Part A

Independence

As we remarked in the introduction, to arrive at our structure theory we
must develop the notions of independence and generation separately. Part
A is devoted to the first of those tasks, Part B to the second. We begin
by giving an axiomatic description of an independence or freeness relation.
This description summarizes the properties of the nonforking relation just
as the axioms of Whitney and van der Waerden summarize the properties of
vector space independence. We adopt this axiomatic formulation for several
reasons. First, it clarifies the principles applied in the various constructions
and proofs later in the book. Second, it provides a general framework for the
discussion of several of the main concepts of the book, notably nonforking
and orthogonality. By allowing us to separate the arguments used to verify
these axioms from the applications of the axioms, we take a step towards
the generalization of this structure theory to other families of classes of
structures. If K is the family of classes of models of first order theories,
we show in Section II1.4 and Chapter VII, that all the axioms are satisfied
on a class K € K only if the relation is nonforking and K is the class of
models of a stable first order theory. However, some of the results proved
here depend on proper subsets of the axioms listed and many of the axioms
hold under less restrictive conditions ([Shelah 1980a], [Shelah 1986]). More
importantly, many of the arguments from Shelah’s extension of the theory
to the nonelementary case [Shelah 1983a] can also be fit into this rubric.
A unified account of the first order and infinitary case will undoubtedly
require changes in the axioms proposed here; we regard this as simply a
first step.






Chapter 11
The Abstract Notion of Independence

In the 1930’s van der Waerden [van der Waerden 1949] and Whitney [Whit-
ney 1935] abstracted the following properties of linear independence in vec-
tor spaces and algebraic independence in fields and used them to define the
general notion of an independence relation or matroid. One of the most
important properties of the vector space notion is the immediate definition
of dependent as ‘not independent’. With this in mind, van der Waerden’s
notion is most easily described in terms of a point a depending on a set X.
For all a,

i) (Reflexivity) a depends on {a}.

ii) (Monotonicity) If a depends on X and X CY then a depends on Y.

iii) (Transitivity of dependence) If a depends on X and each z € X
depends on Y then a depends on Y.

iv) (Exchange axiom) If a depends on X U {b} but a does not depend
on X then b depends on X U {a}.

v) (Finite character) If a depends on X then a depends on a finite
subset of X.

In this book we describe a similar notion of independence which also spe-
cializes to linear independence and algebraic independence. It is not, strictly
speaking, a generalization of the usual notion since it is stronger in some
respects, weaker in others. However, it retains the most important con-
sequence of the usual theory, the ability to assign a dimension (or, more
precisely in the general case, a family of dimensions) to each member of
certain classes of models.

" We deal with a ternary relation denoted A | B, which intuitively means,
‘A is free from B relative to C’ or ‘A is no more restrained by B than by C°.
This notion differs from the standard one in three fundamental respects.
First, with C fixed the relation A |¢ B differs from normal independence
relations only by obeying slightly different axioms. Second, we have re-
placed the element a in the usual definition by the set A. Finally, we deal
with £(A; B), that is, all B-automorphic images of A rather than just A
itself.

The extension to families of independence relations depending on the
parameter C is necessary to create the ranked systems of invariants de-
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scribed in the introduction. The theory of two equivalence relations, Ey
and Ej, with E; refining E, will illustrate the point. Under our definition,
if {(aq : @ < k) is a sequence of E;-inequivalent elements, they will be inde-
pendent over 0. For each «a, a set B, = (by,: 3 < Ko) of Es-inequivalent
elements which are all equivalent to a, will be independent over {a,} but
not over @. (With a, we can impose the restraint ‘zFja,’.) To determine
the isomorphism type of a model we must know the dimension of each set
B.,, and, even more, we must know for each o, 3, the dimension of the set
Ca,p of distinct elements which are both E; and E; equivalent to by g.
This set will be independent over {b, g} but not over {aq}.

The consideration of the type of an element rather than the element itself
generalizes the passage in algebraic geometry from a point to the ideal of
polynomials which are zero on that point. This observation is not merely
an analogy. Let M denote the ‘universal domain’ of algebraic geometry
(an algebraically closed field of immense transcendence degree), and k a
subfield of M which need not be a model of Th(M). Then polynomials
over k are special kinds of formulas over k, ideals in k[Z] are (incomplete)
types, and the spectrum of k[Z], the set of maximal ideals in k[Z], is in 1-1
correspondence with the Stone space of k. For @, a sequence from M, this
correspondence sends the ideal of polynomials over k which vanish at @ to
t(a; k).

The extension from considering singletons to considering finite sequences
parallels the extension from the study of solutions to equations in one
variable to the study of higher dimensional surfaces. If one studies only
single elements then the distinction between an element and its type is
easily ignored, as the type is often algebraic. This is the case, for example,
in both vector spaces and fields. As soon as the study of n-types is broached,
the type is no longer algebraic (except in trivial cases) and this distinction
becomes more important. In our study we posit certain symmetry and finite
character properties which allow us to extend the basic notions from finite
sequences to arbitrary sets.

We employ two notations for the notion of independence. One empha-
sizes the role of types; the other is more algebraic. Thus, we write t(a; B)¥C
for the assertion that ¢(a@; B) is abstractly free over C. From any freeness
relation 7 one can derive a relation AléB among sets. We will never write
the superscript 7, but in this chapter we use A |¢ B to refer to the relation
on sets associated with an abstract freeness relation. In Chapter III we in-
troduce the most useful example of an independence notion: t(a; B) does
not fork over C. Thereafter, we write A | B for the relation on sets asso-
ciated with the nonforking relation. We introduce the axioms in terms of
the type notation to emphasize that we consider all elements conjugate to
@ over B. This notation is convenient for establishing the basic properties
of the nonforking relation; the set notation is more compact and flexible
in applications. We now quickly summarize the axioms using the set nota-
tion. In Section II.1 we state the axioms carefully in the type notation and
exhibit in Section II.2 the exact relation between the two notations.
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The axioms fall naturally into three groups. The first contains those
which arise from thinking of A |¢ B as an ‘ordinary’ independence relation
with C fixed. Thus, we both require monotonicity and finite character of
dependence in the second variable: if A |c B and B’ C B then A |¢ B';
if A J/o B then for some finite B’ C B, A [, B’. Similarly, we require a
natural translation of the exchange axiom, the symmetry axiom: A |¢c B
implies B |c A. We also need a weak version of the reflexivity axiom. In
slightly more generality than actually holds, we can state the reflexivity as:
ifa & C then @ J a@. However, we can not require the obvious translation of
the transitivity axiom for dependence. It is easy to see that the full strength
of the transitivity axiom yields a contradiction if independence is defined
for n-types. For this, suppose {a,b,c,d} are four elements with {a,b} |c
{c,d}. Then monotonicity and reflexivity yield first {a, b} }- {b,¢} and then
{b,c} Lo {c,d}. But then, from transitivity, we derive a contradiction.

A second group of axioms arises from the consideration of the relation-
ship between dependence over different third coordinates. Here, we have
upward monotonicity in the third coordinate: if A |¢c Band C CC’' C CUB,
then A |o: B. We also invoke the following ‘transitivity of independence’:
fDCCCB,AlcB,and A |p C then A |p B. We demand a gen-
eralization of local character in the third variable by defining a cardinal
®(T) such that, for any finite A and any B, there is a B’ C B such that
A |p' B and |B’| < R(T). Our dimension theory is best worked out when
this local character becomes finite character, i.e. ®(T) = w (equivalently, T
is superstable).

Finally, our axioms make explicit a property of vector space indepen-
dence which does not follow from the usual axioms. In a vector space all
maximal independent sets can be mapped to one another by automor-
phisms of the vector space. This will not be true in our situation but it
will be true of certain kinds of independent sets: those which are infinite
and based on a stationary type (cf. Definition 1.24). This property can be
expressed in another way. In a vector space there is, up to isomorphism,
only one way to freely extend an infinite independent set. We will demand
a similar but slightly weaker property here, namely, up to isomorphism
there are only a bounded number of ways to freely extend an independent
set. (We can remove the requirement that the set be infinite by requiring,
in addition, that the type be regular. But this is a second problem which
will be discussed in Chapter XII.)

We close Section 1 with an illustration of the power of these axioms. We
show that if T is any theory admitting a freeness relation satisfying our
axioms then certain unions of chains of models of T preserve saturation.
This foreshadows our proof in Section III.4 that if T is stable in p then T
has a saturated model of power pu.

In addition to describing the second notation for independence, a num-
ber of basic lemmas for calculating with the notion of independence are
discussed in Section II.2. Moreover, the important notions of an indepen-
dent sequence and, more generally, a set which is independent with respect
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to a partial order are introduced. Although these constructions are not
exploited in full until much later in the book, we expound them now to
emphasize that they can be easily derived from the axioms and do not
depend on the more subtle considerations of Chapter III.

1. Azxioms for Independence

In this section we formulate precisely the axioms described above and il-
lustrate them with various examples which satisfy certain combinations of
the axioms. Only the rather complicated Example 1.4 provides an algebraic
example which satisfies all the axioms. This quick survey, along with the
proof in Theorem 1.30 that a union of saturated models is saturated, give
an overview of the environment in which we work and some of the argu-
ments available there. The major purpose of this section is to provide a
framework for the exposition of the nonforking relation in Chapter III. A
second purpose is to extend a relation originally defined between the type
of a finite sequence @ over a set B and a set C to one defined between the
type of a possibly infinite set A over B and the set C.

In our discussion here we will formalize the notion ‘@ does not depend
on B over A’ by defining: t(a; B) is free over A. Since we are working inside
the monster model, which is saturated, there is actually little difference
between dealing with a complete type, ¢(c; B), and the pair (¢; B). For, all
realizations of the type can be mapped to ¢ by an automorphism which
fixes B. However, dealing with types has two advantages.

i) It allows us to compare two pairs (¢; B) and (d; E) by considering
t(c; B), t(d; E).
ii) It makes it convenient to speak of approximations to the pair (¢; B)
by discussing subtypes of ¢(c; B).
In Section I1.2 we explore the relation between this notation and the set
notation used in the introduction.

1.1 Free Extensions. A notion of freeness, ¥, is a collection of pairs of
the form (p, A). Each p is a (not necessarily complete) type which deter-
mines its domain, B. A is a subset of M. If (p, A) € ¥ we say p is free over
A and write pF A. Alternatively, we may deal with a sequence ¢ realizing p
and write ¢(c; B) ¥ A. We freely switch between these notations depending
on which is most convenient. Note that the first is more general since it
permits p to be an incomplete type. If ¢(¢; B) is not free over A, we say €
depends on B over A.

For an initial intuition into the meaning of the axioms one can assume
that A C B. Those familiar with w-stable theories can think of ¢(a; B) is
free over A as meaning that the Morley ranks (cf. Chapter VII) of ¢(a; A)
and t(a; AU B) are the same. We will see in Chapter VII how to use rank
on n-types to define a relation satisfying these axioms.
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Each exercise or proposition in this section assumes the axioms that
have already been introduced unless the contrary is given as a hypothesis.

1.2 Isomorphism Invariance. Like any other reasonable model theo-
retic notion, we require that 7 be closed under isomorphism; i.e., if f is an
isomorphism and (p, A) € ¥ then (f(p), f(A)) € 7.

We provide in Example 1.3 the prototypic algebraic examples of a free-
ness relation. Naturally, they satisfy some but not all of our axioms. Ac-
cordingly, they can provide some intuition about both the similarities and
distinctions of our approach from the traditional one. In particular, these
examples are only defined for 1-types.

1.3 Examples. i) Let V be a vector space over a field F and let p € S(B).
Define (p, A) € 7 if and only if for any a realizing p, a is not in the
span of AU B unless a is in the span of A.
ii) Let M be a model of a first order theory, A and B subsets of M, and
¢ € M. Define (t(c; B),A) € ¥ if t(c; AU B) is not algebraic unless
t(c; A) is algebraic.

The dependence relation in the first example could be extended to tuples
by declaring @ to be independent from B over C if and only if for each
@’ C @, if @ is linearly independent over C then @ is linearly independent
over BUC.

The following example, worked out by Chantal Berline [Berline 1983],
is the algebraic interpretation of the nonforking relation for the case of
algebraically closed fields. Naturally, one can check that it satisfies all the
axioms. (Note that there is still one restriction. We deal only with complete
types over subfields, not types over arbitrary subsets.)

1.4 Example. Let T be the theory of algebraically closed fields of char-
acteristic 0. If k is a field then each n-type p € S(k) corresponds natu-
rally to an ideal I(p) = {p(Z) : p(@) = 0} where p € k[Z], the polynomial
ring in n variables over k£ and @ is an arbitrary realization of p. Now sup-
pose k C K and p extends to p' € S(K). Call p’ a free extension of p
if t.d.(k[z)/I(p)) = t.d.(K[Z]/I(p")), where t.d. abbreviates transcendence
degree.

Thinking of ¢(a; B) ¥ A as meaning ‘@ is no more constrained by AU B
than it is by A’ suggests the following properties.

1.5 Monotonicity Axioms. M;. If ¢ C p and p is free over A then ¢ is
free over A.
M,. If A; C A, and p is free over A; then p is free over Asg.

In this formulation, Ms, of monotonicity, we do not assume that Az is
a subset of dom p. A more restricted form of monotonicity holds when this
assumption is built into the notation (cf. Section II.1).

There are two aspects to the first monotonicity axiom. On the one hand,
it asserts that if you take away information about a sequence @ by consid-
ering a subset of ¢(a@; B), then the resulting type is at least as likely to be
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free as the first. On the other, it asserts that every subsequence of a ‘free
sequence’ is free. That is, we can conclude from M; that if t(@~b; B)FA
then t(a; B) 7 A.

There is no assumption that p and g are complete types; in fact, incom-
plete types play an important role. Intuitively, the incomplete type p is free
over A if some extension of p to a complete type over domp is free over A.
Indeed, this intuition is embodied in Axiom Mj.

1.6 Exercise. Verify that the examples in Example 1.3 satisfy the mono-
tonicity axioms if we restrict their application to 1-types. For M;, assume
A C dom p and for M, assume that A, C dom p.

The following can be viewed as a converse to the monotonicity axioms.

1.7 Transitivity Axiom for Independence. Let C C B C domp. If p
is free over B and p|B is free over C then p is free over C.

We will discuss later the much stronger requirement that dependence
be transitive. We will be unable to establish this stronger axiom in general
but rather will show in Chapter XII that a variant of it (which suffices to
define dimension) holds on the realizations of stationary regular types.

1.8 Exercise. Show that Axiom 1.7 holds for Example 1.31).
The following combination of Axioms 1.5 and 1.7 is frequently used.

1.9 Exercise. Suppose ACBCC,pe S(B),andpCqe S(C). If g¥B
then q7 A iff p7 A.

The next axiom corresponds to the exchange axiom in the van der Waer-
den formulation.

1.10 Symmetry Axiom. If t(@; BU {b}) is free over B then ¢(b; BU {a})
is free over B.

1.11 Exercise. Show this axiom fails for Example 1.3 ii).
Using transitivity it is easy to extend the symmetry axiom as follows:

1.12 Generalized Symmetry Lemma. If both t(a; B) s free over A and
t(b; BU {a}) is free over B then t(a; B U {b}) is free over A.

In set notation the generalized symmetry lemma reads: if D |4 BUC
and B | 4 C then DU B | 4 C. We can translate this as a symmetry relation
for dependency. Note that now the auxilliary hypothesis applies to elements
on opposite sides of the dependency sign. If D 4, BUC and B |4 D then
DUBJ,C.

The following exercise shows the connection between the symmetry prop-
ery and the exchange principle.

1.13 Exercise. Show that the special case of Axiom 1.10 where @ and b
are singletons holds for Example 1.31). That is, show that the symmetry
axiom generalizes the usual ‘exchange axiom’ for vector spaces.
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The following axioms guarantee that our notion is nontrivial.

1.14 Existence and Extension Axioms. E;. t(b; A) is free over A for
any b and A.
E,. If pis free over A and domp C B, there is a p; € S(B) which extends
p such that p; is free over A.

We next consider the generalization of the finite character of dependence
to our context. This also allows us to extend our relation to a relation among
three arbitrary sets.

1.15 Axiom: The Finite Character of Nonfreeness. If (¢; B) is not
free over A then there is a formula ¢(Z;b) € ¢(c; B) such that no type
containing ¢(Z;b) is free over A.

This axiom has an important logical, as opposed to algebraic, character
because we insist that not only is there a finite subset By of B such that
every extension of ¢(¢; Bp) is not free over A but that there is a specific
formula which forces nonfreeness. The formulation is somewhat subtle be-
cause there is a hidden reference to t(b; A). The assertion does not imply
that for any b , if ¢(%; b ) is in ¢ then q depends on b over A, but only for
those b realizing ¢(5; A).

Our definition of the freeness relation, t(a; B) ¥ A, deals with the relation
between a sequence @ and sets A and B. The symmetry axiom moves the
elements of the sequence @ to the domain of a type where the order of
the sequence does not matter. Thus, freeness becomes a property not of
the sequence @ but of the set {ag,-..,an—1}. More formally, we have the
following lemma whose proof would be obvious using the symmetry axiom
if we assumed B C C. Without this assumption it requires a use of the
extension axiom. In the proof of this lemma we emphasize the distinction
between a sequence b and its range, rng(b). The lemma itself justifies our
usual abuse of this distinction.

1.16 Lemma. Let a be a finite sequence and @ a permutation of @. Then
for any B and C, t(a; B)7C iff t(a’; B)FC.

Proof. Choose d with t(d; B) = t(a; B) and such that t(d; C U B) is free over
C. If @ is the result of permuting the elements of @, let d be the result of

applying the same permutation to the elements of 3._Si_nce t(d; BUC)7C,
for any b € B monotonicity and symmetry yield ¢(b;d U C)¥C. Since in

the second position the order of d makes no difference this implies, ¢(?; du
C)7C. Applying symmetry again we have t(TdJ; bUC)FC. Since this holds
for each b € B, t(d ; BUC)FC as required.

We have justified the following definition.

1.17 Definition. For arbitrary sets C, B, and a finite set A, t(A; B)7C
iff for some ordering @ of A, t(a; B)7C.
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Since formulas can contain only finitely many variables, finite character
implies that if every finite subtype of p is free over A then p is free over
A. There are two equivalent ways to extend the definition of freeness to
allow the first coordinate to be infinite. We could extend the domain of
the freeness relation 7 to pairs (p;C) where p is an a-type over B for
any ordinal o and then define A to be independent from B over C if for
some ordering a of A, t(a; B)¥C. It is easy to see, using the monotonicity
and symmetry axioms and the axiom of finite character, that an equivalent
notion is obtained by retaining the convention that (p; A) € ¥ implies p is
a finite type and making the following definition.

1.18 Definition. For arbitrary sets A, B, C, t(A; B)¥C iff for each finite
sequence @ from A, t(a; B) 7C.

The finite character allows us to reformulate the symmetry axiom as
follows.

1.19 Exercise. If t(A; BUC)¥C then t(B;AUC)¥C.
Now, we can rephrase Definition 1.18 in somewhat more generality:
t(A; B)#C iff for each finite @ € A, b € B, t(a; CUb)FC.

Let X be a subset of a vector space V and a € V. If a depends on X then,
as in Axiom 1.15, a depends on a finite subset Xy of X. Thus a depends
no more on X than on Xp; in our notation, ¢t(a; X)¥Xg. For vector spaces
this is simply the assertion that a depends on Xg. But in the general case
the assertion that a does not depend on X over Xy has more content than
this trivial assertion. We shall always be able to find such an Xy and to
bound its size uniformly over all types, thus providing a local character for
freeness. More formally.

1.20 Definition. For any theory T, let ®(T) denote the least cardinal ,
if one exists, such that for any finite sequence @ and any set A there is an
Ap C A with |Ag| < « such that t(a; A)F Ap. If no such cardinal, &, exists
&(T) is oo.

In Chapter III, especially Definition II1.4.18, we consider several variants
on %(T) and calculate bounds on its value for a stable theory T'. For now,
we simply require that it exist.

1.21 Axiom: The Local Character of Freeness. %(T) < oo.

Note that if ®(T) = w, we have full local, that is finite, character in
the third coordinate. This additional condition corresponds to T" being a
superstable theory.

1.22 Exercise. For a sequence @ with lg(@) = p and for an arbitrary set
A there is a subset Ag of A with |Ag| < u x ®(T') such that t(a; A) ¥ Ao.

We have defined the monotonicity, transitivity (of independence), sym-
metry, existence, extension and finite character axioms. In fact, if we declare
every type to be free over every set, all of these axioms are satisfied. The
reflexivity axiom implies the existence of types which are not free.
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1.23 Reflexivity Axiom. If AC B, b€ B — A and t(b; A) is not algebraic
then ¢(b; B) is not free over A.

The final axiom generalizes the fact that in vector spaces there is a
unique extension of an independent set. We require one definition to state
the axiom.

1.24 Definition. Let ¥ be a notion of freeness. An n-type p is stationary
over A if pF A and if for every B containing A, if ¢1, g2 € S™(B) extend p
and are free over A then ¢; = go. We say p is stationary if p is stationary
over dom p.

This concept would be easier to formulate if we could insist that p is a
type over A. However, in a very important case (strong types, Chapter IV)
p is not a type over A.

In any complete theory of vector spaces and more generally in a strongly
minimal theory every non-algebraic type is stationary. When every type is
stationary an independent set can be freely extended in only one way (up
to isomorphism). In our generalization we will weaken this requirement
somewhat by allowing more than one such extension but bounding the
number of contradictory free extensions of a type. This bound is a cardinal
number which depends only on T, not on the particular type p. This aim
can be realized by demanding that types over models be stationary.

The existence of stationary types guarantees that the freeness relation
is nontrivial. For, any non-algebraic type p € S(A) has more than one
extension to any B properly containing A so there are nonfree extensions.
In the situation in this book we have the following strong existence axiom
for stationary types.

1.25 Boundedness Axiom. Every type over a model is stationary.
The following simple fact plays an important role.

1.26 Proposition. If p € S(B) extends q € S(A), q s stationary over A,
and pFA then p is stationary over B.

1.27 Exercise. Prove Proposition 1.26.

1.28 Exercise. Show that if 7 is a notion of freeness which satisfies all
the axioms from this section and 7' = {(p, A) : p is F-stationary over A}
then #' satisfies all the axioms except F;, M; and symmetry.

We now illustrate the strength of these axioms by considering the prob-
lem of constructing saturated models. The natural way to try to construct
a saturated model of power ) is to start with an arbitrary model of power
), realize all types over subsets with power less than A and iterate this
procedure, hoping that it will close off. If T is stable and A is regular, this
procedure yields a saturated model of power A. When A is not regular we
can build a chain of models M; where M; is u;-saturated and the p; have
limit A. If M = {J, ., M; is u;-saturated for each 7, then we could conclude
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that M is A-saturated. We show now that this kind of preservation of sat-

uration under unions of chains is implied by the axioms we have discussed
in this section.

1.29 Notation. We frequently construct sequences denoted (g; : i < a).
We let E; = {€; : j < i}. Technically, in the definition of E; we should
replace €; by rng(€;). As usual, we dispense with such pedantry.

1.30 Theorem. Let T be a theory which admits a freeness relation satis-
fying the azioms listed in this section. Suppose X and cf(6) are cardinals
strictly greater than |T|* +®(T). The union of an increasing chain of length
6 of models of T, each of which is A-saturated, is itself A-saturated.

Fig. 1. Theorem 1.30
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Proof. (Fig. 1). Let M = |J, s M; and let A C M with |A| < A\. Fixp €
S(A); we must show p is realized in M. Extend p to r € S(M) and choose
Ao C M with |Ag| < R(T) such that r¥Ay. Choose N with A9 C N and
[N| < |T| + ®&(T). Without loss of generality, as cf(6) > |T| + ®(T), N can
be chosen inside My. Now choose by induction a sequence E = (e; : 7 < A)
of elements of My such that t(e;; E; UN) = r|(E; U N). The M-saturation
of My guarantees the existence of this sequence. Now, by Exercise 1.22
we can choose an E’ C E such that |[E' UN| < (8(T) + |T|) x |A] < A and
t(A;EUN)F(NUE'). Thus E — E' # 0. But, for e € E — E’, the symmetry
axiom implies that if ¢ denotes t(e; E' U N U A) then ¢7(E’ U N). Now ¢
and r|(E' U N U A) are two free extensions of the stationary (since it is a
free extension of a type over a model) type r|(IV U E’). Thus they are equal
and e realizes p.

This is a step towards proving that if T is stable in A then T has a
saturated model of power A. A very similar proof suffices for this result
after we compute in Section III.4 the relation between %(T') and the set of
cardinals in which T is stable.

1.31 Exercise. Suppose the countable theory T satisfies the axioms in
this section with ®(7") = w. Show that for every uncountable A and any
cardinal § with cf(6) > w, the union of a chain of length § of A-saturated
models of T is A-saturated.

1.32 Historical Notes. The abstract treatment of dependence relations
began in the 1930’s with the work of van der Waerden [van der Waerden
1949] and Whitney [Whitney 1935]. Our development here fuses these ideas
with the axiomatic consideration of rank in [Baldwin & Blass 1974], [Lascar
1976] and Shelah’s exposition of forking [Shelah 1978]. Theorem 1.30 is
abstracted from a proof by Shelah. We show in Section II1.4 that a proper
subset of these axioms imply the rest. Our purpose here is to expound a
set of principles which are often called on in the development of the theory.

Another approach to the study of independence was taken by universal
algebraists in the 1960’s. They attempted to axiomatize the properties of a
dependence relation in a single algebra (which is free for some associated va-
riety). This approach is summarized in Chapter 5 of [Gratzer 1979] and sev-
eral survey articles [Marczewski 1966] and [Urbanik 1966]. This approach
yielded a number of strong representation theorems ([Narkiewicz 1964],
[Urbanik 1959/60], [Urbanik 1965]) which are very similar to those ob-
tained later for strictly minimal sets by Zilber [Zilber 1981}, [Zilber 1980b]
and Cherlin [Cherlin, Harrington, & Lachlan 1985] (cf. Chapter VIIL.3).
These authors investigated the so-called v, v* and v** algebras. Urbanik
proved that any v-algebra with a properly three-ary polynomial could be
represented as an affine algebra. The connection between these results and
work on categoricity is emphasized by the classification of categorical qua-
sivarieties ([Givant 1973], [Givant 1976], [Palyutin 1973], [Palyutin 1976])
which relies on the representation theorems of Urbanik.
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2. Further Properties of Independence

In this section we reformulate the freeness relation as a relation among
three sets and then deduce some of the most important working tools of
the theory. We wish to emphasize that these crucial tools depend only
on the axiomatic properties of the dependence notions, and not on the
intricacies of the proof in Chapter III that such a relation exists.

The notation: is most compact if we adopt the following convention.

2.1 Definition. C | 4 B means t(C; BU A)¥ A.

In light of the discussion after Definition 1.17 we can rephrase Definition
2.1 to read: for any sets A, B, and C

C | 4 B iff for every finite Co C C, Cy |4 B
2.2 Exercise. Show A |¢ B iff for every D with CC D C BUC,A |¢ D.

Note that in Definition 2.1, putting A into the domain of the type in-
troduces an asymmetry between the treatment of the left and right side
of the 7. This asymmetry is real; by burying it in the notation we can
simplify our description of many situations. The price is a complicating of
the monotonicity axiom (cf. Lemma II1.3.7). The notation A |¢ B suggests
two variants on the monotonicity axioms. We can restrict the extensions D
of the base set C.

If A |c B then for any D with CC DC BUC, A|p B.

Alternatively, we can replace A by an A’ which realizes the same type over
B.

If A |¢ B then for any D with D D C, there is an A’ with
t(A’; B) =t(A;B) and A’ |p B.

The first of these assertions is an obvious consequence of the second mono-
tonicity axiom. The second requires an application of the extension axiom
(E2) as well.

The following exercise spells out in a rather simple case the problems
that can arise with monotonicity.

2.3 Exercise. Show that the ‘freeness relation’ of Example 1.3 1) does not
satisfy the general form of the second monotonicity axiom. That is, the
restriction in Exercise 1.6 that A, C domp is necessary. (Hint: Let ey, e2,
e3 be independent elements and let A; = {e1}, A2 = {e1,e2}, B = {e1,e3}
and let ¢ = e; + ez + e3. Show that t(e2; B) = t(c; B) is free over A; but
not over A,. Thus, although e; and ¢ realize the same type over Aj, one
depends on B over Az and the other does not.)

It is natural to read C |4 B as C is free from B over A. However, since
we work primarily in contexts where the symmetry lemma holds, we will

frequently write C and B are free over A or C and B are independent over
A.
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One value of this notation is indicated by the following simple statement
of the symmetry axiom.

2.4 Exercise. Show that the symmetry axiom is equivalent to the follow-
ing proposition: B |4 C iff C' | 4 B.

The proofs of the next few propositions require the translation between
the ‘type’ and the ‘set’ formulation of the freeness relation. This is an
appropriate place for such a translation since these results are constantly
used in the structure theory but in fact do follow from the properties listed
in Section 1, rather than from special properties of the forking relation.
Consider the relation between the assertion, ‘¢(@; B) depends on A’ and
the assertion ‘For each %, t(a;; B) depends on A.” where @ = (ao, ..., ax—1).
It is perfectly possible to find ¢ and d such that t(c; B)¥A and t(d; B)7A
but t(c"d; B) is not free over A. (e.g. Consider e,ev? as ¢, d, and e + eV?
as B.) The situation is completely described by the following vital lemma.

2.5 Lemma. The following are equivalent.
i) ©°d |4 B. 3
ii) ¢laBandd|su: BUC.
iii) d |4 B andT|, zBUd.
Proof. We prove the equivalence of i) and ii); a permutation of the variables

yields a proof of i) « iii). To facilitate the derivation from the axioms, we
first restate the equivalence in the notation of Section 1.

i)' t(c™d; B) is free over AC B.

ii)’ t(¢; B)¥A and t(d; BU {¢}) (AU {c}).
To simplify notation, we apply the finite character of dependence and as-
sume B — A is a finite sequence b. By the symmetry axiom t(c¢"d; AUb)FA
iff t(b; AUT™d) FA which, by monotonicity and transitivity, is equivalent
to t(b; AUTTd)FAUCT and ¢(b; A UT)FA. By the symmetry axiom again
these are equivalent to t(d; AUb™¢) F(AUt) and t(¢; AUb) F A as required.

There are a number of important corollaries to this result. The first is
best stated in the type notation.

2.6 Corollary. If pFA and qF A, where p(Z) and q(J) are complete types
over B, then there exists r(Z;y) € S(B) such that r(Z; ) |- p(Z) Uq(7) and
rFA.

2.7 Exercise. Prove Corollary 2.6.
We can now derive a stronger version of the extension property.

2.8 Exercise. Prove the following Strong Extension Property: If ¢(a; B) is
free over the subset A of B then for any € there is a ¢’ such that t(@~¢; B)
is free over A and t(@™¢’; A) = t(a"c; A).

It is easy using the extension property to find @’ ¢’ free from B over A
realizing ¢(@~¢; A). The greater strength of this assertion arises from the
demand that @’ =a.
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2.9 Exercise. Deduce from the extension axiom (Es) that if p |- ¢ and
pFA then ¢FA.

The next corollary is stated using both notations in parallel. The type
notation makes explicit the fact that the theorem deals not just with se-
quences @ and b but with all realizations of the appropriate types. This
corollary shows that free extensions preserve freeness.

2.10 Corollary. Suppose A C B.

i) Ift(a—b; B) is free over A then t(@; BUD) is free over B iff t(a; AUb)
18 free over A. _
ii) Ifa~bls B thena|p BUDb iffa s AUb.

Proof. We prove the type version and leave the translation to the reader.
By Lemma 2.5, t(@; B U b) is free over A Ub. Thus by transitivity and
monotonicity ¢(@; B U b) is free over A iff t(@; A U b) is free over A. So if
t(a; AUD) is free over A, we have ¢t(@; BUD) is free over B by monotonicity.
Conversely, again by Lemma 2.5 t(a@; B) is free over A. So, if t(@; BUb) is
free over B we conclude ¢(@; A Ub) is free over A by transitivity.

Corollary 2.10 easily yields that if A =rnga; Urngas U---Urnga, then,
for any B and C, A |¢ B iff {a;,...,a,} l¢c B.

The proofs of the last three results require only the monotonicity, tran-
sitivity, and symmetry axioms. Using only the first two we can reduce
the third to a question of ‘symmetry over models’. Thus when verifying
in Chapter III that nonforking satisfies the symmetry axiom we will only
have to check monotonicity, transitivity and ‘symmetry over models’. The
following technical lemma which we use to establish this reduction illus-
trates the power of the extension axiom combined with a judicious use of
automorphisms.

2.11 Lemma. Suppose t(a; A L!E) is free over A. There exists a model M
with A C M such that t(a; M Ub) is free over A and t(b; M) is free over A.

Proof. We first guarantee that ¢(b; M)7A. We provide this guarantee in a
devious way by working with models which are isomorphic over A to our
eventual M. First, let M"” be an arbitrary model containing A. By the
extension axiom choose & with ¢(5'; A) = ¢(b; A) and ¢(5 ; M")FA. Now let
M’ be the image of M" under an automorphism which fixes A and maps 3
to b. Certainly, t(b; M") F A. Since t(@; AUD) is free over A, by the extension
axiom there is an @ such that ¢(@’; AUb) = t(a; AU b) but t(a’; M’ UD)
is free over A Ub. Thus, by transitivity ¢(@’; M’ UD) is free over A. Now

choose an automorphism f of M which fixes A Ub and maps @ to @. Let
M be f(M').

There is an easier argument for the conclusion of Lemma 2.11 using
the symmetry axiom. The point of this version is to simplify checking the
symmetry axiom.
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2.12 Lemma. If a notion of freeness ¥ satisfies the transitivity and mono-
tonicity axioms and, in addition, for each model M

t@MUb)FM iff t(b; M Ua)FM
then 7 satisfies the symmetry aziom.

Proof. Suppose t(@; A U b) is free over A. Applying Lemma 2.11 choose
an M such that t(b; M) is free over A and t(a; M U D) is free over A. By
monotonicity, ¢(@; M Ub) is free over M. Now, by symmetry for types over
models, t(b; M U @) is free over M. Since t(b; M) is free over A, we have
by transitivity ¢(b; M U@) is free over A and by monotonicity t(b; A U @) is
free over A.

We next describe a construction which will appear repeatedly in this
book, the construction of an independent sequence. We emphasize here
that it depends only the axioms we have enunciated. The straightforward
exercises following the definition show that this construction yields more
than is at first apparent. Recall from Notation 1.29 our notation for initial
segments of a sequence of sequences. The most common use of this notation
is in the construction of a sequence by repeatedly extending a type. We
formally label the result of such a construction.

2.13 Definition. The sequence (¢; : © € I) is coherent over A if k< j
implies t(Ej; Ex U A) =t(ex; Ex U A).

2.14 Definition. The sequence E of sequences (g; : 1 € I) is independent
over A if for each i, ¢(¢;; E;) is free over A.

Note that this definition only makes sense in the presence of the conven-
tion identifying the finite sequence €; with its range. That is, the definition
concerns the set of elements in the range of the function €;, not the finite
function itself.

2.15 Exercise. Show the coherent sequence of sequences E = (g; :1 € I)
is independent if and only if for each 7, ¢(€;41; E;+1) is free over E;.

The proof of the following result is given as an exercise because it is
an entirely routine application of the symmetry and monotonicity axioms.
Nevertheless, the result is vitally important. For example, it justifies our
frequent reference to a sequence E satisfying Definition 2.14 as an indepen-
dent set of sequences.

2.16 Lemma. Let E = {€; : 1 < w} be constructed so that t(€;; E;)¥A for
each 1. Then

i) t(e;"€y1;E;)FA for each 1.

ii) t(&; E — {€})F A for each i.
2.17 Exercise. Prove Lemma 2.16.

The following theorem plays a central role throughout this book. We

introduced %(7T") in Definition 1.20. The theorem asserts that no finite se-
quence b can depend on each of &(T') independent elements.
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2.18 Theorem. If (¢;:¢ < &(T)) is an independent sequence over A then
for any b there is an v with t(b; AUE;)FA.

Proof. By the definition of %K(T") there exists a B C E with |B| < ®(T)
such that t(b;AU E)FA U B and, a fortiori, t(b;A U BU&)FA U B for
any € € E — B. Since E is an independent sequence, ¢(¢; B U A)¥A. By
symmetry and transitivity this yields ¢(¢; A U b)FA which by symmetry
again yields the theorem.

(This argument presages the discussions of the relation between x(T')
and &(T) in Section III.4.)

Unlike the situation in vector spaces, there are different kinds of maximal
independent sets. The most useful are those which are strongly independent
in the sense described in Theorem 2.18.

2.19 Definition. The sequence E = (¢; : © € I) of sequences is strongly
independent over A if E is independent over A and all the €; realize the
same stationary type over A.

2.20 Exercise. Show that if E is a strongly independent sequence then E
is coherent.

The following exercises follow by formal manipulation from the principles
we have described. They will prove to be extremely important in some of
our later constructions.

2.21 Exercise. Suppose @; |4 @2 and for each 7, t(a;; A) is stationary.
Show t(a; "ag; A) is stationary.

2.22 Exercise. If a, b and ¢ are independent show a™b |, b c.
2.23 Exercise. Show BUC |4 D implies B | 4uc C U D.

The next few definitions and results will illustrate the complicated con-
structions that can be made with just the machinery we have discussed in
this chapter. We require the following special notions about partial orders.
We will not make substantial use of many of these notions until Part D.
We place them here to emphasize that this type of construction depends
only on the abstract properties of independence and not on the detailed
development of forking in Chapter III.

2.24 Definition. i) A subset B of a partial order (A, <) is an ideal if
a € B and b < a implies b € B.
ii) A partial order is well-founded if it contains no infinite descending
chains.
iii) For an element @ in a partially ordered set (A, <), we denote by ax
the set of elements which are incomparable with a and write a< for
{b:b < a}, and a> for {b:b > a}.

Note that < is a free variable in this definition. Thus, in considering a
partial order <, we may write, e.g., a< for the set of <-predecessors of a.



2. Further Properties of Independence 51

Actually, workers in partially ordered sets call what we have called an
ideal a semi-ideal. But, since we never call on joins in this context, such
pedantry seems inappropriate. The following notion is the natural extension
of the concept of an independent set.

2.25 Definition. The set A is independent with respect to the partial order
< if for any pair of ideals B,C contained in A, B |gn¢c C.

Note that we will often use this notation when A is a set of finite se-
quences.

As a device to simplify the construction of sets independent with respect
to a given well-founded partial order, we extend it to a well-order and then
construct free sequences relative to that well order. The next lemma shows
that the resulting construction fulfills our intention.

2.26 Lemma. Suppose the partial order (A,<) is extended by the well-
order (A,<) and for eacha € A, a |4 a<. Then A is independent relative
to <.

Proof. Let B, C be ideals of (A, <). We must show B |gnc C. We induct
on the order type of (A, <). By the finite character of dependence, we can
assume that (A, <) has a greatest element b. The result holds by induction
unless b € B U C. Suppose first that b € B — C and let B’ = B — {b}.
Since b is last with respect to <, b |5 (B’ U C). Two applications of the
monotonicity axioms yield ((b U B')|C;b< U B'). Since b € B and B is
an ideal with respect to <, it follows that b C B’. Thus, B |p C. By
induction, B’ |gnc C, so by transitivity of independence B |gn¢c C as
required. The case b € C — B is completely symmetric so we are left with
the case b € BN C. Let C' =C — {b}. By the first case B | g’ C'. Applying
monotonicity twice, we get B |(Bncryuey C' U {b}. That is, B | pnc C.

After solving the next exercise the second one is an easy application of
Lemma 2.26.

2.27 Exercise. Show that any well-founded partial order < on a set A
can be extended to a well-ordering < of A.

2.28 Exercise. Suppose (4,<) is a well-founded partial order such that
for each a € A, a |4_ ax. Show A is independent with respect to <.

The following theorem is the key to the construction of sets which are
independent relative to some prescribed partial order.

2.29 Theorem. Let (A, <) be a well-founded partial order, B a collection
of ideals of A, and for each B € B, pp a nonalgebraic type over B. Then
we can choose for each B € B a cp realizing pp such that, letting C be
{cp : B € B}, if we extend < to an ordering on AUC so that (cB)< = B
then AU C 1s independent relative to the extended order.

Proof. Well order B by <<. By induction on this order choose c¢p so that
cg lB AU {cp : B' << B}. Let < be a well order of AU C which satisfies
the following conditions.
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i) < |A extends <.
ii) All elements of A precede all elements of C.
111) cpr < cp if and only if B’ << B.

Let < be the partial order of AUC obtained by extending the original order
on A only by adding b < cp if b € B. It is easy to check that, applying
Lemma 2.26, we have the result. '

The remaining exercise in this section describes a more concrete but
also more complicated notation for the last several results. This notation
appears in [Shelah 1982], [Makkai 1984], and [Harrington & Makkai 1985].

2.30 Exercise. Let S be the collection of finite subsets of a set X and
A ={As:s € S} a collection of subsets of a structure M such that if t C s
then A; C A,. Show that if (AL U{A}:s € t};U{A}:t C sAt # s})
then under the partial ordering determined by the natural partial order of
subsets of X, A is an independent partial order in the sense of Definition
2.25.

2.31 Historical Notes. An independent sequence is often called a Mor-
ley sequence. This notion, generalizes Morley’s [Morley 1965] idea of finding
indiscernibles by constructing sequences of elements such that the type of
each element over its predecessors has a fixed rank. The notations A |¢ B
and (A|B;C) are variants of a notation introduced by Makkai. The de-
velopment of 2.19 through 2.26 is buried in [Shelah 1978]. Except for sim-
plifying the notation, we have followed the considerably clearer version of
[Makkai 1984].





