma then
gives us a normal list L' such that Θ ~ PR[L'].

7.3.5 Remark. We have been discussing computation theories on one and two
types. In the one-type case we have a computation domain A with no extra structure
assumed, in the two-type case A has the structure A = S u Tp(S), where

Various ίiniteness assumptions have been placed on the domains, the crucial
distinction being strong versus weak ίiniteness. In the Spector theory case we have
a theory on one type A which is assumed to be strongly finite in the sense of the
theory. In the normal type-2 case we imposed the requirement that A is weakly
finite, but S is strongly finite.

There are a number of comments to make. First recall that weak and strong
finiteness coincides over ω.

In two types we could drop the requirement that S is strongly finite. In this
case reflection phenomena disappear, and we are essentially back to the case of
one weakly finite domain. This case is not without interest: The characterization
Theorem 7.3.1 would still be true, and there is a non-trivial result in the theory of
inductive definability here, see our discussion in Theorem 3.3.15 on IND(Σ§)
versus IND(Π?).

But we could in the type-2 case make a move in the opposite direction,
strengthening the axioms to the strong finiteness of A. This case has been studied
by Hinman and Moschovakis [62] under the name of hyperprojective theory.
Here again we can have some effect of the type structure, but the fascinating
interplay of strong and weak finiteness in the normal case, is lost.

