
Chapter 6

Degree Structure

The study of degrees, in particular of r.e. degrees, is a characteristic and important
part of recursion theory. And no account of general recursion theory can be
claimed to be successful unless at least an introduction to notions of reducibilities
and the associated degree theory is given. This is precisely what we will do in this
chapter: to present an introduction to this topic within the general framework of
infinite theories and to give an example of a non-trivial result in the extended
framework.

But we should really like to do something more. In the spirit of an axiomatic
analysis we want to determine the " t r u e " domain for degree theory and priority
arguments. This is the question we turn to in Section 6.3. Our discussion is frag-
mentary and we do not claim any complete solution. Indeed there may not be any
well-defined "solution". But we hope that this section may give some clue as to
how far recursion-theoretic regularities extend.

Our discussion is, in principle, self-contained, but some familiarity with the
basic notions of α-recursion theory would be helpful: we recommend the introduc-
tory paper of R. A. Shore, a-recursion theory [152], in a precise sense we continue
his discussion in this chapter.

6.1 Basic Notions

The setting is an infinite computation theory Θ on a prewellordered domain
(21, =sζ), see Definition 5.1.5. We shall need a suitable notion of enumeration and
of parametrization of the Θ-semicomputable sets. But as usual we must preface
our definitions by introducing some necessary notation.

Let / be a mapping which to every x e A gives us a canonical Θ-index for a
Θ-finite set, i.e. f(x) is an index for the function Ew*, where Wx is the Θ-finite
set associated with Λ:. It will be convenient to write the mapping as

/= \χ.ψx,

but we should always remember that the value of/ at x is a canonical Θ-index
for the Θ-finite set W*.
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6.1.1 Definition. A ^-enumeration of a set Wis a Θ-computable mapping λx Wx

whose values are canonical Θ-indices for the Θ-finite sets Wx, such that

(i) y ^ x => Wy c wx,

(ii) W= \J{Wx:xeA}.

A ^-parametrization of the Θ-semicomputable sets is a Θ-computable mapping
λax. Wa

x such that

(iii) y^x=>Wl^W*9

(iv) for each Θ-semicomputable set W there is an a such that W =

From axioms A and B (see 5.1.1 and 5.1.2) the reader will have no difficulty
in constructing a ^-enumeration of the sets

Θn = {<α, σ, z> : {a}θ(σ) ~ z Λ lh(σ) = «},

from which he may derive a ^-parametrization of the Θ-semicomputable sets.

A number of arguments in α-recursion theory seem to require the use of the
μ-operator. Let R(σ, x) be a Θ-computable relation, we would like to introduce
a function μxR(σ, x) by the equivalence

μ;ciί(σ, x) = z iff R(σ, z) A (Vy < z)->R(σ, y).

In α-recursion theory the domain, a segment of the ordinals, is well-ordered, so
there is a unique z satisfying the equivalence. When the domain has a prewell-
ordering, the μ-operator would in general have to be multiple-valued. But there
is a way of getting around this obstacle.

6.1.2 Proposition. Let R(σ, x) be a Θ-semicomputable relation such that

(i) i?(σ, x) => x is a canonical Θ-indexfor some Θ-finite set Kx.
(ii) R(σ, x) Λ R(σ, y)^> Kx = Ky.

Then there is a Θ-computable mapping q(σ) obtained uniformly from an index r
of R such that

for all x such that R(σ, x)

We concentrate on the key point of the proof. q(σ) will be a canonical Θ-index
for the set

Nσ = \J{Kx:R(σ,x)}.
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To see how to define q(σ) we calculate:

ENσ({/}) = 0 iff 3yeNσ {f}(y) = 0
iff 3y3w(R(σ, w) Λ y e Kw Λ {/}(>>) = 0)
iff 3w(R(σ, w) Λ {w}(/) = 0).

In the same way we get

ΈNσ({f})=\ iff VyeNσ.{f}(y)=l
iff VyVw(iί(σ, w) Λ j> G * „ ->
iff Vw(^(σ,w)^{>v}(/)=1)
iff 3w(R(σ, w) Λ {*}(/) = 1).

The last equivalence follows from assumption (ii). We now choose a code q'{σ) such
that {q'(<ή}(f,j) — 0 iff 3w(R(σ, w) Λ {w}(/) = j), and we get our function q(σ) by
using selection over the integers.

6.1.3 Theorem. There is a θ-computable function q(a, σ) such that if Bσ =
{x: {a}(x, σ) ~ 0} is a non-empty θ-semicomputable set, then q(a, σ) gives a
canonical Θ-indexfor a non-empty θ-finite subset N of Bσ.

This is another variation of a familiar theme. We are not in general able to
computably select a unique element of Bσ, but we can effectively compute an index
of a finite subset of Bσ. For the proof let λz Wz be a ^-enumeration of the set
{<α, x, σ, 0> : {a}(x, σ) ̂  0}. For each z we introduce the Θ-finite set Nσ,2 =
{y : y <z Λ (a9y9 σ, 0> e Wz}. Consider the following Θ-semicomputable relation

H(σ9z) iff 3y<z <a9y9σ,O>eW*
Λ (Vw < z)-^(3y < w) <Λ, y, σ, 0> e Ww.

From this we see that if H(σ, zx) and ̂ (σ, z2), then zλ ~ z2 and further Nσ Z l =

#,, 2 2 . Let

Since the canonical Θ-indices involved are effectively computable from the given
data, Proposition 6.1.2 allows us to compute q(a, σ) as canonical Θ-index of N,
and obviously 0 Φ N ^ Bσ.

6.1.4 Definition. A theory Θ is projectible into a subset W of its domain A if
there is a Θ-computable function p such that άom(p) c W and /> maps onto all
ofΛ.

Here the set/?"1^) is a set of "notations" for x e A, but, lacking a well-order-
ing, we have in general no unique notation for each xeA. For some purposes
it is important to know that p~\x) is Θ-finite uniformly in x. We can always
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so arrange things by using 6.1.3. Usually we shall study projections into sets of
the form

Lβ = {JC e A : x < β}.

This is a slight abuse of notation; what we mean is that |x |^ < β, where |x |^
is the ordinal of x in the prewellordering ^ . In the same way Lx = {y e A : y -< x}.
Note that we can always assume that p~\Lx) is Θ-finite. This is used e.g. in the
proof of Theorem 6.1.18.

6.1.5 Definition. Let Θ be an infinite theory on a domain (21, < ) . The projectum
of Θ, denoted by |=<|*, is the least ordinal β such that Θ is projectible into ZΛ

This means that we have a notation for each xeA below | = ^ | * . And more
importantly it follows that we have a =^-parametrization of the Θ-semicomputable
sets below | = ^ | * .

6.1.6 Lemma, (i) Let W = {a\Waφ 0} for a given ^-parametrization of the
Θ-semicomputable sets. Then Θ is projectible into W.

(ii) Let p be a projection. Then there is a ^-parametrization of the θ-semi-
computable sets such that {a : Wa φ 0} ^ dom(p).

To clarify our notation, if λza-Wz

a is a =^-parametrization, then Wa =
U {Wza\ zeA}. We prove (ii): Let λaz VI be any ^-parametrization of the Θ-
semicomputable sets. Let W be the domain of the projection p and λz Wz a
^-enumeration of W. Define a relation R by

R(a,x) iff p(a) = x.

By 6.1.3 let Ra be a Θ-finite subset of {JC : R{a, x)}. Note that if R(a, x), then
jRα = {x}. Introduce sets Rat2 by

_ f 0 if a φ Wz

a'z~\Ra if aeW*.

We have our ^-parametrization by setting

W*a = {yeL*:(3xeRatZ)[yeV*]}.

So far things have extended. But now we come to a difficulty. An important
technical lemma of α-recursion theory states that any α-semicomputable subset
bounded below the projectum is α-finite. This may not be true for arbitrary
infinite theories. It could also happen that the projectum | ^ | * is not a limit
ordinal. Both properties seem necessary for a decent degree theory. And since
we cannot prove them in general we get around these difficulties by a definition.
We shall return to this point in Section 6.3.
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6.1.7 Definition. Let Θ be an infinite theory on a domain (31, < ) . The r.e.-projectum
of Θ, denoted by | < | + , is the least ordinal β for which there is a Θ-semicomputable
non Θ-finite set W c tf.

It is always true that | ^ | + < | ^ | * The converse is a definition.

6.1.8 Definition. Let Θ be an infinite theory on a domain (91, =<). Θ is called

adequate if | ^ | + = | = ^ | * = limit ordinal.

We shall in Section 6.3 discuss the " t r u e " domain of degree theory and priority
arguments. Here we just note that there are non-wellorderable adequate theories.

Let Θ be infinite and let λz-Kz be an enumeration of the Θ-finite sets, i.e. the
values of the function are canonical Θ-indices for Θ-finite sets. Every Θ-finite
set K is Kz for some z. Sometimes we may require of the enumeration that
Kz ^ Lz, i.e. every x e Kz satisfies x -< z.

Given two subsets B, C of the domain A there is an immediate reducibility
notion that comes to mind, viz. B is reducible to C if B is Θ[C]-computable. But
aside from fixing the proper version of Θ[C] there are difficulties. We want a
notion of reducibility relative to a given theory Θ, i.e. we want to decide questions
about B using Θ-finite information about C and its complement. But the notion
of finiteness may change in passing from Θ to Θ[C]. Thus we are led inevitably
to the following notion of "Θ-computable in" .

6.1.9 Definition. Let B, C ^ A9 f a function, and λz Kz a fixed enumeration of
Θ-finite sets.

(i) / i s weakly Θ-computable in C, denoted/ < w C, if there is a Θ-semicomput-
able set W such that for all σ, y

f(σ) - y iff 3z, H«σ, y, z, w} eW A Kz <= C Λ Kw Π C = 0 ) .

B is weakly Θ-computable in C, B ^w C, in case cB ^WC.
(ii) B is Θ-computable in C, denoted B < C, if there is a Θ-semicomputable

set W such that for all zl9 z2

KZ1 c B Λ KZ2 n 5 = 0 iff

= 0).

(iii) B is weakly Θ-semicomputable in C if there is a Θ-semicomputable set JF
such that for all x

XGB iff 3z, H«JC, z, w> G JF Λ Kz^ C A KwnC = 0).

(iv) 2? is Θ-semicomputable in C if there is a Θ-semicomputable set W such
that for all z

^ B iff 3wl9 w2«z, wx, w2> G W A KWl c C Λ £ ^ 0 0 = 0 ) .
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The definitions are independent of the particular enumeration of the Θ-finite sets.
As usual we set B = C iff B < C and C < B.

The reducibility notion B < C will be a focus of our attention. It is the one
among several possible generalizations of Turing reducibility in ORT which has
led to the most interesting results in the general framework. However, the relation
"B is Θ[C]-computable" (i.e. cB is Θ[C]-computable) also merits some comment.
We shall not pursue any philosophic discussions of notions of reducibilities here,
the reader may want to consult Kriesel [90] and also the excellent and annotated
bibliography of Shore [152]. We shall return to more general matters in Section 6.3.

Given a set C ^ A we construct Θ[C] along the lines of the construction in
Section 5.2, and arrange things such that a tuple (α, σ, z) is added at stage Θβ[C]
only if a, σ, z and <α, σ, z> are elements of Lβ.

6.1.10 Definition. Let B, C be subsets of the domain of Θ a n d / a function.

0) f^aC if/is Θ[C]-computable.
(ii) B < d C if cB is Θ[C]-computable.

A simple argument shows that ^ d is transitive. The following lemma is also
immediate.

6.1.11 Lemma. Let fbe an integer-valued function. Thenf ^WC implies/ ^dC.

f <:WC means that for some Θ-semicomputable W

f(σ) ~ x iff 3z, w«σ, x,z,w>eW Λ Kz c C Λ KwnC = 0).

Thus/has a Θ[C]-semicomputable graph. Using selection over the integers, which
is available in Θ[C], we define/as a Θ[C]-computable function.

The lemma allows us to conclude that

B < C => B ^WC => B < d C .

But none of these implications can be reversed. (See Driscoll [21] where an example
is given that ^w need not be transitive even on the Θ-semicomputable sets.)

But there is one case where B ^ d C implies B ^ C, viz. the regular and hyper-
regular case. These notions are due to Sacks [140]. Before introducing the definition
let us note that the sets weakly Θ-semicomputable in C are enumerated by setting

Wc

a={x: 3z, w((x,z9w}eWa Λ K2 c C Λ KwnC = 0)}.

As an approximation to Wc

a let

*Wc

a = {x : 3wl9 w2«jc, wl9 w2} e Wz

a Λ KW1 c C Λ KW2nC = 0) } .
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6.1.12 Definition, (i) A set B is regular if B n K is Θ-finite whenever K is Θ-finite.
(ii) A set B is hyperregular if for all Θ-finite sets K and all indices a, K ^ WB

a

implies that K c 2f^, for some z.

The reader will notice the similarity of (i) to Δ0-separation and of (ii) to
Δ0-collection. It is perhaps not too surprising that when B is regular and hyper-
regular, then Θ[B] will be an infinite theory and the notion of Θ-finite and ©[in-
finite will coincide. This is the substance of the following proposition.

6.1.13 Proposition. Let B be regular. Then the following are equivalent:

(i) B is hyperregular.
(ii) Θ[B] is an infinite theory.
(iii) f <:WB ifff ^dB9 whenever f is integer-valued.

In this setting the result is due to V. Stoltenberg-Hansen [163]. For the proof
we need to be a bit more careful in how we construct Θ[B]. Let Bx and B2 be
disjoint sets and define a theory Θ[2?l5 B2] by the following modification of the
construction of &[B]. Let b be the index in Θ[B] which introduces the characteristic
function of B. Then if b, x9 0, (b, x, 0> eLβ and x e Bλ we add (b, x, 0) to Θβ[Bl9 B2].
And if b, x, 1, <Jb9 x, 1> eLβ and x e 5 2 w e add (b, x, 1) to Θβ[Bl9 B2]. Obviously
Θ[B] = Θ[B, A — B]9 where A is the domain of Θ. Now introduce

mHlw = {<α, σ, y} : (α, σ, y) e ©'*'[*„ ^ J , lh(σ) = m}.

An analysis of the definitions will show that mH£tW is Θ-finite uniformly in the
parameters m, x, z, w. And we further note that if

<Λ, σ, j> e mHlw A KZ^B A Kwr\B = 0,

then (a, σ, y) e ©'*'[£].
We now return to the proof of Proposition 6.1.13.

(i) => (ii). It suffices to show that the inductive definition of Θ[B] closes off at the
ordinal | =̂  |. This reduces to studying the case of bounded universal quantification.
So assume that (a,y, 1)GΘ<^[B] (i.e. has been added before stage | < | ) for
each y < x. We must show that (a0, a, z, 1) e Θ < | s ^[i?], where a0 is a code for
E^ in Θ[£].

By regularity of B there are for each y -< x some z, wl9 w2 such that <α, y, 1> e
1Hί1,w2 where Jζ^ c ^ and ΛΓwa π B = 0 . But now we can play with our notation.
Letting Wz = {<>>, wl9 w2> e l 2 : <α, y9 1> e 1Hξ}lfW^9 we see that Z* c H^β (where
λz W2 is a ^-enumeration of W). By hyperregularity of B there is a z such that
L* c *wB. But then (α, 7, 1) e Θ | 2 | [£] for all y < x9 and hence (aθ9 a, x9 1) e

(ii) => (iii). Let/be Θ [^-computable with index a. We then see that
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(iii) => (i). Let V be Θ[£]-semicomputable, it follows from (iii) that V is of the
form WB for some Θ-semicomputable set W. Letting

Vz = {* < z i 2 « , l 5 2> ^
Λ KW2nB = 0)}

we see that λz F 2 is a <-enumeration of F in Θ[B]. Since every Θ[2?]-semi-
computable set has a ^-enumeration in Θ[B] it follows that the domain A is
Θ[£]-infinite.

Let now K c ^ J where ^Γis Θ-finite. Introduce the relation F(x, z) by defining
z to be a minimal element such that xezW*. Let F* be non-empty Θ[5]-finite
subset of {z : F(x, z)} and let M = \J {Fx : x e JξΓ}. Then M is Θ[£]-fϊnite and
hence bounded by some we A (since the domain A is Θ[i?]-infϊnite). Then K c
w W£, so ^ is hyperregular.

6.1.14 Remark. We now observe that when B is regular and hyperregular, then
for any set C, C ^ B iff C ^d B. Just let/(z, w)~0iSKa^ A A Kwr\A = 0
in 6.1.13 (iii).

Hyperregularity and the relation < d is a digression from the main line of
development of this chapter, whereas regularity is not. The importance of regularity
comes from the following observation. Let λz W3 be a ^-enumeration of the
Θ-semicomputable set W. Let Vz = Wz - \J {Ww : w < z}. Then λz Vz is a
disjoint ^-enumeration of W. And W is regular iff (Vj8 < |=^|)(3z)(Vw >• z)
(Vw nLβ = 0 ) . This means that in enumerating JP, given any level β, there is
a stage z after which we always enumerate beyond β.

The anomaly of non-regularity can be circumvented by the following theorem
when studying Θ-semicomputable degrees for adequate theories.

6.1.15 Theorem. Let Θ be an adequate theory. Then for every Θ-semicomputable
set B there is a regular Θ-semicomputable set D such that B = D. D can be taken
to consist of levels, i.e. V#(Vy ~ x){x e D-+ye D).

This was proved in the context of α-recursion theory by Sacks [140]; his proof
was simplified by Simpson [153]. For adequate theories the result is due to
Stoltenberg-Hansen [164], who had to go back to the original and more complicated
proof of Sacks due to the lack of a well-ordering of the domain.

We shall not prove the general version in this book. For many purposes a
simpler result is sufficient. This we now develop.

6.1.16 Lemma. Let Θ be an infinite theory, and B a Θsemicomputable non Θ-finite
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set. Let λz B2 be a disjoint enumeration of B such that each Bz is non-empty and
contained in one level of the pwo =^. Then the deficiency set of B,

D = {z:(3w> z)(Bw < B*)}9

is a regular Θ-semicomputable set with unbounded complement, and further

It is clear that D is Θ-semicomputable with unbounded complement. To prove
regularity it suffices to show that D n Lx is Θ-finite for each x e A.

Fix x and let z0 = x. Suppose that we have defined z0, zl9..., zn. Choose, if
possible, zn + 1 such that zn+1> zn and Bzn+i -< Bzn. By the well-foundedness of
-< the sequence is finite. Let zn be its last element. It is then easily seen that

D n Lx = {z < x : (3w < zn)(w > z A Bw < B2)},

which is Θ-finite.
We shall apply the construction of the lemma in two situations, both important

for the theory in Section 6.2.

6.1.17 Corollary. If the set B of Lemma 6.1.16 is regular, then B = D.

To show that B < D we define a relation Q(z, w) iff w is minimal such that
wφDΛK2^ LBW. Observe then that Kz n B = 0 iff 3w[Q(z, w) A Kz π B<w = 0 ].
(Note that when the sets involved are Θ-semicomputable we need only worry
about the "negative" requirements KnB = 0; the "positive" requirements
K ^ B take care of themselves.)

To prove that i ) ^ 5 w e first introduce a relation F(z, w) iff w is minimal
such that (Vwi e K2)(B^wi ^ Lw). Then we define N(z, w) iff w is of minimal
level such that lw^[F{z, wx) A Lwi - B<w ^ £]. We see that KUΓ\ D = 0 iff
(Vz G /Q(3w)[7V(z, w) Λ (VWi < w){wx < z v Bz < Λ^i).

Where did we use the regularity of BΊ Simply to know that given z there is
some w such that Q(z, w), and similarly for N.

We shall now state our approximation to 6.1.15. The result in the multiple-
valued setting is due to Stoltenberg-Hansen [162].

6.1.18 Theorem. Let Θ be an adequate theory. Then for every Θ-semicomputable
non Θ-computable set B there are regular Θ-semicomputable sets Dx and D2 such
that Dλ is not Θ-computable and Dλ < B ^ D2.

From B we shall construct two sets Bf and B$ and then let Dx and D2 be the
deficiency sets of B* and Bξ, respectively.

For the definition of Bξ assume that B is not regular. Then by adequacy,
K | * < K | . Let p be a projection into L1^1* and set B% = {z\p(z)\ A Kpi2) n
B Φ 0}. D2 will be the deficiency set of Bξ. We leave the proof of B ^ D2 to the
reader. (It is not entirely trivial, but see [162] for details.)
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We now turn to the existence of Dx. Since B is not regular, there is an x such

that B n Lx is not regular. Let Bf = p~\B n I*). (At this point recall the discus-

sion following Definition 6.1.4.) We observe that K c B* iff Kc\p~\Lx) c

/J" 1 ^) iff/KAΌ/r1^*)) c 5, from which we conclude that £? ^ B.
Toward defining Dλ we first note that Bf is not Θ-finite since piβf) = B nLx

is not Θ-finite. Let λw-Bw be an enumeration of Bf as described in Lemma 6.1.16
and let Dx be the deficiency set of Bf with respect to this enumeration. Then one
verifies that

- B<z) c S}.J
zeK

Hence Dj, < B% < 5.
Finally, if Dx were Θ-computable we see that

xφBi iff Λ: ^ K | * V 3 Z ( J C < 5 2 Λ zφD Λ xφB<2).

This means that i?f would be Θ-semicomputable, hence Bf would be Θ-finite.
But we argued above that it is not. (Note that the adequacy of Θ is used to ensure
the existence of a suitable z for the last equivalence; x < | ̂  |*, hence by adequacy
there must be a z0 such that x -< Bz for all z ^ z0. Since D is unbounded, there
must be a z such that x < 2?2 Λ z £ Z>.)

We conclude this section by two definitions.

6.1.19 Definition. A set B is many-one reducible to a set C, 5 ^ m C, if there is
a Θ-computable mapping λz //2 where Hz is a non-empty Θ-finite set, such that

(i) x G B iff Hx c C

(ii) xφBiffHxnC = 0.

6.1.20 Definition. The jump of a set £ is the set

5 ' = {a : 3z, w«z, w} e Wa Λ Jζ, c jj Λ A« n £ = 0}.

Some basic facts now follow, e.g. a set D is weakly Θ-semicomputable in B
iff D ^mB'.

6.2 The Splitting Theorem

We shall give one example of a non-trivial degree-theoretic result.

6.2.1 Theorem. Let Θ be an adequate theory. Let C be a regular Θ-semicomputable
set and let D be a Θ-semicomputable non Θ-computable set. Then there exist Θ-semi-
computable sets A and B such that C = AuB, AnB = 0,A^C, B^C and
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(i) Θ[A] and Θ[B] are adequate theories (so in particular A and B are hyper-
regular)

(ii) A' = B' == O'
(iii) D ^w

The splitting theorem in ORT is due to G. E. Sacks [138]. In the context of
α-recursion theory it was proved by R. A. Shore [150]. S. Simpson could prove
in the context of " t h i n " admissible sets that there are Θ-semicomputable sets
A, B such that A ζwB and B ζw A [154]. The strong version above is due to
V. Stoltenberg-Hansen [163]. We must, however, make one reservation;
Stoltenberg-Hansen needs to assume for parts (i) and (ii) that the theory Θ has
a reasonable pairing function. By this we mean that for each a < | ^ | * there is
a β < m i * s u c h t h a t L a x La = {<x, y} x, y eLa} ^ L0.lt is not known whether
every adequate theory Θ admits a reasonable pairing function.

We shall in this section prove the following weak version of the splitting
theorem.

6.2.2 Theorem. Let Θ be an adequate theory. Let C be a regular Θ-semicomputable
set and let D be a regular Θ-semicomputable non Θ-computable set. Then there
are Θ-semicomputable sets A and B such that C = AuB, AnB = 0,A^C,
B < C, D ζwAandD ζwB.

6.2.3 Remarks. We have the usual corollaries. First note that if A and B are
disjoint regular Θ-semicomputable sets, then the join of deg(A) and deg(i?),
deg(A) v deg(2?), is deg(^4 u B). If we let a, b, c range over Θ-semicomputable
degrees, we can from 6.2.2 and 6.1.18 conclude that

(Vc > 0 ) ( 3 a , b ) ( a v b ^ c Λ a < c Λ b < c Λ a |b ) ,

where as usual a|b means that a and b are incomparable. Using the regular set
Theorem 6.1.15 we may draw the stronger conclusion that a V b = c.

Also note that the same results are true for J-degrees, i.e. degrees with respect
to the relation ^ d , see Definition 6.1.10; this is a consequence of 6.1.14 and 6.2.1.

But before we turn to a proof of Theorem 6.2.2 we have to develop a certain
"blocking" technique due to Shore [150]. The reason for this is that when the
domain of an infinite theory is not computably well-ordered one cannot consider
a unique requirement at a given stage of a priority argument. But it will be possible
to handle Θ-finite blocks at each stage.

The naive way to do this is to let one level of the pwo of the domain make
up one block. And in his thesis [162] Stoltenberg-Hansen was able to obtain a
weak positive solution to Post problem in this way.

But stronger results need more refined blocking techniques, even in the context
of α-recursion theory. As noted above, this was developed by Shore [150] (see
also his survey [152] for further motivation). Simpson [154] observed that this
technique also worked for " t h i n " admissible sets. For adequate theories in general
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this was developed by Stoltenberg-Hansen [162, 163]. We present here a version
for single-valued theories following closely the exposition in [163].

Remark. We have yielded to tradition and used A in the statement of the splitting
theorem. For the rest of this section we will use U for the domain of Θ.

As always there are some technical preliminaries. A relation F(σ, z) on the
domain of Θ induces, in certain circumstances a function on the associated ordinal
K | of the domain. Let σ ~ σ', where σ = (xl9..., xn) and σ' = (x'l9..., x'n)9

mean that xt ~ x'i9 i = 1,..., «. If F satisfies the requirement that

F(σ9 z) A F(σ'9 z') A σ ~ σ => Z ~ z'9

then F induces a function/on |=<|. We classify/in terms of the associated relation
F. Thus/is called Θ-computable if the associated Fis Θ-computable. It is called
Σn if F is Σn, where we use the usual Σn, Πn hierarchy starting with Σo = Πo =
Θ-computable. For functions on | ̂  | we use the standard notion of limit

lim/'(α, γ) = δ iff (3β)(\fa > β)[f'(a9 γ) = δ].
a

With this bit of terminology we have the following standard approximation result.

6.2.4 Lemma. Let Θ be adequate and f a total Σ2 function on |=^|. Then there is
a total Θ-computable / ' on |=^| such that limα/'(α, γ) =/(y).

The reader may first establish the following part of Post's theorem: If B is
Σn + 1 then B is weakly Θ-semicomputable in a Πn set. From this we may conclude
that if B is Σ2 then B is weakly Θ-semicomputable in a Θ-semicomputable set A9

which by 6.1.18 can be taken to be regular.
Let Gf be the graph on the domain of Θ of the function /. By assumption

Gf is Σ2, hence by the remark above Gf is weakly Θ-semicomputable in a regular
Θ-semicomputable set A via some Θ-semicomputable set W. Let λz Az and
λz'Wsbe ^-enumerations of A and W9 respectively.

Let Nx be the Θ-finite set of all minimal w <z such that

(3^ < z)(3x' - *)[<*', y9 w)eWz A Kwr\Az = 0] .

We define a relation F' by the following requirements: If N% = 0, then <z, x9 z> e
FΆfmΦ 0,then

<z, x9 y) eFf iff y is a minimal element such that
(3w G mXlx' - *)[<*', y9 w) e W*\.

F' is Θ-computable and induces a total function/' on |=^|. We must prove that
/ ' converges to /

Suppose /(α) = β. Choose elements x9y such that \x\ = α, \y\ = β and
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<Λ;, y) e Gs. Since Gf is weakly Θ-semicomputable in A via W, choose some z

such that

<x, y, z) e W A KznA = 0.

By the regularity of A we can choose w so large that y < w, <x, y, z> e FF* and
(U - A)nL* = (U - Aw) n ZΛ We want to show that for γ > M,/'(y, α) = j3,
i.e. limy/'(y, α) = /(α).

Let w' > w. Then 7VT ^ 0 since (possibly except for minimality) z is a candi-
date for membership. (Note that the enumeration for finite sets is such that
K2 c ZΛ) Let u e Nχ\ There are elements x' ~ x and y' such that

<*', / , U) 6 ΪFW' Λ ^ 0 ^ = 0 .

Since u =< z and ^ w c Lw, iΓw n A = 0. But then <*', / , w> is a correct com-
putation of/, i.e. /(|x'|) = | / | , since \x'\ = α, | / | = j8. The definition of F'
shows that < w ' , x ' , / ) e F , i.e. letting y = |w'| we get /'(y, α) = j8, and con-
vergence is proved.

6.2.5 Definition. The Σ2-cf (α) is the least ordinal β for which there is a Σ 2 function
/with domain j3 and range unbounded in α.

6.2.6 Lemma. Let Θ Z>e adequate. Then Σ 2 -cf( |< |) = Σ 2 -cf( |< |*) .

Let k be a total Θ-computable function on | ^ | with range in | = ^ | * such that
{β; k(β) < a} is bounded for each a < | =ζ |*. k can be defined from a ^-enumera-
tion of a Θ-semicomputable non Θ-computable set W ^ L1^1*.

L e t / b e Σ 2 with domain β and unbounded in | ^ | . Then g(a) = k(f(a)) is Σ 2

and unbounded in | < | * . This proves Σ 2 -cf( |m*) ^ Σ 2 -cf( |^ | ) .
For the converse, let / be Σ 2 with domain β and unbounded in | ^ | * . Let

g(a) = μγ[(yξ ^ y)(/(«) < k(ξ))l g is unbounded in | < | . Use 6.2.4 to wr i te/
as a limit. Then a simple quantifier analysis shows that g is Σ 2 .

By a ^-sequence of Θ-semicomputable sets we mean a Θ-computable mapping
r such that x ~ >> => JFr(;c) = JFr(2/).

6.2.7 Lemma. Suppose a < Σ2-cf(|=^|) and <JX\ x -< α> w 0 ^-sequence of Θ-
semicomputable sets such that Ix is Θ-finitefor each x •< a. Then U*<α Iχ is ©-finite.

This simple lemma is crucial for the later priority construction. The proof is
by contradiction. Let a be the least ordinal for which we have a sequence
</* : x < α> whose union is not Θ-finite. Let W = U*<« /* and let λz Wz be a
^-enumeration of W. Define a function g on the associated ordinal | =sξ| by

g(γ) =

Of course, we should have defined a relation G and let g be the induced function.
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In any case, g is Σ 2 . g is defined for every β <a, but g(a) is unbounded in | ^ |
since Wis not Θ-finite, hence Σ2-cf(|=^|) < α.

6.2.8 Blocking Procedure. Suppose that Θ is an adequate theory. The projectum
L1^1* can be divided into Σ2-cf(|=^|) many θ-finite blocks Ma9 each bounded strictly
below I =̂  I*. Each block Ma can be approximated by θ-finite sets M%. The approxima-
tion is uniform in a and z, and is "tame" in the sense that

(Vα < Σa-cf(|^|))(3z)(Vw > z)(Vj8 < a)[Mf = Mβ].

We know that Σ2-cf(|=^|) < | = ^ | * If we have equality, we simply set Ma =
Ml = {x : x ~ a}. More care is needed when Σ2-cf(|=^|) < |=^ |* .

Let g be a Σ 2 function from the Σ2-cf(|=<|) to | < | * unbounded in | < | * , and
let g' be Θ-computable such that limσ g'(σ, α) = g(α). These functions exist by
6.2.4 and 6.2.6.

Define an ordinal function

h(σ,a) = μγ[(Vβ<a)(g'(σ,β)<γ)].

Since a < Σ2-cf(|=^|) there always exists a y < | = ^ | * satisfying the requirements
inside the brackets [ . . .] . Now put

Ml = {ε : Λ(|z|, «) ^ |β| < h(\z\, a + 1)}.

Each M% is obviously bounded strictly below |=<|*. But we also need to know that
a canonical Θ-index can be obtained for M% uniformly in a and z.

To this purpose, let H(z, a, x) be a Θ-computable relation which induces the
function h. By the selection principle 6.1.3 we have Θ-finite set H2a uniformly in
z, a such that xe Hza implies H(z9 a, x). Next observe that given any a in the
domain of the pwo=^ there is a Θ-finite set Sa (uniform in a) of "successor"
notations, i.e. if a' e Sa then \a'\ = \a\ + 1. Let H*a = \J {H2fb: b e Sa}. Then
H*a is Θ-finite, and if y e 77*α, then | j / | = A(|z|, |α| + 1). From ί/α>2 and //* 2 we
now define Mz

a.

To show that the approximation is tame, let

Ifi = {w: (3W > w)(g'(\w'\, β) Φ g'(|w|, »)}.

Fix α < Σ2-cf(|=<|). Then </̂  : β < a + 1> is a ^-sequence of Θ-semicomputable
sets such that each Iβ is Θ-finite. By Lemma 6.2.7 the union is Θ-finite. Hence
there is some z such that for all β ^ a and all w ^= z we must have g'(\w\, β) =
g'(|z|, β), i.e. tameness.

Let Mβ = Mβ for sufficiently large z. It remains to verify that

Fix ε «< | = ^ | * and choose the least α for which ε •< h(σ, a) where σ is fixed and
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sufficiently large. Such a exists since g is unbounded in |=<|*. By the definition of
h there exists a β < a such that ε =^ g'(σ, β). But then ε -< λ(σ, β + 1), which by
the choice of α means that a = β + 1. By the minimality of α we also get h(σ, β) ^ ε,
hence ε e M$.

We can now return to the proof of Theorem 6.2.2. Let the sets C and D be
given. By 6.1.16 and 6.1.17 we may assume that D satisfies in addition the require-
ment Vx(V>>~ χ)(χ E D => y e D). Let λz Dz be a <-enumeration of D and
λz'C2 a disjoint ^-enumeration of C. The sets A and i? will be defined via =^-
enumerations λzΆz and λz-Bz, inductively on the pwo=^. If z ~ w then the
construction at stages z and w will be identical, but indices may differ. At stage
z, Cz will be added to precisely one of A<z and B<z, where A<z means
U {Aw : w < z}.

This will ensure that A and B will be Θ-semicomputable, C = AKJ B, and
4̂ π 5 = 0 . It is also easy to see that A < C and B ^ C. We simply have

Jζ, n ^ = 0 iff 3H>[(Λ; - C< w ) n C = 0 Λ K2nAw = 0].

By regularity of C there is always an element w such that (K2 — C<w) n C = 0.

It remains to ensure that D ^WA and D ^WB. We restrict attention to A,
the case for B being similar. It suffices to show that U — D is not weakly Θ-semi-
computable in A, i.e. for no index ε is (U — D) = W^ (For notation see the
paragraph immediately preceding 6.1.12.)

To violate the equality (U — D) = Wf we follow the original procedure of
Sacks [138]. The idea is to try to preserve computations xe Wf for minimal
x not in D. In case (U — D) = Wf for some ε we would eventually preserve a
correct computation for each x e Wf. But then Wj would be Θ-semicomputable
and this would contradict the assumption that D is non Θ-computable. Hence
computations x e Wf will eventually stop being preserved, and we will eventually
violate the equality U - D = Wf.

But there are obstacles to overcome. We need e.g. to have Θ-finite blocks of
requirements to settle down by some stage of the computation to this end we can
use the blocking procedure developed in 6.2.8, letting each block play the role
of a single requirement in trying to preserve a computation x e Wj for x $ D
and some ε in the block considered. And we use the fact that D has the property
Vx(Vy ~ x)(x e D => ye D) to avoid the problem of never finishing creating
requirements with arguments from a fixed level of the pwo =ζ there is a need to
create a requirement preserving a computation x e Wf only if no other computation
y e Wf for y ~ x is being preserved.

We turn to the details of the construction. Let Mz and Ma for a < Σ 2 -cf( |^ | )
be the Θ-finite blocks described in 6.2.8. Sets RA and RB of requirements will
be created, RA to ensure that D ^w A. SA will denote the set of ^-requirements,
i.e. requirements in RA, injured during the construction. RA and SA are the Θ-finite
parts of RA and SA obtained by stage z. Each requirement will be of the form
O, x9 F} where F is (a canonical Θ-index for) a Θ-finite set. Such a requirement in
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RA is called an ε-A requirement or an a-A requirement (at z) in case εεMa

(e G MJ): it is said to have argument x. In case F π Az = 0 it is said to be active
at z, else it is inactive, ε e jl/£ is an inactive a-A reduction procedure at z in case
there is an active ε-A requirement in RA preserving a computation x e Wf for
some x e Dz

9 i.e. there is <e, x, F} e Rfz - S^z such that

(3w < z)[<x, w}eWz Λ Kw^ F Λ xe Dz].

If no such requirement exists, then ε is an αcί/i e α-̂ 4 reduction procedure at z.
Let r: | < | ~>Σ2-cf(|=^|) be a Θ-computable function such that

(Vα < Σ2-cf(|^|))(Vj8)(3y > β)(r(γ) = α), where a, β, γ vary over | < | .

r indicates which part of the construction to concern ourselves with at a given stage.

The construction at stage z: Let r(z) = α. As remarked above, we only treat the
^-requirements, the construction of ^-requirements being similar.

We recall the motivation above. Every block Ma plays the role of a single
^4-requirement. This means that if there is an ε e Ma which is an active a-A reduc-
tion procedure and if there is an active ε-A requirement with argument x9 then
there is no need to create a new a-A requirement with argument x' ~ x. Otherwise
we shall contemplate creating new requirements.

To this end let Hz be the Θ-finite set of minimal x such that for each x' ~ x,
x' $ Dz and —i(3<e, x\ F) e R^z - S<z) ("ε is an active a-A reduction procedure
at z").

Next let

Nz = «ε, ^> G Mz x Hz: "ε is an active a-A reduction procedure at z"
Λ (βw < z)[(x9 w} e W% Λ KwnA<z = 0]}.

and

Fi = U {^» : @x G H*)[<x> w ) e ^ 2 Λ Kwn A<z = 0]}.

Then put

RΛ = Rl2 u {<ε, x, F > : <ε, x) e Nz}.

We must now decide whether to add Cz to A<z or to B<z. Let

Jl = {<*, x, F) E RZ

A - 5 ί z : F n Cz Φ 0} ,

i.e. J% is the set of active A requirements which would be injured in case Cz were
added to A. Define

Λ 0 0 = μβ[<β<*9 x, F> G J%)(ε e Ml)],
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if such an ordinal β exists, otherwise let fA(z) = |=<|. In a similar way introduce
a function fB(z). An analysis of the definition tells us that we can Θ-computably
decide whether fA(z) ^ fB(z) oτfB(z) < fA(z).

If fA(z) < fs{z\ let Bz = B<z u Cz and Az = A<z. If /B(z) < Λ(z), let Λ* =
A<z u C* and £ 2 = B<z.

To complete the construction let

6.2.9 Lemma. For each a < Σ2-cf(|=^|) the set of a-A and a-B requirements is
Θ-finite.

This is proved by induction on a < Σ2-cf(|=^|). Fix a and assume that the
set of β-A and β-B requirements is Θ-finite for each β < α. By the tameness of
the blocking there is a stage z0 by which all blocks M% for β ^ a have settled
down. Let

Iβ = {z>z0: (3<β, x9 F}GRAUR%- R<Z U Rfz)(ε

Then Iβ is Θ-finite for each β < a by the induction hypothesis, thus U ^ < α ^
is Θ-finite by Lemma 6.2.7. C is assumed regular so there exists a stage zx ^ z0

such that all β-requirements for β < a have been created by zx and no such
^-requirement will meet Cw for any w ^ zλ. It follows that fA(w) ^ a and/B(>v) ^ a
for w > zx. Hence, by the way we have arranged the priorities, no a-A requirement
will be injured beyond zλ.

This means that an a-A reduction procedure inactive at some w ^ zx will
remain inactive forever. We see that the set of a-A reduction procedures which
becomes inactive beyond zλ is Θ-semirecursive and hence Θ-finite. Thus there is
a z2 ^ zx beyond which no a-A reduction procedure is made inactive.

Suppose z2^z -<w and r(z) = r(w) = a. From the choice of z2 we see that
Hz ^ Hw

9 i.e. xe Hz and y e Hw implies that x =̂  y. Moreover, if an a-A require-
ment is created at z then Hz •< Hw. From this we may conclude that either the
set of a-A requirements it Θ-finite, or for each x $ D there is a permanent a-A
requirement <«, JC', F} where x' ~ x and ε is a reduction procedure active
beyond z2.

But the latter cannot be the case since D then would be Θ-computable, in
fact

xφD iff (3w^z2)(3xf ~x)(3<β,x',F>e!?X- Sf)
("ε is an active a-A reduction procedure at H>").

This completes the proof that the set of a-A requirements is Θ-finite. Using
the regularity of C choose z 3 ^ z2 so large that all a-A requirements have been
created and such that no Cw will meet an a-A requirement for w > z3. No a-B
requirement is injured beyond z3 since fA(w) > a whenever w ^ z3. Now repeat
the argument above with B in place of A and starting with z3 in place of zx and
conclude that the set of a-B requirements is also Θ-finite.

This ends the proof of Lemma 6.2.9.
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It remains to show that U — D is not weakly Θ-semicomputable in A. We
argue by contradiction, so suppose that (U — D) = Wf. Choose a and z0 such
that ε G Λfα, all a-A requirements have settled down by stage z0, and no δ e Ma

becomes an inactive a-A reduction procedure beyond z0. Note that ε is an active
a-A reduction procedure at z0, otherwise an erroneous computation would be
preserved. Choose a minimal x $ D such that there is no x' ~ x for which
<δ, x\ F} e R^ - SZJ> where δ is an active a-A reduction procedure at z0. By the
regularity of D there is a stage zλ ^= z0 such that Lx n D = Lx n Dzκ Let w ^ zλ

be such that xewWj and r(w) = a. Then Hw = {x': x' ~ x} and <e, x) e Nw. It
follows that an ε-requirement with argument x will be created at w, contradicting
the fact that w ^ z0.

The proof of Theorem 6.2.2 is now complete.

6.3 The Theory Extended

In the last section we gave a non-trivial finite injury argument in a non-wellordered
setting: the Sacks' splitting theorem for an arbitrary adequate theory.

But one example is no general proof that the class of adequate theories is the
"correct" setting of an axiomatic degree theory. Beyond the finite lies the domain
of infinite injuries.

The splitting theorem was our paradigm for the finite injury arguments. The
density theorem could be a test case for infinite injury case.

6.3.1 Density Theorem. Let a and b be two Θ-semicomputable degrees such that
a < b. There exists a Θ-semicomputable degree c such that a < c < b.

In the context of ORT over ω this theorem was proved by G. Sacks [139].
R. A. Shore was able to further refine the techniques he used in [150] (such as
the blocking technique 6.2.8) to produce a proof of the density theorem in the
setting of α-recursion theory (see [151]). Beyond this the question is open: Give
an adequate axiomatic analysis of the density theorem! Which is an injunction to
study infinite injury arguments in the abstract.

6.3.2 Remark. There exists at least one example in the context of adequate
theories. Stoltenberg-Hansen has proved (unpublished) by an infinite injury
argument that if Θ[O;] is adequate, then there exists a Θ-semicomputable set
A < O' such that A' = O".

Leaving infinite injuries aside we may still ask whether adequate theories is
a " g o o d " category for degree theory. In a certain sense it is reasonable. We
started with a class of infinite theories corresponding to admissible pwo's, i.e.
resolvable admissible structures (possibly with urelements), and we imposed some
necessary properties on the projectum: Keep in mind that the Θ-semicomputable
sets can be indexed below the projectum; our requirement of adequacy stated
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that the projectum is a limit ordinal and every Θ-semicomputable set bounded
below the projectum is in fact Θ-finite. This is a key combinatorial property,
see e.g. Lemma 6.2.9.

The "key combinatorial property" is provable in α-recursion theory, but not
in the general setting of infinite theories (in the precise sense of Definition 5.1.5.)
We discuss two examples.

6.3.3 Determinacy and Degrees: a Counterexample to Post's Problem. We present a
result due to S. Simpson [155]. First a definition: Let M be an admissible set.
B c M is complete-Σ(M) if B is Σ(M) and for each Σ(M) set A c M there is a
Σ(M) relation C such that:

(a) Vx3yC(x,y)
(b) VxVy[C(x, y)->(χeA<->ye B)]9

i.e. A is ^-reducible to B.
Simpson proved the following

Theorem. Assume the Axiom of Determinateness. Let M — R + , the next admissible
set after the continuum. Then every Σ(M) set is either Δ(Λf) or complete and every
regular Σ(M) set is Δ(M).

Here we have a total breakdown of the theory of semicomputable degrees.
Note that M is an admissible pwo, hence supports an infinite theory. The only
blemish of the counterexample is the use of AD.

Hence the obvious question: Can one get rid of determinacy? There is an
unpublished example due to L. Harrington which answers this in the affirmative,
but his admissible set is not resolvable.

Thus some restriction, perhaps adequacy, seems necessary. However, there is
a rich degree theory in certain non-adequate contexts.

6.3.4 A Non-adequate Theory with a "Good" Degree Structure. This example is
due to D. Normann and V. Stoltenberg-Hansen [130]. The setting is Barwise's
theory of admissible sets with urelements and the structure is L(ωx)m9 where
$01 = Fω(Q) is a countable-dimensional vectorspace over Q.

Liω^m has a degree structure isomorphic to L{ω^). This comes from the fact
that the structure 9ft = Vω(Q) has a natural representative in L(ω^). (501' e L(wx)
is a natural representative of 9ft if (i) 9ft' and 9ft are isomorphic, and (ii) the set
of finite (in the good old sense!) τ:9ft->9ft' which can be extended to an iso-
morphism from 9ft to 9ft' is L(ω1)a«-computable.) A definability analysis shows that
Vω(Q) has indeed a natural representative in L(ω^). And thus the degree theory
of Liωjm is reduced to the adequate theory L{ωx).

But, as shown by Normann and Stoltenberg-Hansen, L{ω^)m being obviously
admissible and resolvable, is not adequate. It does, however, satisfy the "regular
set" theorem.

We sketch the proof that the structure is not adequate: Let < be a Σ x pwo of
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the structure Liωjm, and let π(ά) be a projection, i.e. a set of "notations" for a
below the projectum. An analysis of the construction shows that TΓ and < are
definable in a finite set of parameters pl9.. .,pk from the underlying structure.
Thus there is a finite-dimensional subspace 9Jl0 of 501 such that/? l 5 . . .,pk belongs
to 2R0 We have the following basic lemma: For any two elements rl9 r2 e9K\S0ΐo
if there is an automorphism τ of 9ft leaving StRo fixed such that T(AΊ) = r2, then
the sets π(r±) and π(r2) will be at the same level below the projectum of the pwo.

Choose an r e 9ft\9ft0. Let πλ be a projectum of ωx into ω. Define π2 for a < ωλ

by

It is easily seen that the image of the projection is semirecursive. By the basic
lemma the image will be bounded below the projectum; we have a set of non-zero
elements 1 + π ^ r in 3R\3Ro> for any two such elements an automorphism of
the required kind exists, hence their projections will lie at the same level.

The projection is not L(ω1)aR-finite; for π2 is essentially a projection of ωl9

the ordinal of the structure.

What is the moral of example 6.3.4? Perhaps this, that adequacy always lurks
in the background ?

So far admissibility has been a dogmatic assumption of the general theory.
But irreverent questions began to be asked: Is Σi-admissibility a crude global
hypothesis which obscures the finer points of recursion theory? (Sacks [144]).
And irreverence is always an instrument for progress.

6.3.5 Inadmissible Extensions of the Theory. The basic ideas were announced in
S. Friedman and G. Sacks [37] and have been extensively developed in papers of
S. Friedman and W. Maass, see [35] and [101] for a preliminary guide to the field.

The Friedman-Sacks' setting for β-recursion theory is the S-hierarchy for L
introduced by R. Jensen. An introduction to ^-recursion theory from this point
of view is given in Friedman [35]. But for our purposes we can equally well, as is
done in Maass [101], stick to the more familiar L-hierarchy.

So replace the structure <Lα, e>, a admissible, by (Lβ9 e>, where β is any limit
ordinal. We must choose the "correct" notions of semicomputable and finite for
the structures.

Lβ admits a natural hierarchy; this motivates the following definitions: Let

A is β-r.e. iff A is Σi-definable over (Z^, e>
A is β-recursive iff A, A = Lβ — A are both β-r.e.

From this we derive, more or less canonically, the notion of a β-recursive function:
A partial function/from Lβ to Lβ is called (partial) β-recursive iff its graph is β-r.e.

In the Friedman-Sacks' approach the notion of β-finite is the same as in the
admissible case: Let A c Lβ

A is β-finite iff A e Lβ.
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One can now introduce the reducibilίties of ^-recursion theory: ^wβ and ^β9

exactly as in Definition 6.1.9.
There is a threefold split in the recursion theory on the ordinals. Let K =

Σi-cfOS), i.e. the least ordinal K such that some Σi-function with domain K has
range unbounded in β. Let β* be the usual (Σx-) projectum of β. Given any limit β9

(i) β is admissible iff K = β.
(ii) β is called weakly inadmissible if β* ^ K < β.
(iii) β is called strongly inadmissible if K < β*.

The basic patterns of admissibility theory extend to the weakly inadmissible
case. Below K everything looks very admissible, and since β* < K we can work
below K. W. Maass developed in [100] a technique which gave a precise meaning
to this remark. He associated to each weakly inadmissible β an admissible struc-
ture %β9 the admissible collapse, such that 91^-r.e. degrees embed into the β-r.e.
degrees. Thus one can transfer results from the admissible case to the weakly
inadmissible one. A generalization of Maass' construction is given in V.
Stoltenberg-Hansen [165].

There are, however, certain complications. "Strange" things start to happen
in Friedman-Sacks' β-recursion theory. For example, it is not always possible
to effectively enumerate the β-finite subsets of an β-r.e. set. The following definition
is not trivial: A set A is said to be tamely r.e. (t.r.e.) if the set {a eLβ : a £ A}
is β-r.e. A ^-recursive enumeration λσ Aσ of A is called tame if a <=• A implies
3σ(a £ Aσ). Of course, in the admissible case every enumeration of a β-r.e. set
is tame; not so in the inadmissible case.

One can now give a quick summary of the results of Maass and Stoltenberg-
Hansen: the structure of the regular t.r.e. β-degrees is non-trivial (and even rich)
iff β is admissible or weakly inadmissible.

We will not go into details at this point since we shall outline an alternate
approach to β-recursion theory in a moment. But a few results must be mentioned.

For any inadmissible β the following is true: Let W be a universal β-r.e. set.
There is a β-recursive set A such that 0 <βA <βW, and every ^-recursive or
tamely r.e. set is β-reducible to A, see Friedman [35].

Letting 01 / 2 denote the degree of A we always have at least three j8-r.e. degrees,
0, 01/2, and 0'. In the weakly inadmissible case there are always more, we have
incomparable β-r.e. degrees below 0', even below 01/2.

The situation is at present more "confusing" in the strongly inadmissible
case, i.e. when the Σi-cf (β) is strictly smaller than β*. Both results and methods
become different.

For a large class of ordinals one may answer in the affirmative the following
version of Post's problem:

(*) There are β-r.e. sets A, B such that A ζwβ B9 B wβ ^ A ?

But there are also ordinals where (*) fails. In [36], S. Friedman shows that (*)
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is not true when β is the ω-th primitive-recursively closed ordinal greater than
X£i- But what of the following version?

(**) There are β-r.e. sets A, B such that A ζβ B, B ^ β A ?

Obviously (**) is true in the admissible or weakly inadmissible case. It is unknown
if there is a strongly inadmissible β where (**) fails.

Let us return to basics. The definition of β-finite was lifted verbatim from the
admissible case. And one may argue that it is natural from a set-theoretic point
of view. But the necessity of the notion of tameness indicates that the concept
of β-finiteness is awkward for a recursion-theoretic analysis.

W. Maass has recently reanalyzed the foundation of β-recursion theory. He
accepts that Σi-definable over <Lβ9 e> is the "correct" notion of β-r.e. This gives
a unique choice for the notion of a partial β-recursive function.

In his analysis of finiteness Maass was guided by the time-honored principle
of seeking a notion invariant under a suitable group of symmetries, in this case
the group of ^-recursive permutations of the domain.

One cannot start in thin air. Two elementary properties of finiteness seem
almost unavoidable: (i) a "finite" set must be β-recursive; (ii) a "finite" set must
be bounded. Granted this much Maass [102] proved the following result.

6.3.6 Proposition. There is a largest class I of subsets ofLβ satisfying

(i) every Ke I is β-recursive,
(ii) every Ke I is bounded, i.e. K <Ξ Lyfor some γ < β,
(iii) if Ke I andf is a β-recursive permutation ofLβ, then f"K e L

Moreover, / is explicitly given as

I = {K^Lβ:KeLβ A β-cnrd(K) < Σ^cΐfβ)}.

Note that if β is admissible we have the usual notion of finiteness of admissibility
theory. We also note that the assumption on β is not known to be necessary.

We shall modify Maass' analysis a little, replacing (i) and the invariance
property (iii) by

(i') every Ke Us β-r.e.

(iii') if AT is "f inite",/a partial β-recursive function, and # c dom/, then/ 'X
is "finite".

Our exposition is based on an unpublished note by V. Stoltenberg-Hansen.
One may argue what is more basic. Here we just note that the modified approach

expresses the idea that the "finite" sets should be precisely those β-r.e. sets for
which every enumeration is short compared with those of the universal β-r.e. set.
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6.3.7 Lemma. The class

I={K<=iLβ:KeLβ A β-czτd(K) <

is the largest class satisfying (i'), (ii), and (iii').

It is easy to verify that /satisfies (i'), (ii), and (iii'). Suppose C is any class satis-
fying (i'), (ϋ), and (iii') and not contained in /. Let M e C - /. We argue first
that MeLβ: Let λσ-Mσ be a β-recursive enumeration of M which exists by (i').
Define for x e M a function

h(x) = some σ[x e Mσ].

A is a partial β-recursive function and by (iii') h"M belongs to C. Thus h"M is
bounded using (ii); let σ0 be a bound. But then M = Mσo eLβ.

Since M eLβ — I there is an /: K -^> M,feLβ. But then/"* e Z^ since Lβ is
rudimentarily closed. Define a function g: M-> K by

1 ^ ) i f ^ e / ^
θ otherwise.

Let h: κ^*β be 0-recursive and unbounded. By property (iii') h°g"MeC. But
g"Λf = K, therefore h ° g"M is unbounded, contradicting (ii).

6.3.8 Definition. A set K c L^ is called invariantly finite, /-finite, if KG I.

This is the notion which will replace the notion of β-finite as used by Friedman-
Sacks.

6.3.9 Proposition. A set M £ Lβ is i-finite iff for every partial ̂ -recursive function
φ(x, y) there is a partial β-recursive function φ(x) such that for all xeLβ

if VyeM-φ,y)~l.

Thus /-finiteness is nothing but the usual axiomatic notion of finiteness, viz. the
computability of the functional EM, Mel. The proof is not difficult. One can
argue as in the following 6.3.12 that EM is computable if Mel. Conversely, the
set {M ^ Lβ : EM is computable} will satisfy (i'), (ii), and (iii'), thus by maximality
of / be included in /.

We have the following useful fact:

6.3.10 Proposition. / is β-recursive.

Obviously /is jS-r.e. As in the proof of 6.3.7 xeLβ - Iiff 3feLβ[f: K -^> x].
We come to the main construction. Let h: K -> β be j8-recursive and unbounded,
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and let 3y-φ(e, x, y) be a universal Σ-^Z^, e » relation where φ is Δo. Define the
following β-recursive relations:

(i) U{x) iff xeLβ - I
(ii) φ(e, x, δ) iff δ < K Λ 3yeLhiδyψ(e, x9 y).

6.3.11 Definition. The structure

% = (Lβ\U9I9e\Lβ xl9ψ>

is called the admissible collapse oΐLβ.

Here U is the class of urelements and / the class of sets. When working in %
we write e for the more correct but hopelessly pedantic e \ Lβ x /.

The construction of 91̂  was suggested by Maass [102]. It is the "/-finite"
version of the original construction [100].

6.3.12 Lemma. Every ΔQ($ίβ) relation is Δx{Lβ).

The following case is representative: Consider VΛ; e a-φ(x9 q) where a e / and
ψ is ΔQ($β). By the induction hypothesis ψ(x, q) is Δx{Lβ). Suppose that

%¥Ψ{x,q) iff Lβϊ3zθ(z,x,q),

where θ is Δ0(Lβ). Suppose further that %β tVxea ψ{x,q). Define / on a by
f(x) = some x such that θ(z, x,q). Since α e / , f"a is /-finite. Letting Z> = f"a it
follows that LρtVxea lzeb- θ(z9 x, q). We conclude that

%a><p(x,q) iff

i.e. VΛ: e aφ(x, q) is

6.3.13 Theorem. 91̂  is an admissible set with urelements. Furthermore, a set
W^Lβ is β-r.e. iff it is %-τ.e.

The proof that 91̂  is admissible is straightforward. For example the union
axiom follows since an /-finite union of /-finite sets is /-finite. Δ0-separation follows
since a β-recursive subset of an /-finite set is /-finite. And Δ0-collection follows as
in Lemma 6.3.12.

Now let W c Lβ. If W is β-r.e. then for some index e9 x e W iff Lβ N 3δ <
κφ(e, x, δ) iff % N 3δφ(e, x, δ), so W is 9I rr.e. Conversely if W is 91^-r.e. then
x G Wiff 91̂  1= 3zφ(x, z) where ψ is Δ0(9ί/3). By Lemma 6.3.12 ψ is a Δλ{Lβ) relation;
we conclude that W is β-r.e.

Over L^ we can now define the notion of an i-degree as in Definition 6.1.9.
We shall use < iβ for the associated reducibility notion. Obviously A ^iβB iS
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A ^%βB. Thus the study of /-degrees over Lβ is reduced to the study of degrees
over the admissible structure %β.

6.3,14 Theorem. % is resolvable iffβ is admissible or weakly inadmissible.

The admissible case is trivial, % is then equal to Lβ itself. Suppose β is weakly
inadmissible. Then there is a ^-recursive bijection q: κ<-^Lβ. For each γ < K,
q"γ is /-finite. Thus q induces a ^-recursive wellordering on Lβ whose initial seg-
ments are /-finite, i.e. ς&β is resolvable.

For the converse assume that 31̂  is resolvable. Let =̂  be the induced pre-
wellordering of Lβ whose initial segments are ^-finite. Let <β be the standard
^-recursive wellordering of Lβ. Define

x < y iff x -< y V (x ~ y Λ x <β y).

Then < is an ^-recursive wellordering of Lβ whose initial segments are 31^-finite.
%β is therefore adequate and hence the deficiency set D (see 6.1.16) of a complete
regular 31^-r.e. set is a β-r.e. non-β-recursive subset of /c. In particular, DφLβ;
but then β* ^ K.

We have arrived at the following conclusion: Lβ with the notion of "finite"
being ί-finite in the sense of Definition 6.3.8 is an infinite and adequate computation
theory iffβ is either admissible or weakly inadmissible.

Thus there is a natural computation-theoretic analysis of the weakly in-
admissible case. But even in the strongly inadmissible case we have the beginnings
of a computation-theoretic analysis. Theorem 6.3.13 still holds, but the associated
computation theory is no longer resolvable. It is, however, Λ -normal and /?-normal
in the sense of the general theory. It is a topic for further research as to how far
into the inadmissible one can extend the coherence and unity of concepts and
methods that we find in the axiomatic analysis.




