Symbol Index

The symbols are organised according to subject matter as follows:

- 1. Set theoretic notations
- 2. Basic model theoretic notations
- 3. Distinguished sets of formulas, theories or types
- 4. Relations among types, elements and sets.
- 5. Functions and operators defined in stability theory
- 6. Classes of models
- 7. Ranks
- 8. Specific theories
- 9. Notations about trees (of models)
- 10. Notations from algebra
- 11. Many sorts and L^{eq}
- 12. Special notations from Chapter XVIII

	heoretic notations	αp	image of p under α 14
$lpha(\overline{a})$	image of \overline{a} under α 9		x) there are exactly k 10
E_i	$\{\overline{e}_{j}^{j} < i\}$ 44) there is exactly one 10
$I = \bigcup I$	a convention 317	T	cardinality of T 10
κ^{λ}	cardinal exponentiation 9	$F^n(B)$	
$\lambda^{<\alpha}$	set of functions from ini-	$F^n(T)$	
	tial segments of α into λ	F(T)	formulas over set (some
	9		n) 11
λ^{α}	set of functions from α into	$L_{\infty,c^+}(Q$	(Q_D) infinitary language with
	λ9	. 1.	dimension quantifiers 6
$\mathrm{cf}(\delta)$	cofinality of δ 44	L^{sk}	Skolem language 21
$\lg(\overline{a})$	length of abar 9		$ar{a})~M~{ m satisfies}~\phi~9$
$\operatorname{rng}(\overline{a})$	range of \overline{a} 9	` '	algebraic closure 17
Λ_0	ordinals of cofinality ω 214	_	diagram 74
•	modulo λ 287	$\operatorname{dom} p$	
$\mod \lambda$			theory of M 9
⊕	natural sum of ordinals 162	$\mathrm{Th}(M,B)$	P) theory of M with B
$\operatorname{ded}(\kappa)$	Dedekind of κ 90		named 9
Δ	symmetric difference 177	M^{sk}	Skolem closure of M 21
		p B	p restricted to B 12
		$\phi(M;\overline{a})$	solutions of ϕ in M 9
notations		$\phi(\overline{x})$	first order formula 9
$\overline{a} \in M$	finite sequence 9	$\phi(\overline{x};\overline{a})$	first order formula; \overline{x} free,
$\overline{a} \cup B$	9		\overline{a} parameters 12, 57

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			DOP	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			ENI ND	
formulas 64 space of B (fixed n) 12 property 324 not the dimensional order property 346 emi essentially nonisolated 306 F_B formulas which fork over B 102 sover B 12 t($\overline{\alpha}$; A $\cup \overline{d}$) equal types with different domains 12 $F(B)$ formulas over B (some n) 11 submodule of solutions to $\mathcal{G}(p)$ 95 $\mathcal{G}(p)$ 96			ישואו-ווועו	
$S(B) \text{Stone space of } B \text{ (some } n) \\ 1 S^{\omega}(B) \text{Stone space of } B \text{ (some } n) \\ 1 S^{\omega}(B) \text{complete finite types over} \\ B 12 \text{complete finite types over} \\ B 12 \text{somplete finite types over} \\ 0 12 \text{cardinality of } T \text{ 10} \\ \text{Aut}_A(M) \text{ automorphisms of } M \text{ fixing } A \text{ 14} \\ M \text{the monster model } 14 \\ t(A; B) \text{type of } A \text{ over } B \text{ 12} \\ t(\overline{a}; A \cup \overline{d}) = t(\overline{a}'; A \cup \overline{d}') \text{ equal types} \\ \text{with different domains } 12 \\ F(B) \text{formulas over } B \text{ (some n)} \\ 11 \text{11} \text{3. Distinguished sets of formulas, theories or types.} \\ \delta_M^{M}(\gamma) \text{number of types in } D_{p,q} \\ \text{with dimension } \aleph_{\beta+r}, 297 \\ A_B \text{formulas almost over } B \text{ 106} \\ (\overline{a} \perp \overline{b}; C) \ \overline{a} \text{ orthogonal to } \overline{b} \text{ over } C \\ 138 \\ A_I \bigcup_{i \in I} A_i \text{ Shelah notation } 317 \\ \text{Av}(X; A) \text{ average of } X \text{ over } A \text{ 120} \\ B \text{basis for regular types } 303 \\ C \downarrow_A B A \text{ independent from } B \text{ over } C \\ C(\Delta) \text{conjunctions of instances of } \Delta 159 \\ (N_0, N_1, N_2) \text{ amalgam } 318 \\ D(M) \text{width of types realized in } \\ M 297 \\ d(p, B) \text{definable extension of } p \text{ to } B \text{ 63} \\ d\phi(\overline{y}; \overline{z}) \text{defining formula for } \phi \text{-types} \\ 60 \\ D_{p,q}(M) \text{copies of } p \text{ based on realizations of } q \text{ in } M \text{ 297} \\ \end{pmatrix} \text{positive primitive formulas} $		formulas 64		property 324
$S^{\omega}(B) \text{complete finite types over} B \ 12$ $S(T) \text{complete finite types over} \emptyset \ 12$ $ T \text{cardinality of } T \ 10$ $\text{Aut}_A(M) \text{automorphisms of } M \ \text{fixing } A \ 14$ $M \text{the monster model } 14$ $t(A;B) \text{type of } A \text{ over } B \ 12$ $T^{sk} \text{Skolem closure of } T \ 21$ $U_{\phi} \text{types containing } \phi \ 12$ $F(B) \text{formulas over } B \text{ (some n)} \ 11$ $3. \text{Distinguished sets of formulas, theories or types.} \\ \delta^{J}_M(\gamma) \text{number of types in } D_{p,q} \\ \text{with dimension } \aleph_{\beta+\gamma} \ 297$ $A_B \text{formulas almost over } B \ 106$ $(\bar{a} \perp \bar{b}; C) \ \bar{a} \text{ orthogonal to } \bar{b} \text{ over } C$ 138 $A_I \cup_{i \in I} A_i \text{ Shelah notation } 317$ $\text{Av}(X; A) \text{ average of } X \text{ over } A \ 120$ $B \text{basis for regular types } 303$ $C \mid_A B A \text{ independent from } B \text{ over } C$ $C(\Delta) \text{conjunctions of instances of } \Delta \ 159$ $(N_0, N_1, N_2) \text{amalgam } 318$ $D(M) \text{width of types realized in } M \ 297$ $d(p, B) \text{definable extension of } p \text{ to } B \ 63$ $d\phi(\bar{y}, \bar{z}) \text{defining formula } \text{for } \phi \text{-types} 60$ $D_{p,q}(M) \text{copies of } p \text{ based on realizations over } P \ 306$ $P_{p,q}(M) \text{copies of } p \text{ based on realizations over } A \ 101$ $FE^M(A) \text{finite equivalence relations over } A \ 101$ $F_p \text{automorphisms which fix } p \ 166$ $Submodule \text{ of solutions to } G_0(p) \text{ 95}$ $Submodule \text{ of solutions to } G_0(p) \text{ 95}$ $Aut(M) \ 311$ $S(p) \text{95}$ $Aut(M) \ 311$ $Sp_0(p) 95$ $S_0(p) 95$ $S_0($	$S^n(B)$		NDOP	
$S^{\omega}(B) \text{complete finite types over} \\ B 12 \\ S(T) \text{complete finite types over} \\ \emptyset 12 \\ [T] \text{cardinality of } T \ 10 \\ \text{Aut}_A(M) \text{automorphisms of } M \ \text{fixing } A \ 14 \\ \text{M} \text{the monster model } 14 \\ t(A;B) \text{type of } A \text{ over } B \ 12 \\ T^{ak} \text{Skolem closure of } T \ 21 \\ U_{\phi} \text{types containing } \phi \ 12 \\ F(B) \text{formulas over } B \ \text{(some n)} \\ 11 \\ \text{3. Distinguished sets of formulas, theories or types.} \\ \delta^{J}_M(\gamma) \text{number of types in } D_{p,q} \\ \text{with dimension } \aleph_{\beta+\gamma} \ 297 \\ A_B \text{formulas almost over } B \ 106 \\ (\overline{a} \perp \overline{b}; C) \ \overline{a} \text{orthogonal to } \overline{b} \text{ over } C \\ 138 \\ A_I \cup_{i \in I} A_i \text{ Shelah notation } 317 \\ \text{Av}(X; A) \text{average of } X \text{ over } A \ 120 \\ B \text{basis for regular types } 303 \\ C \perp_A B A \text{independent from } B \text{ over } C \\ A B A \text{independent from } B \text{ over } C \\ A B A \text{oconjunctions of instances of } \Delta \ 159 \\ (N_0, N_1, N_2) \text{amalgam } 318 \\ D(M) \text{width of types realized in } M \ 297 \\ d(p, B) \text{definable extension of } p \text{ to } B \ 63 \\ d\phi(\overline{y}; \overline{z}) \text{defining formula for } \phi\text{-types} \\ 60 \\ D_{p,q}(M) \text{copies of } p \text{ based on realizations over } B \ 106 \\ \text{N} B, Q_{p} \text{opistive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive formulas in } p \ 94 \\ \text{positive primitive } p \ 106$	S(B)	Stone space of B (some n)	$_{ m eni}$	essentially nonisolated 306
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	F_B	
S(T) complete finite types over \emptyset 12 cardinality of T 10 Aut _A (M) automorphisms of M fixing A 14 the monster model 14 $t(A;B)$ type of A over B 12 t($\overline{a};A\cup \overline{d}$) = $t(\overline{a}';A\cup \overline{d}')$ equal types with different domains 12 Skolem closure of T 21 types containing ϕ 12 $F(B)$ formulas over B (some n) 11 $F(B)$ formulas, theories or types. S $B_M'(\gamma)$ mumber of types in $D_{P,q}$ with dimension $\mathbb{N}_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $\overline{a} \perp \overline{b};C$) \overline{a} orthogonal to \overline{b} over C 138 $A_I \cup_{i\in IA}$ Shelah notation 317 $A_V(X;A)$ average of X over A 120 B basis for regular types 303 $C \downarrow A$ B A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 (N_0,N_1,N_2) amalgam 318 $D(M)$ width of types realized in M 297 $D_{P,q}(M)$ copies of p based on realizations of q in M 297 D epositive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^+ positive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^+ positive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^+ positive primitive formulas in p 95 p^+ positive primitive formulas in p 94 p^- positive primitive formulas in p 95 p^+ positive primitive formulas in p 95 p^+ positive primitive formulas over p 106 p^+ positive primitive formulas over p 107 p^+ 108 p^+ 109 p^+ 109 p^+ 109 p^+ 109 p^+ 109 p^+	$S^{\omega}(B)$		FF(A)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C(T))		ID(A)	
$T $ cardinality of T 10	S(T)		$FE^m(A)$	
Aut_A(M) automorphisms of M fixing A 14 M the monster model 14 $t(A;B)$ type of A over B 12 $t(\overline{a};A\cup\overline{d})=t(\overline{a}';A\cup\overline{d}')$ equal types with different domains 12 T^{sk} Skolem closure of T 21 U_{ϕ} types containing ϕ 12 $F(B)$ formulas over B (some n) 11 3. Distinguished sets of formulas, theories or types. $\delta_M^I(\gamma)$ number of types in $D_{P,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\overline{a}\perp \overline{b};C)$ \overline{a} orthogonal to \overline{b} over C 138 A_I $\cup_{i\in I}A_i$ Shelah notation 317 $Av(X;A)$ average of X over A 120 B basis for regular types 303 $C\downarrow AB$ A independent from B over C $C(\Delta)$ conjunctions of instances of Δ 159 (N_0,N_1,N_2) amalgam 318 $D(M)$ width of types realized in M 297 $d(p,B)$ definable extension of p to B 63 $d\phi(\overline{y};\overline{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 $f(x)$ automorphisms which fix p 166 $f(x)$ submodule of solutions to $g(p)$ 95 $f(x)$ withor of types automorphisms which fix p 166 $G(x)$ y betwee of A over B 12 $f(x)$ equal types with different domains 12 $f(x)$ equal types of A over B 12 $f(x)$ equal types of A over B 12 $f(x)$ equal types of A over B 12 $f(x)$ equal types of A 21 $f(x)$ equal types of A 21 $f(x)$ equal types of A 21 $f(y)$ equal type of A over B 20 $f(y)$ 95 $f(y)$ 97 $f(y)$ 166 Saut_A(M) group of strong automorphisms of M 113 $f(y)$ 90 $f(y)$ 90 $f(y)$ 91 $f(y)$ 90 $f(y)$ 91 $f(y)$ 90 $f(y)$ 91 $f($	l <i>a</i> ni		1 13 (11)	
ing A 14 M the monster model 14 $t(A;B)$ type of A over B 12 $t(\bar{a};A\cup\bar{d})=t(\bar{a}';A\cup\bar{d}')$ equal types with different domains 12 T^{sk} Skolem closure of T 21 U_{ϕ} types containing ϕ 12 $F(B)$ formulas over B (some n) 11 3. Distinguished sets of formulas, theories or types. $\delta_M^J(\gamma)$ number of types in $D_{P,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\bar{a}\perp\bar{b};C)$ \bar{a} orthogonal to \bar{b} over C 138 A_I $\cup_{i\in I}A_i$ Shelah notation 317 $Av(X;A)$ average of X over A 120 B basis for regular types 303 $C\downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p,B)$ definable extension of p to B 63 $d\phi(\bar{y};\bar{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 $d(p,B)$ defining formula for ϕ -types 60 $d(p,B)$ definity $d(p,B)$ definity $d(p,B)$ definity $d(p,B)$ definity			F_{r}	
$t(A;B) \text{type of } A \text{ over } B 12$ $t(\overline{a};A\cup\overline{d}) = t(\overline{a}';A\cup\overline{d}') \text{ equal types} \\ \text{with different domains } 12$ $T^{sk} \text{Skolem closure of } T 21$ $U_{\phi} \text{types containing } \phi 12$ $F(B) \text{formulas over } B \text{ (some n)} \\ 11 \qquad $	$\mathrm{Aut}_A(M$		-	p 166
$t(\overline{a}; A \cup \overline{d}) = t(\overline{a}'; A \cup \overline{d}') \text{ equal types} \\ \text{with different domains } 12 \\ T^{sk} & \text{Skolem closure of } T \text{ 21} \\ U_{\phi} & \text{types containing } \phi 12 \\ F(B) & \text{formulas over } B \text{ (some n)} \\ 11 & G(p) & \text{submodule of solutions to} \\ G(p) & \text{55} \\ G_M & \text{automorphism group } G \text{ restricted to } M \text{ 311} \\ G(p) & \text{submodule of solutions to} \\ G(p) & \text{95} \\ G(p) &$	\mathcal{M}	the monster model 14	$G_0(p)$	
with different domains 12 T^{sk} Skolem closure of T 21 U_{ϕ} types containing ϕ 12 $F(B)$ formulas over B (some n) 11 S . Distinguished sets of formulas, theories or types. $\delta_M^J(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\bar{a} \perp \bar{b}; C) \bar{a}$ orthogonal to \bar{b} over C 138 A_I $\bigcup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow A B$ A independent from B over C C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $d\phi(\bar{y}; \bar{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 $d(p, B)$ deviating formula for ϕ -types 60 $d(p, B)$ defining formula for ϕ -types 60 $d(p, B)$ definity formula for ϕ -types 60 $d(p, B)$ def	t(A;B)	type of A over B 12	T (/)	
The skolem closure of T 21 U_{ϕ} types containing ϕ 12 $F(B)$ formulas over B (some n) 11 $S(p)$ submodule of solutions to $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 97 $S(p)$ 98 $S(p)$ 96 $S(p)$ 97 $S(p)$ 98 $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 97 $S(p)$ 97 $S(p)$ 98 $S(p)$ 98 $S(p)$ 99 $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 97 $S(p)$ 98 $S(p)$ 99 $S(p)$ 95 $S(p)$ 99 $S(p)$ 95 $S(p)$ 90 $S(p$	$t(\overline{a};A\cup\overline{a})$		$\Gamma_p(\phi,\kappa)$	
types containing ϕ 12 F(B) formulas over B (some n) 11 3. Distinguished sets of formulas, theories or types. $\delta_M^J(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\bar{a} \perp \bar{b}; C) \bar{a}$ orthogonal to \bar{b} over C 138 A_I $\bigcup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C C 46 $C(\Delta)$ conjunctions of instances of Δ 159 (N_0, N_1, N_2) amalgam 318 $D(M)$ width of types realized in M 297 $M_{p,q}(M)$ copies of p based on realizations of q in M 297 $(S(p))$ submodule of solutions to $S(p)$ 95 $S(p)$ 96 $S(p)$ 95 $S(p)$ 96 $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 95 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 96 $S(p)$ 95 $S(p)$ 96 $S(p)$ 95 $S(p)$ 97 $S(p)$ 90 $S(p)$ 95 $S(p)$ 90 $S(p)$ 95 $S(p)$ 90	T^{sk}		G_{M}	automorphism group G re-
F(B) formulas over B (some n) 11	_			stricted to M 311
3. Distinguished sets of formulas, theories or types. $\delta_M^J(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\bar{a} \perp \bar{b}; C)$ \bar{a} orthogonal to \bar{b} over C 138 A_I $\cup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $d\phi(\bar{y}; \bar{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 A_B formulas almost over B 106 $Aut(M)$ 311 $S_0(p)$ pp formulas of finite index in p 95 $Aut_A(M)$ group of strong automorphisms of M 113 $Stp(c; B) \perp q$ orthogonal type and strong type 139 N_B nonforking formulas over B 106 $N(B, A)$ types in $S(B)$ which are free over A 73 $\neg F_B$ formulas whose negations fork over B 106 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ψ in ϕ 29 o neni not essentially nonisolated mental order 64 o			G(p)	submodule of solutions to
3. Distinguished sets of formulas, theories or types. $\delta_M^I(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\overline{a} \perp \overline{b}; C) \overline{a}$ orthogonal to \overline{b} over C 138 $A_I \cup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $C(\Delta)$ conjunctions of instances of Δ 159 $C(A)$ width of types realized in A 297 A	F(B)	· · ·		$\mathcal{G}(p)$ 95
Formulas, theories or types. $\delta_M^J(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\bar{a}\perp\bar{b};C)$ \bar{a} orthogonal to \bar{b} over C 138 A_I $\cup_{i\in I}A_i$ Shelah notation 317 $Av(X;A)$ average of X over A 120 B basis for regular types 303 $C\downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 (N_0, N_1, N_2) amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $(p, q(M))$ copies of p based on realizations of q in M 297 $g(p)$ pp formulas of finite index in p 95 $g(p)$ pp formulas in p 95		11	\mathcal{G}	
Formulas, theories of types. $\delta_M^J(\gamma)$ number of types in $D_{p,q}$ with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\overline{a} \perp \overline{b}; C)$ \overline{a} orthogonal to \overline{b} over C 138 A_I $\cup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $d\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 o pp formulas in p 95 o $f(x, z, \overline{y})$ translate of $\phi(x, \overline{y})$ 166 Saut_A(M) group of strong automorphisms of M 113 o strong type 139 o nonforking formulas over B 106 o o nonforking formulas over B 106 o	3. Distinguished sets of		$G_{\alpha}(n)$	
with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\overline{a} \perp \overline{b}; C)$ \overline{a} orthogonal to \overline{b} over C 138 $A_I \cup_{i \in I} A_i$ Shelah notation 317 $Av(X; A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $d\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types $d(p, q)$ copies of p based on realizations of q in M 297 $d(p, q)$ copies of p based on realizations of q in M 297 $g(p)$ pp formulas in p 95 $\phi(x, z, \overline{y})$ translate of $\phi(x, \overline{y})$ 166 Saut _A (M) group of strong automorphisms of M 113 $stp(c; B) \perp q$ orthogonal type and strong type 139 N_B nonforking formulas over B 106 $N(B, A)$ types in $S(B)$ which are free over A 73 $\sigma(B)$ index of $\sigma(B)$ in $\sigma(B)$ index of $\sigma(B)$ ind		ulas, theories or types.	$\mathcal{F}^{0}(P)$	
with dimension $\aleph_{\beta+\gamma}$ 297 A_B formulas almost over B 106 $(\overline{a}\perp \overline{b};C)$ \overline{a} orthogonal to \overline{b} over C 138 A_I $\cup_{i\in I}A_i$ Shelah notation 317 $Av(X;A)$ average of X over A 120 B basis for regular types 303 $C\downarrow A$ B A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p,B)$ definable extension of p to B 63 $d\phi(\overline{y};\overline{z})$ defining formula for ϕ -types G $D_{p,q}(M)$ copies of p based on realizations of q in M 297 $\phi(x,z,\overline{y})$ translate of $\phi(x,\overline{y})$ 166 Saut $_A(M)$ group of strong automorphisms of M 113 $stp(c;B) \perp q$ orthogonal type and strong type 139 N_B nonforking formulas over B 106 $N(B,A)$ types in $S(B)$ which are free over A 73 $(\phi/\psi;N) = [\phi(N):\phi(N)\cap\psi(N)]$ index of ψ in ϕ 29 $\phi(y;\overline{z})$ defining formula for ϕ -types $\phi(y;\overline{z})$ positive primitive formulas in p 94 $\phi(y;\overline{z})$ positive primitive formulas in p 94 $\phi(y;\overline{z})$ positive primitive formulas in p 94 $\phi(z;\overline{z})$ positive primitive formulas in p 94 $\phi(z;\overline{z})$ positive primitive formulas in p 94	$\delta_M^J(\gamma)$	number of types in $D_{p,q}$	G(n)	
AB formulas almost over B 106 ($\overline{a} \perp \overline{b}; C$) \overline{a} orthogonal to \overline{b} over C 138 AI $\cup_{i \in I} A_i$ Shelah notation 317 Av(X; A) average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 $d(p, B)$ definable extension of p to B 63 $d\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 Saut_A(M) group of strong automorphisms of M 113 $stp(c; B) \perp q$ orthogonal type and strong type 139 N_B nonforking formulas over B 106 $N(B, A)$ types in $S(B)$ which are free over A 73 $\neg F_B$ formulas whose negations fork over B 106 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ψ in ϕ 29 neni not essentially nonisolated mental order 64 p^+ positive primitive formulas in p 94 positive primitive formulas in p 94 positive primitive formulas in p 94		with dimension $\aleph_{\beta+\gamma}$ 297		
$(\overline{a} \perp b; C) \ \overline{a} \ \text{ orthogonal to } b \ \text{ over } C$ 138 $A_I \bigcup_{i \in I} A_i \ \text{ Shelah notation } 317$ $Av(X; A) \ \text{ average of } X \ \text{ over } A \ 120$ $B \text{ basis for regular types } 303$ $C \downarrow_A B A \ \text{ independent from } B \ \text{ over } C$ $C(\Delta) \text{ conjunctions of instances } \text{ of } \Delta \ 159$ $\langle N_0, N_1, N_2 \rangle \ \text{ amalgam } 318$ $D(M) \text{ width of types realized in } M \ 297$ $d(p, B) \text{ definable extension of } p \ \text{ to } B \ 63$ $d\phi(\overline{y}; \overline{z}) \text{ defining formula for } \phi \text{-types} \\ 60$ $D_{p,q}(M) \text{ copies of } p \ \text{ based on realizations of } q \ \text{ in } M \ 297$ $phisms of M \ 113$ $stp(c; B) \perp q \text{ orthogonal type and } \\ strong type \ 139$ $N_B \text{ nonforking formulas over } B \ 106$ $N(B, A) \text{ types in } S(B) \text{ which are } \\ free \text{ over } A \ 73$ $\neg F_B \text{ formulas whose negations } \\ fork \text{ over } B \ 106$ $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)] \\ \text{ index of } \psi \text{ in } \phi \ 29$ $\text{ neni } \text{ not essentially nonisolated } \\ 306$ $[p] \text{ equivalence class in fundamental order } 64$ $p^+ \text{ positive primitive formulas } \text{ in } p \ 94$ $\text{ izations of } q \text{ in } M \ 297$	_			
$A_I \cup_{i \in I} A_i$ Shelah notation 317 $Av(X;A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $C(\Delta)$ width of types realized in $C(\Delta)$ $C(\Delta)$ definable extension of D to $D_{P,q}(M)$ copies of D based on realizations of D average of D	$(\overline{a}\perp \overline{b};C$	\overline{a} orthogonal to \overline{b} over C	oudon()	
Ar $\forall i \in IA_i$ Shelah notation 317 Av $(X;A)$ average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 D(M) width of types realized in M 297 d(p,B) definable extension of p to B 63 $d\phi(\overline{y};\overline{z})$ defining formula for ϕ -types G 60 $D_{p,q}(M)$ copies of p based on realizations of q in M 297 P strong type 139 N_B nonforking formulas over B 106 N(B,A) types in $S(B)$ which are free over A 73 $(\phi/\psi;N) = [\phi(N):\phi(N)\cap\psi(N)]$ index of ψ in ϕ 29 neni not essentially nonisolated ϕ ϕ positive primitive formulas in ϕ 100 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ		138	stp(c; B)	
Av(X; A) average of X over A 120 B basis for regular types 303 $C \downarrow_A B$ A independent from B over C 46 $C(\Delta)$ conjunctions of instances of Δ 159 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $D(M)$ width of types realized in M 297 M 2			r (-, -)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Av(X; A) average of X over A 120	N_B	
$C \ 46$ free over $A \ 73$ formulas whose negations of $\Delta \ 159$ fork over $B \ 106$ fork over $B \ 106$ $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ $D(M)$ width of types realized in $M \ 297$ neni not essentially nonisolated $d(p, B)$ definable extension of p to $B \ 63$ $[p]$ equivalence class in fundaded $\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types 60 p^+ positive primitive formulas in $p \ 94$ izations of q in $M \ 297$ p^- positive primitive formulas.	_			
$C(\Delta)$ conjunctions of instances of Δ 159 formulas whose negations of Δ 159 fork over B 106 $\langle N_0, N_1, N_2 \rangle$ amalgam 318 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ψ in ϕ 29 neni not essentially nonisolated $d(p, B)$ definable extension of p to B 63 $[p]$ equivalence class in fundaded $\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types ϕ formulas whose negations fork over B 106 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ψ in ϕ 29 neni not essentially nonisolated $\phi(\overline{y}; \overline{z})$ defining formula for ϕ -types ϕ formulas in ϕ 108 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ϕ in ϕ 29 neni nental order 64 ϕ positive primitive formulas in ϕ 108 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ϕ in ϕ 29 neni neni not essentially nonisolated ϕ 208 $(\phi/\psi; \overline{z})$ defining formula for ϕ -types ϕ 108 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ index of ϕ in ϕ 29 neni neni not essentially nonisolated ϕ 209 $(\phi/\psi; \overline{z})$ defining formula for ϕ -types ϕ 200 $(\phi/\psi; N) = [\phi/\psi; N] \cap (\phi/\psi; N) = [\phi/\psi; N]$	$C\downarrow_A B$		N(B,A)	
$\langle N_0, N_1, N_2 \rangle$ amalgam 318 $(\phi/\psi; N) = [\phi(N) : \phi(N) \cap \psi(N)]$ $D(M)$ width of types realized in M 297 neni not essentially nonisolated $d(p,B)$ definable extension of p to B 63 $[p]$ equivalence class in fundadefining formula for ϕ -types 0 formula for ϕ -types	$C(\Delta)$	conjunctions of instances	$\neg F_B$	
$D(M)$ width of types realized in M 297 neni index of ψ in ϕ 29 neni ontessentially nonisolated $d(p,B)$ definable extension of p to B 63 $[p]$ equivalence class in fundadefining formula for ϕ -types 0 0 0 0 0 0 0 0 0 0 positive primitive formulas in p 94 p 0 positive primitive formulas in p 1 positive primitive formulas in p 1 positive primitive formulas in p 2 positive primitive formulas in p 3 positive primitive formulas in p 4 positive p				fork over B 106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		·	$(\phi/\psi;N)$	$= [\phi(N):\phi(N)\cap\psi(N)]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D(M)			index of ψ in ϕ 29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d(p, B)		neni	<u>-</u>
$d\phi(\overline{y};\overline{z})$ defining formula for ϕ -types mental order 64 mental order 64 positive primitive formulas in p positi	• / /		[n]	
$D_{p,q}(M)$ copies of p based on realizations of q in M 297 p^+ positive primitive formulas in p 94 positive primitive formulative formulations of p in p 297 p positive primitive formulations p positive primitive p positive primitive formulations p positive primitive formulations p positive primitive p positive primitive p positive p positive p positive p positive p positive p positi	$d\phi(\overline{y};\overline{z})$	defining formula for ϕ -types	(F)	
$D_{p,q}(M)$ copies of p based on real- izations of q in M 297 p^- las in p 94 positive primitive formu-	,		p^+	
izations of q in M 297 p^- positive primitive formu-	$D_{p,q}(M)$	copies of p based on real-	4	-
	/		p^-	•
	E_i	initial segment 43	•	

Symbol Index 445

 $p \parallel q$ p parallel to q 131 $p\perp^a q$ p almost orthogonal to q $p\perp q$ p orthogonal to q 138 $p\perp^w q$ p weakly orthogonal to q p^B free extension of p to B 73 restriction of p to ϕ 55 p_{ϕ} R(M,A) realizations in M of regular types over A 262 $\mathcal{R}(A)$ regular types over A 293 $\mathcal{R}(\mathcal{P})$ regular types over prime model 303 $S_{\phi}(A)$ complete ϕ -types over AW(M,A) types of weight 1 over A realized in M 267 4. Relations among types, elements and sets. $A \approx_{q,\mu} B \mu$ -quasi-isomorphism 357 $A\downarrow_C B$ A independent from B over C 35 $(\overline{a} \triangleright \overline{b}; C) \overline{a}$ dominates \overline{b} over C 153 $\bar{a} \triangleright_C \bar{b}$ \overline{a} dominates \overline{b} over C 153 $(C \downarrow B; A)$ C independent from B over $\overline{c}\!\downarrow_A\!B$ \overline{c} independent from B over A73 $(\overline{c} \downarrow B; A)$ \overline{c} independent from B over A73Ŧ abstract freeness relation 38 \mathcal{F}_{R} independence defined by rank 157 bidominant 153, 240 \Box^e eventually bidominant 155 p conjugate to q 71 $p \sim_A q$ $p \geq_C q$ p > q in fundamental order 64 p dominates q over C 153 $p \triangleright_C q$ $(p \triangleright q; C)$ p dominates q over C 153 $(p \downarrow B; A)$ p free from B over A 72 $p\mathcal{F}A$ p free over A 38 p bidominant q in K 237 $p \mapsto_K q$ $p \mapsto_K q$ p compels q in K 237

 $t(\overline{c}; B)\mathcal{F}A$ type of \overline{c} over B free from

 $X_1 \sim_A X_2 X_1$ conjugate to X_2 128

A38

5. Functions and operators defined in stability theory.

- ap left translate of p by a 163 $\delta_M^J(\gamma)$ copies of p based on realizations of q in M 297
- $\beta(p)$ bound of p 75
- $\delta(A)$ width of types over A 293
- $\delta(\mathcal{R}(A))$ width of types over A 293
- $\delta(X)$ width of a family of regular types 293
- $F_{\Gamma}(A)$ fixed set of automorphisms fixing \hat{p} 177
- $G_{\hat{p}}$ stabilizer of \hat{p} 173
- $F_{\hat{p}}$ fixed set of $G_{\hat{p}}$ 173
- I a notion of isolation 192
- $I(\aleph_{\alpha}, K)$ number of members of K at \aleph_{α} 236
- $I^*(\aleph_{\alpha}, K)$ number of members of K below \aleph_{α} 236
- $I(\kappa, K)$ number of members of K at κ 236
- $\kappa(T)$ limit on forking sequence 82
- $\kappa^1(T)$ variant on $\kappa(T)$ 83
- $\kappa_r(T)$ regular approximation to $\kappa(T)$ 82
- $\overline{\kappa}(T)$ bound on forking sequence 42, 82
- $\lambda_0(\mathbf{I})$ minimal size of **I**-prime model 197, 296
- $\lambda(T)$ least stability cardinal of T 87
- cl(B) algebraic closure of B 17
- dcl(B) definable closure of B 173
- $\dim(E, A, B)$ dimension of E over A in B 129
- $\dim(R(M,A))$ dimension of realizations of regular types over A in M 262
- dp(p) depth of p 352
- dp(T) depth of T 352
- $\mu(p)$ multiplicity of p 87
- $\mu_{\phi}(p)$ ϕ -multiplicity of p 87
- $\mu(T)$ multiplicity of T 87
- $\otimes r_i$ product of types 269
- p|B p restricted to B 73
- $p \otimes q$ free product of types 269
- $T(\gamma, \alpha)$ tree counting function 351
- $t(\gamma, \alpha)$ tree counting function 351

 $Z_{(2)}$

 Z_m

the integers localized at 2

the integers mod m 4

6. Classes of models			9. Notations about trees (of		
AT	models 193	mod	•		
\mathbf{AT}_{λ}	λ -compact models 193	$a_{<}$	all predecessors of a 50		
S	strongly $(\kappa(T))$ saturated models 193	$a_{\#}$	elements incomparable with a 50, 344		
\mathbf{SET}_{λ}	λ -saturated models 193	a^-	the predecessor of a 343		
\mathbf{S}_{λ}	strongly λ -saturated mod-	$a_{<}$	all predecessors of a 343		
~ ~	els 193	$a_{>}$	cone strictly above a 343		
K_{lpha}	members of K with cardi-	A^+	successors of the node A		
u	nality \aleph_{α} 236	4	348		
$K_{\leq \alpha}$	members of K with cardi-	A_{+}	elements that generate successors of the node A 348		
11 <u>≤</u> α	nality at most \aleph_{α} 236	$a_{>}^{1}$	successors of a 342		
I	a notion of isolation 192	$a_> a_\ge$	cone above a 50, 344		
•	a notion of isolation 132	$\stackrel{a_{\geq}}{A_I}$	Shelah notation 317		
7. Ranl	ca.	$a_{>}^{n+1}$	set of $n + 1$ st successors of		
ϕ -rank	159	~>	a 342		
R_C	continuous (infinity) rank	a_{\prec}	¬predecessors of a 50		
160	159	$A_{(\)}$	bottom node 343		
R_{Δ}	local rank 159	$\langle N_0, N_1,$	$N_2\rangle$ amalgam 318		
R_M	Morley rank 159	I^+	successors of the ideal I		
U(p)	U-rank of p 160		348		
	-	I_{+}	elements that generate successors of the ideal I 348		
-	ific theories	$I = \bigcup I$	a convention 31		
CEF_{κ}	κ cross-cutting equivalence	$L_{\beta,\alpha,\kappa}$	number of labels 355		
	relations (finite splitting)	$\mathrm{dp}_{\kappa}(a)$	κ -depth of a 350		
~==+	81	$\operatorname{ht}(a)$	height of a 344		
CEF^+_ω	ω cross-cutting equivalence	M_J	prime model over ideal J		
	relations (finite splitting)	D	345		
ODI	and addition 81	$P_{eta,lpha,\kappa}$	number of partial labels 355		
CEI_{κ}	κ cross-cutting equivalence	Pr(x)	predecessors of x 195		
	relations (infinite splitting)	$T(\gamma,lpha) \ t(\gamma,lpha)$	tree counting function 351		
EED	81	$\iota(\gamma,\alpha)$	tree counting function 351		
$\mathrm{EER}_{oldsymbol{eta}}$	eta expanding equivalence relations 353		ations from algebra		
$\operatorname{REF}_{lpha}^+$	α refining equivalence re-	$[\boldsymbol{a},\boldsymbol{b}]$	commutator 168		
	lations (finite splitting) and	αp	image of p under α 14		
	addition 81	$C_G(a)$	centralizer of a in G 93		
$\operatorname{REF}_{lpha}$	α refining equivalence re-	$\chi_{\phi,\psi,n}$	invariants sentence 29 direct sum 4		
	lations (finite splitting) 81	$egin{array}{c} \oplus \ f_r(y) \end{array}$	multiplication by r 25		
REI_{lpha}	α refining equivalence re-	F^+	additive group of field 97		
	lations (infinite splitting)	Gal	Galois extension 167		
_	80	$M^{<\kappa}$	κ th direct sum of module		
T_R	theory of R -modules 25		M 29		
\boldsymbol{Z}	the integers 4	M^{κ}	κ th direct power of mod-		
Zu	the integers localized at 2		-1- 14 00		

positive primitive formu-

ule M 29

las in p 94

 p^+

Symbol Index 447

_		_	_
p^-	positive primitive formu-	$P_{\overline{a}}$	same as $P_{\psi(\overline{x};\overline{a})}$ 177
	las with negations in p 94	$S_{=}$	equality sort 171
r!y	r factorial times y 25	S_{E}	sort attached to E 171
\boldsymbol{Z}	the integers 4	$T^{ m eq}$	expansion of T to L^{eq} 171
$Z_{(2)}$	the integers localized at 2		
	145	12. Chapter XVIII	
Z_m	the integers mod m 4	a/A	p needs a over A 366
		~	similar 393
11. Mai	ny sorts and L^{eq}	I	379
F_E	function from equality sort	I^e	379
	to sort S_E 171	$I_{\hat{s}}$	378
$F_{\Gamma}(A)$	fixed set of automorphisms	I_s	378
	fixing \hat{p} 177	J_b	378
$G_{\hat{p}}$	stabilizer of \hat{p} 173	$J_{b,q}$	378
$F_{\hat{p}}$	fixed set of $G_{\hat{p}}$ 173	J_r	378
F^ϕ	map from instances of ϕ to	J_s	378
	their names 174	$ar{S}$	380
$\mathcal F$	a Boolean algebra of for-	$egin{array}{c} J_s \ ar{S} \ ar{T} \ \hat{s} \ ilde{Q}_a \ ilde{R}_a \ ilde{S}_a \end{array}$	380
	mulas 177	$\hat{m{s}}$	369
I	ideal of small formulas 177	$ ilde{Q}_a$	375
$L^{ m eq}$	language for expansion by	$ ilde{R}_a$	375
	naming equivalence classes	$ ilde{S}_{m{a}}$	375
	171	$Q_{a,b}$	375
$stp^{ m eq}$	strong type extended to L^{eq}	R_a	375
•	172	R^e	377
$M^{ m eq}$	expansion of M to L^{eq} 171	S_a	375
p^{eq}	p extended to L^{eq} 172	<u>s</u>	380
$P_{\psi(\overline{x};\overline{a})}$	distingushed $\psi(\overline{x}; \overline{a})$ -extensions		377
$-\psi(x;a)$	177	$rac{S^{m{e}}}{m{t}}$	380