CHAPTER 8

THEORY OF GENERAL VARIFOLDS

Here we describe the theory of general varifolds, essentially following W.K. Allard [AW1].

General varifolds in U (U open in \mathbb{R}^{n+k}) are simply Radon measures on $G_{n}(U)=\left\{(x, S): x \in U\right.$ and S is an n-dimensional subspace of $\left.\mathbb{R}^{n+k}\right\}$. One basic motivating point for our interest in such objects is described as follows:

Suppose $\left\{\mathrm{T}_{\mathrm{j}}\right\}$ is a sequence of integer multiplicity currents (see §27) such that the corresponding integer multiplicity varifolds (as in Chapter 4) are stationary in U (U open in \mathbb{R}^{n+k}), and suppose $\partial T_{j}=0$ and there is a mass bound $\sup _{j \geq 1} \mathcal{M}_{W}\left(T_{j}\right)<\infty \quad \forall W \subset C U$. By the compactness theorem 27.3 we can assert that $T_{j}, \rightarrow T$ for some integer multiplicity T. However it is not clear that T is stationary; the chief difficulty is that it is not generally true that the corresponding sequence of measures $\mu_{T_{j}}$ converge to μ_{T}. Indeed if $\mu_{T_{j}}$ converges to μ_{T} (as they would by 34.5 in case the T_{j} are minimizing in U) then it is not hard to prove that T is stationary in U. This leads one to consider measure theoretic convergence rather than weak convergence of the currents. However if we take a limit (in the sense of Radon measures) of some sub-sequence $\left\{\mu_{T_{j}}\right\}$ of the $\left\{\mu_{T_{j}}\right\}$ then we get merely an abstract Radon measure on U, and first variation of this does not make sense.

To resolve these difficulties, we associate with each T_{j} a Radon measure V_{j} on the Grassmaniann $G_{n}(U) \quad\left(G_{n}(U)\right.$ is naturally equipped with a suitable metric - see below); V_{j} is in fact defined by

$$
V_{j}(A)=\mu_{T_{j}}\left(\pi_{j}(A)\right)
$$

where $\pi_{j}(A)$ denotes $\left\{x \in U:\left(x,\left\langle\vec{T}_{j}(x)>\right) \in A\right\}\right.$ for any subset A of $G_{n}(U)$. $\left(\left\langle\vec{T}_{j}(x)\right\rangle\right.$ denotes the n-dimensional subspace determined by $\vec{T}_{j}(x)$.) one then uses the compactness theorem 4.4 to give $V_{j \prime} \rightarrow V$ for some subsequence $\left\{j^{\prime}\right\}$ and some Radon measure V on $G_{n}(U)$. It turns out to be possible to define a notion of stationarity for such Radon measures (i.e. varifolds) V on $G_{n}(U)$ and, for example, in the circumstances above V turns out to correspond to a stationary rectifiable varifold (in the sense of Chapter 4). The reader will see that these claims follow easily from the rectifiability and compactness theorems of $\S 42$.

§38. BASICS, FIRST RECTIFIABILITY THEOREM

We let $G(n+k, n)$ denote the collection of all n-dimensional subspaces of \mathbb{R}^{n+k}, equipped with the metric $\rho(S, T)=\left|p_{S}-p_{T}\right|=\left(\sum_{i, j=1}^{n+k}\left(p_{S}^{i j}-p_{T}^{i j}\right)^{2}\right)^{\frac{1}{2}}$, where p_{S}, p_{T} denote the orthogonal projections of \mathbb{R}^{n+k} onto S, T respectively, and $p_{S}^{i j}=e_{i} \cdot p_{S}\left(e_{j}\right), p_{T}^{i j}=e_{i} \cdot p_{T}\left(e_{j}\right)$ are the corresponding matrices with respect to the standard orthonormal basis e_{1}, \ldots, e_{n+k} for $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ 。

For a subset $A \subset \mathbb{R}^{n+k}$ we define

$$
G_{n}(A)=A \times G(n+k, n)
$$

equipped with the product metric. Of course then $G_{n}(K)$ is compact for each compact $K \subset \mathbb{R}^{n+k}$. $G_{n}\left(\mathbb{R}^{n+k}\right)$ is locally homeomorphic to a Euclidean space of dimension $n+k+n k$.

By an n-varifold we mean simply any Radon measure V on $G_{n}\left(\mathbb{R}^{n+k}\right)$. By an n-varifold on U (U open in \mathbb{R}^{n+k}) we mean any Radon measure V on $G_{n}(U)$. Given such an n-varifold V on U, there corresponds a Radon measure $\mu=\mu_{V}$ on U (called the weight of V) defined by

$$
\mu(A)=V\left(\pi^{-1}(A)\right), A \subset U
$$

where, here and subsequently, π is the projection $(x, S) \mapsto x$ of $G_{n}(U)$ onto U. The mass $M(V)$ of V is defined by

$$
\underline{M}(\mathrm{~V})=\mu_{\mathrm{V}}(\mathrm{U}) \quad\left(=\mathrm{V}\left(\mathrm{G}_{\mathrm{n}}(\mathrm{U})\right)\right)
$$

For any Borel subset $A \subset U$ we use the usual terminology $V L G_{n}(A)$ to denote the restriction of V to $G_{n}(A)$; thus

$$
\left(V L G_{n}(A)\right)(B)=V\left(B \cap G_{n}(A)\right), B \subset G_{n}(U)
$$

Given an n-rectifiable varifold $\underline{\underline{v}}(M, \theta)$ on U (in the sense of Chapter 4) there is a coresponding n-varifold V (also denoted by $\underset{\underline{V}}{(M, \theta) \text {, or simply }}$ $\underline{\underline{v}}(\mathrm{M})$ in case $\theta \equiv 1$ on M), defined by

$$
V(A)=\mu(\pi(T M \cap A)), A \subset G_{n}(U)
$$

where $\mu=H^{n} L \theta$ and $T M=\left\{\left(x, T M_{x}\right): x \in M_{*}\right\}$, with M_{*} the set of $x \in M$ such that M has an approximate tangent space $T_{X} M$ with respect to θ at x in the sense of 11.4. Evidently V, so defined, has weight measure $\mu_{\mathrm{V}}=H^{\mathrm{n}} L \theta=\mu$.

The question of when a general n-varifold actually corresponds to an n-rectifiable varifold in this way is satisfactorily answered in the next theorem. Before stating this we need a definition:
38.1 DEFINITION Given $T \in G(n+k, n), x \in U$, and $\theta \in(0, \infty)$, we say that an n-varifold V on U has tangent space T with multiplicity θ at x if
(*)

$$
\lim _{\lambda \nless 0} V_{x, \lambda}=\theta \underline{\underline{v}}(T)
$$

where the limit is in the usual sense of Radon measures on $G_{n}\left(\mathbb{R}^{n+k}\right)$. In (*) we use the notation that $V_{x, \lambda}$ is the n-varifold defined by

$$
V_{x, \lambda}(A)=\lambda^{-n} V\left(\{(\lambda y+x, S):(y, S) \in A\} \cap G_{n}(U)\right)
$$

for $A \subset G_{n}\left(\mathbb{R}^{n+k}\right)$.
38.2 REMARK Note that $38.1(*)$ implies that the weight measure μ_{V} has approximate tangent space T with multiplicity θ at x in the sense of 11.8.

38.3 THEOREM (First Rectifiability Theorem)

Suppose V is an n-varifold on U which has a tangent space T_{x} with multiplicity $\theta(x) \in(0, \infty)$ for $\mu_{v}-$ a.e. $x \in U$. Then v is n-rectifiable: in fact $M \equiv\left\{x \in U: T_{x}, \theta(x)\right.$ exist $\}$ is H^{n}-measurable, countably n-rectifiable, θ is locally H^{n}-integrable on M , and $\mathrm{V}=\underline{\underline{v}}(\mathrm{M}, \theta)$.

In the proof of 38.3 (and also subsequently) we shall need the following technical lemma:
38.4 LEMMA Let v be any n-varifold on u. Then for $\mu_{V}-a . e . ~ x \in U$ there is a Radon measure $\eta_{V}^{(x)}$ on $G(n+k, n)$ such that, for any continuous β on $G(n+k, n)$,

$$
\int_{G(n+k, n)} \beta(S) d \eta_{V}^{(x)}(S)=\lim _{\rho \downarrow 0} \frac{\int_{G_{n}\left(B_{\rho}(x)\right)} \beta(S) d V(y, s)}{\mu_{V}\left(B_{\rho}(x)\right)}
$$

Furthermore for any Borel set A CU,

$$
\int_{G_{n}(A)} \beta(s) d V(x, s)=\int_{A} \int_{G(n+k, n)} \beta(s) d \eta_{V}^{(x)}(s) d \mu_{V}(x)
$$

provided $\beta \geq 0$.

Proof The proof is a simple consequence of the differentiation theory for Radon measures and the separability of $K(X, \mathbb{R})$ (notation as in §4) for compact separable metric spaces X. Specifically, write $K=K(G(n+k, n), \mathbb{R})$, $K^{+}=\{\beta \in K: \beta \geq 0\}$, and let $\beta_{1}, \beta_{2}, \ldots \in K^{+}$be dense in K^{+}. By the differentiation theorem 4.7 we know that (since there is a Radon measure γ_{j} on \mathbb{R}^{n+k} charactexized by $\gamma_{j}(B)=\int_{G_{n}(B)} \beta_{j}(S) d V(y, S)$ for Borel sets $B \subset \mathbb{R}^{n+k}$)

$$
\begin{equation*}
e(x, j)=\lim _{\rho \downarrow 0} \frac{\int_{G_{n}\left(B_{\rho}(x)\right)} \beta_{j}(S) d V(y, S)}{\mu_{V}\left(B_{\rho}(x)\right)} \tag{1}
\end{equation*}
$$

exists for each $x \in \mathbb{R}^{n+k} \sim Z_{j}$, where Z_{j} is a Borel set with $\mu_{V}\left(Z_{j}\right)=0$, and $e(x, j)$ is a μ_{V}-measurable function of x, with

$$
\begin{equation*}
\int_{A} e(x, j) d \mu_{V}(x)=\int_{G_{n}(A)} \beta_{j}(S) d V(y, S) \tag{2}
\end{equation*}
$$

for any Borel set $A \subset \mathbb{R}^{n+k}$.
Now let $\varepsilon>0, \beta \in K^{+}, x \in \mathbb{R}^{n+k} \sim\left(\begin{array}{cc}\bigcup_{j=1}^{\infty} & z_{j}\end{array}\right)$, and choose β_{j} such that $\sup \left|\beta-\beta_{j}\right|<\varepsilon$. Then for any $\rho>0$

$$
\begin{gather*}
\left|\frac{\int_{G_{n}\left(B_{\rho}(x)\right)} \beta(S) d V(y, S)}{\mu_{V}\left(B_{\rho}(x)\right)}-\frac{\int_{G_{n}\left(B_{\rho}(x)\right)} \beta_{j}(S) d V(y, S)}{\mu_{V}\left(B_{\rho}(x)\right)}\right| \tag{3}\\
\leq \varepsilon \frac{V\left(G_{n}\left(B_{\rho}(x)\right)\right)}{\mu_{V}\left(B_{\rho}(x)\right)}=\varepsilon
\end{gather*}
$$

and hence by (1) we conclude that

$$
\tilde{n}_{V}^{(x)}(\beta) \equiv \lim _{\rho \nmid 0} \frac{\int_{G_{n}\left(B_{\rho}(x)\right)^{\beta(S) d V(y, s)}}}{\mu_{V}\left(B_{\rho}(x)\right)}
$$

exists for all $\beta \in K^{+}$and all $x \in \mathbb{R}^{n+k} \sim\left(\bigcup_{j=1}^{\infty} Z_{j}\right)$. of course, since $\left|\tilde{n}_{\mathrm{V}}^{(x)}(\beta)\right| \leq \sup |\beta| \quad \forall \beta \in K^{+}$, by the Riesz representation theorem 4.1 we have $\tilde{\eta}_{V}^{(x)}(\beta)=\int_{G(n+k, n)} \beta(S) d \eta_{V}^{(x)}(S)$, where $\eta_{V}^{(x)}$ is the total variation measure associated with $\tilde{\eta}_{V}^{(x)}$.

Finally the last part of the lemma follows directly from (2), (3) if we keep in mind that $e(x, j)$ in (1) is exactly $\tilde{\eta}_{V}^{(x)}\left(\beta_{j}\right)=\int_{G(n+k, n)} \beta_{j}(S) d \eta_{V}^{(x)}(S)$.

We are now able to give the proof of Theorem 38.3.

Proof of Theorem 38.3 As mentioned in Remark 38.2, μ_{V} has approximate tangent space T_{x} with multiplicity $\theta(x)$ in the sense of 11.8 for μ_{V}-a.e. $x \in U$. Hence by Theorem 11.8 we have that M is H^{n}-measurable countably n-rectifiable, θ is locally H^{n}-integrable on M and in fact $\mu_{V}=H^{n} L \theta$ in U (if we set $\theta \equiv 0$ in $U \sim M$).

Now if $x \in M$ is one of the μ_{V}-almost all points such that $\eta_{V}^{(x)}$ exists, and if β is a non-negative continuous function on $G(n+k, n)$, then we evidently have $\eta_{V}^{(x)}(\beta)=\theta(x) \beta\left(T_{x}\right)$ and hence by the second part of 38.4 we have

$$
\int_{G_{n}(A)} \beta(S) d V(x, S)=\int_{M \cap A} \beta\left(T_{x}\right) d \mu_{V}(x)
$$

for any Borel set $A \subset U$. From the arbitrariness of A and β it then easily follows that

$$
\int_{G_{n}(U)} f(x, S) d V(x, S)=\int_{M} f\left(x, T_{X}\right) d \mu_{V}(x)
$$

for any non-negative $f \in C_{C}\left(G_{n}(U)\right)$, and hence we have shown $V=V(M, \theta)$ as required (because $\mu_{v}=H^{n} L \theta$ as mentioned above).
§39. FIRST VARIATION

We can make sense of first variation for a general varifold V on U. We first need to discuss mapping of such a general n-varifold. Suppose U, \tilde{U} open $\subset \mathbb{R}^{n+k}$ and $E: U \rightarrow \tilde{U}$ is C^{1} with $f \mid \operatorname{spt\mu } \cap U$ proper. Then we define the image varifold $f_{\#} V$ on \tilde{U} by
39.1

$$
f_{\#} V(A)=\int_{F^{-1}(A)} J_{S} f(x) d V(x, S), A \text { Borel, } A \subset G_{n}(\tilde{U})
$$

where $F: G_{n}^{+}(U) \rightarrow G_{n}(\tilde{U})$ is defined by $F(X, S)=\left(f(x), d f_{X}(S)\right)$ and where

$$
\begin{aligned}
J_{S} f(x) & =\left(\operatorname{det}\left(\left(d f_{X} \mid S\right) * \circ\left(d f_{X} \mid S\right)\right)\right)^{\frac{1}{2}},(x, S) \in G_{n}(U) \\
& G_{n}^{+}(U)=\left\{(x, S) \in G_{n}(U): J_{S} f(x) \neq 0\right\}
\end{aligned}
$$

(Notice that this agrees with our previous definition given in $\S 15$ in case $\mathrm{V}=\mathrm{V}(\mathrm{M}, \theta)$.

Now given any n-varifold V on U we define the first variation δV, which is a linear functional on $K\left(U, \mathbb{R}^{n+k}\right)$ (notation as in $\S 4$) by

$$
\delta V(X)=\left.\frac{d}{d t} M\left(\phi_{t \#} V L G_{n}(K)\right)\right|_{t=0}
$$

where $\left\{\phi_{t}\right\}_{-1<t<1}$ is any 1 -parameter family as in 9.1 (and K is as in 9.1(3)). Of course we can compute $\delta V(X)$ explicitly by differentiation under the integral in 39.1. This gives (by exactly the computations of §9)
39.2

$$
\delta V(X)=\int_{G_{n}(U)} \operatorname{div}_{S} X(x) d V(x, S)
$$

where, for any $s \in G(n+k, n)$.

$$
\begin{aligned}
\operatorname{div}_{S} X & =\sum_{i=1}^{n+k} \nabla_{i}^{S} x^{i} \\
& =\sum_{i=1}^{n}\left\langle\tau_{i}{ }^{\prime} D_{\tau} x\right\rangle
\end{aligned}
$$

where $\tau_{1} \ldots \ldots \tau_{n}$ is an orthonormal basis for S and $\nabla_{i}^{S}=e_{i} \cdot \nabla^{S}$, with $\nabla^{S} f(x)=p_{S}$ (grad $\left.\mathbb{R}^{n+k} f(x)\right), f \in C^{1}(U) . \quad\left(p_{S}\right.$ is the orthogonal projection of $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ onto S.)

By analogy with 16.3 we then say that V is stationary in U if $\delta V(X)=0 \quad \forall x \in K\left(U, \mathbb{R}^{\mathrm{n}+\mathrm{k}}\right)$.

More generally V is said to have locally bounded first variation in U if for each $W \in C \in$ there is a constant $c<\infty$ such that $|\delta V(X)| \leq c \sup _{U}|X| \quad \forall X \in K\left(U, \mathbb{R}^{n+k}\right)$ with spt $|X| \subset W$. Evidently, by the general Riesz representation theorem 4.1, this is equivalent to the requirement that there is a Radon measure $\|\delta V\|$ (the total variation measure of δV) on U characterized by
39.3

$$
\|\delta v\|(W)=\sup _{X \in K\left(U, \mathbb{R}^{n+k}\right)}|\delta V(x)| \quad(<\infty)
$$

for any open $W \subset \subset U$. Notice that then by Theorem 4.1 we can write

$$
\delta V(X)=\int_{G_{n}(U)} \operatorname{div}_{S} X(x) d V(x, S) \equiv-\int_{U} v \cdot x d\|\delta V\|
$$

where ν is $\|\delta V\|$-measurable with $|\nu|=1\|\delta V\|$-a.e. in u. By the differentiation theory of 4.7 we know furthermore that

$$
D_{\mu_{V}}\|\delta v\|(x) \equiv \lim _{\rho \downarrow 0} \frac{\|\delta \mathrm{~V}\|\left(B_{\rho}(x)\right)}{\mu_{V}\left(B_{\rho}(x)\right)}
$$

exists μ_{V}-a.e. and that (writing $\underline{\underline{H}(x)}=D_{\mu_{V}}\|\delta V\|(x) \vee(x)$)

$$
\int_{U} v \cdot x d\|\delta v\|=\int_{U} \underline{H} \cdot x d \mu_{V}+\int_{U} v \cdot x d \sigma
$$

with

$$
\sigma=\|\delta \mathrm{V}\| \mathrm{L} \mathrm{z}, \mathrm{z}=\left\{\mathrm{x} \in \mathrm{U}: \mathrm{D}_{\mu_{\mathrm{V}}}\|\delta \mathrm{v}\|(\mathrm{x})=+\infty\right\} .\left(\mu_{\mathrm{V}}(\mathrm{Z})=0 .\right)
$$

Thus we can write
39.4

$$
\begin{aligned}
\delta V(X) & =\int_{G_{\mathrm{n}}(\mathrm{U})} \operatorname{div}_{\mathrm{S}} \mathrm{X}(\mathrm{x}) d V(\mathrm{x}, \mathrm{~S}) \\
& =-\int_{\mathrm{U}} \stackrel{H}{=} \cdot \mathrm{Xd} \mu_{\mathrm{V}}-\int_{\mathrm{Z}} v \cdot \mathrm{Xd} \mathrm{\sigma}
\end{aligned}
$$

for $x \in K\left(U, \mathbb{R}^{n+k}\right)$.

By analogy with the classical identity 7.6 we call H the generalized mean curvature of V, Z the generalized boundary of V, σ the generalized boundary measure of v, and $v \mid z$ the generalized unit co-normal of V .
§40. MONOTONICITY AND CONSEQUENCES

In this section we assume that V is an n-varifold in U with locally bounded first variation in U (as in 39.3).

We first consider a point $x \in U$ such that there is $0<\rho_{0}<\operatorname{dist}(x, \partial U)$ and $\Lambda \geq 0$ with
40.1

$$
\|\delta v\|\left(B_{p}(x)\right) \leq \Lambda \mu_{v}\left(B_{p}(x)\right), 0<\rho<\rho_{0} .
$$

Subject to 40.1 we can choose (in 39.2) $x_{y}=\gamma(x)(y-x), r=|y-x|, y \in U$ as in $\S 17$ and note that (by essentially the same computation as in §17)

$$
\operatorname{div}_{S} X=n \gamma(r)+r \gamma^{\prime}(r) \sum_{i, j=1}^{n+k} e_{S}^{i j} \frac{x^{i}-y^{i}}{r} \frac{x^{j}-y^{j}}{r},
$$

where $\left(e_{S}^{i j}\right)$ is the matrix of the orthogonal projection p_{S} of \mathbb{R}^{n+k} onto the n-dimensional subspace s. We can then take $\gamma(r)=\phi(r / \rho)$ (again as in §17) and, noting that $\sum_{i, j=1}^{n+k} e_{S}^{i j} \frac{x^{i}-y^{i}}{r} \frac{x^{j}-y^{j}}{r}=1-\left|p_{S^{1}}\left(\frac{y-x}{r}\right)\right|^{2}$, conclude (Cf. $17.6(1)$ with $\alpha=1$) that $e^{\Lambda \rho} \rho^{-n} \mu_{v}\left(B_{\rho}(x)\right)$ is increasing in $\rho, 0<\rho<\rho_{0}$, and, for $0<\sigma \leq \rho<\rho_{0}$,
$40.2 \theta^{n}\left(\mu_{\mathrm{V}}, \mathrm{x}\right) \leq \mathrm{e}^{\Lambda \sigma_{\mathrm{n}}-1 \sigma^{-n}} \mu_{\mathrm{v}}\left(\mathrm{B}_{\sigma}(\mathrm{x})\right) \leq \mathrm{e}^{\Lambda \rho_{\mathrm{n}} \omega_{\mathrm{n}}^{-1} \rho^{-n} \mu_{\mathrm{v}}\left(B_{\rho}(\mathrm{x})\right)}$

$$
-\omega_{n}^{-1} \int_{\left.G_{n}\left(B_{p}(x) \sim B_{\sigma}(x)\right)^{r^{-n-2} \mid p} s^{\perp}(y-x)\right|^{2} d v(y, s) ~ . ~}
$$

In fact if $\Lambda=0$ (so that V is stationary in $B_{\rho_{0}}(x)$) we get the precise identity
 for $0<\rho<\rho_{0}$.

$$
\text { Using } X_{y}=h(y) \gamma(x)(y-x) \quad(r=|y-x|) \quad \text { in } 39.2 \text { we also deduce the }
$$ following analogue of 18.1:

40.4

$$
\begin{aligned}
\frac{d}{d \rho}\left(\rho^{-n \tilde{I}(\rho)}\right) & =\rho^{-n} \frac{d}{d \rho} \int\left|p_{S^{\perp}}(y-x) / x\right|^{2} \phi(x / \rho) h(y) d v(y, s) \\
& +\rho^{-n-1}\left(\delta v(x)+\int(y-x) \cdot \nabla^{S} h(y) \phi(x / \rho) d v(y, s)\right)
\end{aligned}
$$

where $\tilde{I}(\rho)=\int \phi(r / \rho) h d \mu_{v}$.
40.5 LEMMA Suppose V has locally bounded first variation in U . Then, for μ_{V}-a.e. $x \in U, \theta^{n}\left(\mu_{V}, x\right)$ exists and is real-valued; in fact $\theta^{n}\left(\mu_{v}, x\right)$ exists whenever there is a constant $\Lambda(x)<\infty$ such that

$$
\begin{equation*}
\|\delta \mathrm{V}\|\left(B_{\rho}(x)\right) \leq \Lambda(x) \mu_{V}\left(B_{\rho}(x)\right), 0<\rho<\frac{1}{2} \operatorname{dist}(x, \partial U) \tag{*}
\end{equation*}
$$

(Such a constant $\Lambda(x)$ exists for $\mu_{V}-a_{0} e . x \in U$ by virtue of the differentiation theorem 4.7.)

Furthermore $\theta^{\mathrm{n}}\left(\mu_{\mathrm{v}}, \mathrm{x}\right)$ is a μ_{v}-measurable function of x .

Proof The first part of the lemma follows directly from the monotonicity formula 40.2. The μ_{V}-measurability of $\theta^{n}\left(\mu_{V},{ }^{\circ}\right)$ follows from the fact that $\mu_{V}\left(\bar{B}_{\rho}(x)\right) \geq \lim \sup _{y \rightarrow x} \mu_{V}\left(\bar{B}_{\rho}(y)\right)$, which guarantees that $\mu_{V}\left(B_{\rho}(x)\right) /\left(\omega_{n} \rho^{n}\right)$ is Borel measurable and hence μ_{V}-measurable for each fixed ρ, Since $\Theta^{n}\left(\mu_{V}, x\right)=\lim _{\rho \downarrow 0}\left(\omega_{n} \rho^{n}\right)^{-1} \mu_{V}\left(B_{\rho}(x)\right)$ for $\mu_{V}-$ a.e. $x \in U$, we then have μ_{V}-measurability of $\Theta^{\mathrm{n}}\left(\mu_{\mathrm{V}}{ }^{\circ}\right)$ as claimed.
40.6 THEOREM (Semi-continuity of θ^{n} under varifold convergence.)

Suppose $\mathrm{V}_{\mathrm{i}} \rightarrow \mathrm{V}$ (as Radon measures in $\mathrm{G}_{\mathrm{n}}(\mathrm{U})$) and $\theta^{\mathrm{n}}\left(\mathrm{V}_{\mathrm{i}}, \mathrm{Y}\right) \geq 1$ except on a set $B_{i} \subset U$ with $\mu_{\mathrm{V}_{i}}\left(\mathrm{~B}_{\mathrm{i}} \cap \mathrm{W}\right) \rightarrow 0$ for each $\mathrm{W} \subset \subset \mathrm{U}$, and suppose that each v_{i} has locally bounded first variation in U with
$\lim \inf \left\|\delta v_{i}\right\|(W)<\infty$ for each $w \in \mathcal{U}$. Then $\|\delta v\|(W) \leq \lim \inf \left\|\delta v_{i}\right\|(W)$ $\forall W \subset C U$ and $\Theta^{n}\left(\mu_{V}, y\right) \geq 1 \quad \mu_{V}-a . e$. in U.

40.7 REMARKS

(1) The fact that $\|\delta V\|(W) \leq \lim \inf \left\|\delta \mathrm{V}_{\mathrm{i}}\right\|(\mathrm{W})$ is a trivial consequence of the definitions of $\|\delta v\|,\left\|\delta v_{i}\right\|$ and the fact that $v_{i} \rightarrow v$, so we have only to prove the last conclusion that $\theta^{n}\left(\mu_{v}, y\right) \geq 1 \quad \mu_{v}$-a.e.
(2) The proof that $\theta^{\mathrm{n}}\left(\mu_{\mathrm{V}}, \mathrm{y}\right) \geq 1 \mu_{\mathrm{V}}$-a.e. to be given below is slightly complicated; the reader should note that if $\|\delta \mathrm{V}\| \leq \Lambda \mu_{\mathrm{V}}$ in U
(i.e. if V has generalized boundary measure $\sigma=0$ and bounded $\mathrm{H}-$ see 39.4). then the result is a very easy consequence of the monotonicity formula 40.2 .

Proof of Theorem 40.6 set $\mu_{i}=\mu_{V_{i}}, \mu=\mu_{V}$, and take any $W \subset C$ and $\rho_{0} \in(0, \operatorname{dist}(W, \partial U))$. For $i, j \geq 1$, consider the set $A_{i, j}$ consisting of all points $y \in W \sim B_{i}$ such that

$$
\begin{equation*}
\left\|\delta V_{i}\right\|\left(\bar{B}_{\rho}(y)\right) \leq j \mu_{i}\left(\bar{B}_{\rho}(y)\right), 0<\rho<\rho_{0} \tag{1}
\end{equation*}
$$

and let $B_{i, j}=W \sim A_{i, j}$. Then if $x \in B_{i, j}$ we have either $x \in B_{i} \cap W$ or

$$
\begin{equation*}
\mu_{i}\left(\bar{B}_{\sigma}(x)\right) \leq j^{-1}\left\|\delta V_{i}\right\|\left(\bar{B}_{\sigma}(x)\right) \text { for some } \sigma \in\left(0, \rho_{0}\right) \tag{2}
\end{equation*}
$$

Let B be the collection of balls $\bar{B}_{\sigma}(x)$ with $x \in B_{i, j}, \sigma \in\left(0, \rho_{0}\right)$, and with (2) holding. By the Besicovitch covering lemma 4.6 there are families $B_{1} \ldots, B_{N} \subset B$ with $N=N(n+k)$, with $B_{i, j} \sim B_{i} \subset \bigcup_{\ell=1}^{N}\left(\underset{B \in B_{\ell}}{U} \quad B\right)$ and with each B_{ℓ} a pairwise disjoint family. Hence if we sum in (2) over balls

N
$B \in \bigcup_{\ell=1} B_{\ell}$, we get

$$
\mu_{i}\left(B_{i}, j\right) \leq N j^{-1}\left\|\delta V_{i}\right\|(\tilde{W})+\mu_{i}\left(B_{i} \cap W\right)
$$

$\left(\tilde{W}=\left\{x \in U: \operatorname{dist}(x, W)<\rho_{0}\right\}\right)$, so

$$
\begin{equation*}
\mu_{i}\left(B_{i, j}\right) \leq c j^{-1}+\mu_{i}\left(B_{i} \cap W\right) \tag{3}
\end{equation*}
$$

with c independent of i, j. In particular for each $i, j \geq 1$

$$
\begin{equation*}
\mu\left(\text { interior }\left(\bigcap_{\ell=i}^{\infty} B_{\ell, j}\right)\right) \leq \underset{q \rightarrow \infty}{\lim \inf } \mu_{q}\left(\text { interior }\left(\bigcap_{\ell=i}^{\infty} B_{\ell, j}\right)\right) \leq c j^{-1}, \tag{4}
\end{equation*}
$$

since $\mu_{q}\left(B_{q} \cap W\right) \rightarrow 0$ as $q \rightarrow \infty$.

Now let $j \in\{1,2, \ldots\}$ and consider the possibility that there is a point $x \in W$ such that $x \in W \sim$ interior $\left(\prod_{q=i}^{\infty} B_{q, j}\right)$ for each $i=1,2, \ldots$. Then we could select, for each $i=1,2 \ldots, y_{i} \in W \sim \bigcap_{q=i} B_{q, j}$ with $\left|y_{i}-x\right|<1 / i$. Thus there are sequences $y_{i} \rightarrow x$ and $q_{i} \rightarrow \infty$ such that $y_{i} \notin B_{q_{i}, j}$ for each $i=1,2, \ldots$. Then $y_{i} \in A_{q_{i}, j}$ and hence (by (1))

$$
\left\|\delta V_{q_{i}}\right\|\left(\bar{B}_{\rho}\left(y_{i}\right)\right) \leq j \mu_{q_{i}}\left(\bar{B}_{\rho}\left(y_{i}\right)\right), \quad 0<\rho<\rho_{0}
$$

for all $i=1,2 \ldots$. Then by the monotonicity formula 40.2 (with $\Lambda=j$) together with the fact that $\theta^{n}\left(\mu_{q_{i}}, y_{i}\right) \geq 1$ we have

$$
\mu_{q_{i}}\left(\bar{B}_{\rho}\left(y_{i}\right)\right) \geq e^{-j \rho_{\omega_{n}} \rho^{n}}, \quad 0<\rho<\rho_{0}, i=1,2, \ldots
$$

and hence

$$
\mu\left(\bar{B}_{\rho}(x)\right) \geq e^{-j \rho} \omega_{n} \rho^{n}, \quad 0<\rho<\rho_{0}
$$

so that $\Theta^{n}(\mu, x) \geq 1$ for such an x. Thus we have proved $\Theta^{n}(\mu, x) \geq 1$ for each x with $x \in W \sim\left(\bigcup_{i=1}^{\infty}\right.$ interior $\left.\left(\bigcap_{\ell=i}^{\infty} B_{\ell, j}\right)\right)$ for some $j \in\{1,2, \ldots\}$. That is

$$
\left.\Theta^{n}(\mu, x) \geq 1 \quad \forall x \in W \sim\left(\begin{array}{ccc}
\infty & \bigcap_{j=1}^{\infty} & \text { interior } \tag{5}\\
\bigcap_{\ell=1}^{\infty} & B_{\ell, j}
\end{array}\right)\right)
$$

However

$$
\begin{aligned}
& \mu\left(\bigcap_{j=1}^{\infty} \quad U_{i=1}^{\infty} \text { interior }\left(\bigcap_{l=i}^{\infty} B_{\ell, j}\right)\right) \leq \mu\left(\bigcup_{i=1}^{\infty} \operatorname{interior}\left(\bigcap_{l=i}^{\infty} B_{l, j}\right)\right) \quad \forall j \geq 1 \\
& =\lim _{i \rightarrow \infty} \mu\left(\text { interior }\left(\bigcap_{\ell=i}^{\infty} B_{\ell, j}\right)\right) \\
& \leq \mathrm{Cj}^{-1} \text { by (4), }
\end{aligned}
$$

so $\mu\left(\bigcap_{j=1}^{\infty} \quad U_{i=1}^{\infty}\right.$ interior $\left.\left(\bigcap_{l=i}^{\infty} B_{l, j}\right)\right)=0$ and the theorem is established (by (5)).

§41. THE CONSTANCY THEOREM

41.1 THEOREM (Constancy Theorem)

Suppose V is an n -varifold in U, V is stationary in U , and $\mathrm{U} \cap$ spt $\mu_{\mathrm{V}} \mathrm{CM}$, where M is a connected n -dimensional C^{2} submanifold of $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$. Then $\mathrm{V}=\theta_{0} \underline{\underline{\mathrm{~V}}}{ }^{(M)}$ for some constant θ_{0}.

41.2 REMARKS

(1) Notice in particular this implies $(\bar{M} \sim M) \cap U=\varnothing \quad($ if $\quad V \neq 0)$; this is not a-priori obvious from the assumptions of the theorem.
(2) J. Duggan in his PhD thesis [DJ] has recently extended 41.1 to the case when M is merely Lipschitz.
(3) The reader will see that, with only minor modifications to the proof to be given below, the theorem continues to hold if N is an embedded $\left(n+\mathrm{k}_{1}\right)$-dimensional C^{2} submanifold of $\mathbb{R}^{\mathrm{n}+\mathrm{k}}$ and if V is stationary in $U \cap N$ in the sense that $\delta V(X)=0 \quad \forall X \in K\left(U ; \mathbb{R}^{n+k}\right)$ with $X_{X} \in T_{X} N$ $\forall x \in N$, provided we are given spt $V \subset\left\{(x, S): x \in N\right.$ and $\left.S \subset T_{x} N\right\}$. (This last is equivalent to spt $\mu_{V} \subset N$ and $p_{\#} V=V$, where $p: U \rightarrow U \cap N$ coincides with the nearest point projection onto $U \cap N$ in some neighbourhood of $U \cap N$.

Proof of 41.1. We first want to argue that $V=\underline{=}(M, \theta)$ for some positive locally H^{n}-integrable function θ on M.

To do this first take any $f \in C_{C}^{2}(U)$ with $M \subset\{x \in U: f(x)=0\}$ and note that by 39.2

$$
\begin{equation*}
\delta V(f \operatorname{grad} f)=\int\left|p_{S}(\operatorname{grad} f)\right|^{2} d V(x, S) \tag{1}
\end{equation*}
$$

because (using notation as in 39.2)

$$
\begin{aligned}
\operatorname{div}_{S}(f \operatorname{grad} f) & =\nabla^{S} f \cdot g r a d f+f \operatorname{div}_{S} g r a d f \\
& =\left|p_{S}(\operatorname{grad} f)\right|^{2} \text { on } M
\end{aligned}
$$

where we used $f \equiv 0$ on M. Since $\delta V=0$, we conclude from (1) that

$$
\begin{equation*}
p_{S}(\operatorname{grad} f(x))=0 \quad \text { for all } \quad(x, S) \in \operatorname{spt} V \tag{2}
\end{equation*}
$$

Now let $\xi \in M$ be arbitrary. We can find an open $W \subset U$ with $\xi \in \mathbb{W}$ and such that there are $C_{C}^{2}(U)$ functions $f_{1} \ldots \ldots f_{k}$ with $M \subset \bigcap_{j=1}^{k}\left\{x: f_{j}(x)=0\right\}$ and with $\left(T_{X}\right)^{\perp}$ being exactly the space spanned by grad $f_{1}(x), \ldots, g r a d f_{k}(x)$ for each $x \in M \cap W$. (One easily checks that such W and $f_{1} \ldots, f_{k}$ exist.) Then (2) implies that

$$
\begin{equation*}
p_{S}\left(\left(T_{X}\right)^{\perp}\right)=0 \quad \text { for all } \quad(x, S) \in G_{n}(W) \cap \text { spt } V \tag{3}
\end{equation*}
$$

But (3) says exactly that $S=T_{X} M$ for all $(x, S) \in G_{n}(W) \cap$ spt V, so that (since ξ was an arbitrary point of M), we have

$$
\begin{equation*}
\int f(x, S) d V(x, S)=\int_{M \cap U} f\left(x, T_{x} M\right) d \mu_{V}(x), f \in C_{C}\left(G_{n}(U)\right) \tag{4}
\end{equation*}
$$

On the other hand we know from monotonicity 40.2 that $\theta(x) \equiv \theta^{n}\left(\mu_{v}, x\right)$ exists for all $x \in M \cap U$, and hence (since $\theta^{n}\left(H^{n} L M, x\right)=1$ for each $x \in M$, by smoothness of M), we can use the differentiation theorem 4.7 to conclude from (4) that in fact

$$
\begin{equation*}
\int f(x, S) d V(x, S)=\int_{M \cap U} f\left(x, T_{x} M\right) \theta(x) d H^{n}(x), f \in C_{C}\left(G_{n}(U)\right) \tag{5}
\end{equation*}
$$

(so that $V=\underline{\underline{v}}(M, \theta)$ as required).

It thus remains only to prove that $\theta=$ const. on $M \cap U$. Since M is C^{2} we can take $x \in K\left(U, \mathbb{R}^{n+k}\right)$ such that $X_{x} \in T_{x} M \quad \forall x \in M \cap U$. Then by (5) and $39.2 \delta V(X)=0$ is just the statement that $\int_{M \cap U} d i v X \theta d H^{n}=0$, where
div X is the classical divergence of $X \mid M$ in the usual sense of differential geometry. Using local coordinates (in some neighbourhood $\tilde{U} \subset \mathbb{R}^{n}$) this tells us that

$$
\int_{\tilde{U}} \sum_{i=1}^{n} \frac{\partial x_{i}}{\partial x_{i}} \tilde{\theta} d L^{n}=0 \quad \text { if } \quad x_{i} \in C_{c}^{1}(\tilde{U}), i=1, \ldots, n
$$

where $\tilde{\theta}$ is θ expressed in terms of the local coordinates. In particular

$$
\int_{\tilde{U}} \frac{\partial \zeta}{\partial x_{i}} \tilde{\theta} d L^{n}=0 \quad \forall \zeta \in C_{C}(U), i=1 ; \ldots n
$$

and it is then standard that $\tilde{\theta}=$ constant in \tilde{U}. Hence (since M is connected) θ is constant in M.

§42. VARIFOLD TANGENTS AND RECTIFIABILITY THEOREM

Let V be an n-varifold in U and let x be any point of U such that
42.1 $\quad \theta^{n}\left(\mu_{V}, x\right)=\theta_{0} \in(0, \infty) \quad$ and $\quad \lim _{\rho \downarrow 0} \rho^{1-n}\|\delta V\|\left(B_{\rho}(x)\right)=0$.

By definition of $\delta \mathrm{V}$ (in §39) and the compactness theorem 4.4 for Radon measures, we can select a sequence $\lambda_{j} \not \psi 0$ such that $\eta_{x, \lambda_{j} \#} V$ converges (in the sense of Radon measures) to a varifold C such that

$$
\mathrm{C} \text { is stationary in } \mathbb{R}^{\mathrm{n}+\mathrm{k}}
$$

and

$$
\begin{equation*}
\frac{\mu_{C}\left(B_{\rho}(x)\right)}{\omega_{n} \rho^{n}} \equiv \theta_{0} \quad \forall \rho>0 \tag{*}
\end{equation*}
$$

Since $\delta C=0$ we can use (*) together with the monotonicity formula 40.3 to conclude

$$
\int_{G_{n}\left(B_{p}(0)\right)} \frac{\left|p_{S^{\perp}}(x)\right|^{2}}{|x|^{n+2}} d C(x, S)=0 \quad \forall \rho>0
$$

so that $p_{S_{\perp}}(x)=0$ for c-a.e. $(x, S) \in G_{n}\left(\mathbb{R}^{n+k}\right)$, and hence $p_{S^{\perp}}(x)=0$ for $\alpha l l(x, S) \in$ spt C by continuity of $p_{S^{\perp}}(x)$ in (x, S). Then by the same argument as in the proof of 19.3 , except that we use 40.4 in place of 18.1, we deduce that μ_{C} satisfies
42.2

$$
\lambda^{-n} \mu_{C}\left(\eta_{0, \lambda}(A)\right)=\mu_{C}(A), A \subset \mathbb{R}^{n+k}, \lambda>0
$$

We would like to prove the stronger result $\eta_{0, \lambda \#} C=C$ (which of course implies 42.2), but we are only able to do this in case $\theta^{n}\left(\mu_{C}, x\right)>0$ for $\mu_{C}-$ a.e. x (see 42.6 below). Whether or not $\eta_{0, \lambda \#} C=C$ without the additional hypothesis on $\theta^{n}\left(\mu_{C}{ }^{\circ}\right)$ seems to be an open question.
42.3 DEFINITION Given V and x as in 42.1 we let Var Tan (v, x) ("the varifold tangent of V at $x^{\prime \prime}$) be the collection of all $C=\lim \eta_{x, ~} \lambda_{j} \#^{V}$ obtained as described above.

Notice that by the above discussion any $C \in \operatorname{Var} \operatorname{Tan}(V, x)$ is stationary in \mathbb{R}^{n+k} and satisfies 42.2 .

The following rectifiability theorem is a central part of the theory of n-varifolds with locally bounded first variation.
42.4 THEOREM Suppose V has locally bounded first variation in U and $\theta^{n}\left(\mu_{V}, x\right)>0$ for $\mu_{V}-a . e . \quad x \in U$. Then V is an n-rectifiable varifold. (Thus $V=\underline{\underline{V}}(M, \theta)$, with M an H^{n}-measurable countably n-rectifiable subset of U and θ a non-negative locally H^{n}-integrable function on U.)
42.5 REMARK We are going to use Theorem 38.3. In fact we show that V has a tangent plane (in the sense of 38.1) at any point x where
(i) $\theta^{n}\left(\mu_{V}, x\right)>0$, (ii) $\eta_{V}^{(x)}$ (as in Lemma 38.4) exists, (iii) $\theta^{n}\left(\mu_{V}, \circ\right)$ is μ_{V}-approximately continuous at x, and (iv) $\|\delta V\|\left(B_{\rho}(x)\right) \leq \Lambda(x) \mu_{V}\left(B_{\rho}(x)\right)$ for $0<\rho<\rho_{0}=\min \{1, \operatorname{dist}(x, \partial U)\}$. Since conditions (i)-(iv) all hold $\mu_{V}-a . e$ in U (notice that (iii) holds $\mu_{V}-a . e$. by virtue of the μ_{V}-measurability of $\theta^{n}\left(\mu_{V}, \circ\right)$ proved in 40.5$)$, the required rectifiability of V will then follow from 38.3.

Before beginning the proof of 42.2 we give the following important corollary.
42.6 COROLLARY Suppose $\mathrm{x} \in \mathrm{U}, 42.1$ holds, and
$\lim _{0 \nless 0} \rho^{-n} \mu_{V}\left(\left\{y \in B_{\rho}(x): \theta^{n}\left(\mu_{V}, y\right)<1\right\}\right)=0$. If $c \in \operatorname{Var} \operatorname{Tan}(v, x)$, then c is rectifiable and

$$
\begin{equation*}
\eta_{0, \lambda \#} c=c \quad \forall \lambda>0 . \tag{*}
\end{equation*}
$$

Proof. From the hypothesis $\rho^{-n} \mu_{V}\left(\left\{y \in B_{\rho}(x): \Theta^{n}\left(\mu_{V}, y\right)<1\right\}\right) \rightarrow 0$ and the semi-continuity theorem 40.6 , we have $\theta^{n}\left(\mu_{C}, y\right) \geq 1$ for $\mu_{C}-a . e . y \in \mathbb{R}^{n+k}$. Hence by Theorem 42.4 we have that C is n-rectifiable. On the other hand, since $\theta^{n}\left(\mu_{C}, y\right)=\theta^{n}\left(\mu_{C}, \lambda y\right) \quad \forall \lambda>0 \quad$ (by 42.2), we can write $C=\underline{\underline{v}}(M, \theta)$ with $\eta_{0, \lambda}(M)=M \quad \forall \lambda>0$ and $\theta(\lambda y)=\theta(y) \quad \forall \lambda>0$, $y \in \mathbb{R}^{n+k}$. (Viz. simply set $\theta(y)=\theta^{n}\left(\mu_{C}, y\right)$ and $M=\left\{y \in \mathbb{R}^{n+k}: \theta(y)>0\right\}$.) It then trivially follows that $y \in T Y^{M}$ whenever the approximate tangent space T_{y}^{M} exists, and hence $\eta_{0, \lambda \#} C=C$ as required.

Proof of Theorem 42.2 Let x be as in 42.5(i)-(iv) and take $c \in \operatorname{Var} \operatorname{Tan}(V, x)$. (We know $\operatorname{Var} \operatorname{Tan}(V, x) \neq \varnothing$ because 42.5(i),(iv) imply 42.1.) Then C is stationary in \mathbb{R}^{n+k} and

$$
\begin{equation*}
\frac{\mu_{C}\left(B_{\rho}(0)\right)}{\omega_{n} \rho^{n}} \equiv \theta_{0} \quad \forall \rho>0 \quad\left(\theta_{0}=\theta^{n}\left(\mu_{v}, x\right)\right) \tag{1}
\end{equation*}
$$

Also for any $y \in \mathbb{R}^{n+k}$ (using (1) and the monotonicity formula 40.2)

$$
\begin{aligned}
\frac{\mu_{C}\left(B_{\rho}(y)\right)}{\omega_{n} \rho^{n}} & \leq \frac{\mu_{C}\left(B_{R}(y)\right)}{\omega_{n} R^{n}} \\
& \leq \frac{\mu_{C}\left(B_{R+|y|}(0)\right)}{\omega_{n}(R+|y|)^{n}}(1+|y| / R)^{n} \\
& =\theta_{0}(1+|y| / R)^{n} \rightarrow \theta_{0} \quad \text { as } \quad R \uparrow \infty
\end{aligned}
$$

That is (again using the monotonicity formula 40.2),

$$
\begin{equation*}
\Theta^{n}\left(\mu_{C}, y\right) \leq \frac{\mu_{C}\left(B_{\rho}(y)\right)}{\omega_{n} \rho^{n}} \leq \theta_{0} \quad \forall y \in \mathbb{R}^{n+k}, \rho>0 \tag{2}
\end{equation*}
$$

Now let $V_{j}=\eta_{x, \lambda_{j} \#} V$, where $\lambda_{j} \downarrow 0$ is such that $\lim \eta_{x, \lambda_{j}} V=c$ and where we are still assuming x is as in 42.5(i)-(iv).

$$
\text { From } 42.5 \text { (iii) we have (with } \varepsilon(\rho) \downarrow 0 \text { as } \rho \downarrow 0 \text {) }
$$

$$
\begin{equation*}
\Theta^{n}\left(\mu_{V}, y\right) \geq \theta_{0}-\varepsilon(\rho), y \in G \cap B_{\rho}(x) \tag{3}
\end{equation*}
$$

where $G \subset U$ is such that

$$
\begin{equation*}
\mu_{V}\left(B_{\rho}(X) \sim G\right) \leq \varepsilon(\rho) \rho^{n}, \quad \rho \quad \text { sufficiently small. } \tag{4}
\end{equation*}
$$

Taking $\rho=\lambda_{j}$ we see that (3), (4) imply
$(3)^{\prime}$

$$
\theta^{n}\left(\mu_{v_{j}}, y\right) \leq \theta_{0}-\varepsilon_{j}, y \in G_{j} \cap B_{1}(0)
$$

with G_{j} such that
$(4)^{\prime}$

$$
\mu_{v_{j}}\left(B_{1}(0) \sim G_{j}\right) \leq \varepsilon_{j}
$$

where $\varepsilon_{j} \rightarrow 0$ as $j \rightarrow \infty$. Thus, using (3)', (4)' and the semicontinuity result of 40.6 , we obtain

$$
\begin{equation*}
\theta^{\mathrm{n}}\left(\mu_{C}, y\right) \geq \theta_{0} \text { for } \mu_{C} \text {-a.e. } y \in \mathbb{R}^{n+k} \tag{5}
\end{equation*}
$$

(and hence for every $y \in$ spt μ_{C} by 40.3). Then by combining (2) and (5) we have

$$
\begin{equation*}
\theta^{n}\left(\mu_{C}, y\right) \equiv \theta_{0} \equiv \frac{\mu_{C}\left(B_{\rho}(y)\right)}{\omega_{n} \rho^{n}} \quad \forall y \in \operatorname{spt} \mu_{C}, \rho>0 \tag{6}
\end{equation*}
$$

Then by the monotonicity formula 40.3 (with $V=C$), we have

$$
p_{S^{\perp}}(x-y)=0 \text { for } c-\text { a.e. }(x, S) \in G_{n}\left(\mathbb{R}^{n+k}\right)
$$

Thus (using the continuity of $p_{S^{\perp}}(x-y)$ in $\left.(x, S)\right)$ we have

$$
\begin{equation*}
x-y \in s \quad \forall y \in \operatorname{spt} \mu_{C} \text { and } \forall(x, s) \in \text { spt } C . \tag{7}
\end{equation*}
$$

In particular, choosing T such that $(0, T) \in$ spt C (such T exists because $\left.0 \in \operatorname{spt} \mu_{C}=\pi(\operatorname{spt} C)\right),(7)$ implies $y \in T \quad \forall y \in \operatorname{spt} \mu_{C}$. Thus spt $\mu_{C} \subset T$ 。 and hence $C=\theta_{0} \underline{v}(T)$ by the constancy theorem 41.1.

Thus we have shown that, for $x \in U$ such that $42.5(i)$, (iii), (iv) hold, each element of $\operatorname{Var} \operatorname{Tan}(V, x)$ has the form $\theta_{O} \underline{V}(T)$, where T is an n-dimensional subspace of \mathbb{R}^{n+k}. On the other hand, since we are assuming (42.5(ii)) that $\frac{(x)}{V}$ exists, it follows that for continuous β on $G(n+k, n)$

$$
\begin{equation*}
\lim _{\rho \downarrow 0} \frac{\int_{G_{n}\left(B_{\rho}(x)\right)} \beta(S) d V(y, S)}{\mu_{V}\left(B_{\rho}(x)\right)}=\int_{G(n+k, n)} \beta(S) d \eta_{V}^{(x)}(S) \tag{8}
\end{equation*}
$$

Now let $\theta_{\mathrm{O}}^{\mathrm{V}}(\mathrm{T})$ be any such element of $\operatorname{Var} \operatorname{Tan}(\mathrm{V}, \mathrm{x})$ and select $\lambda_{j} \nLeftarrow 0$ so that $\lim \eta_{x, \lambda_{j}} \mathrm{~V}=\theta_{0} \stackrel{v}{=}(T)$. Then in particular

$$
\lim _{j \rightarrow \infty} \frac{\int_{G_{n}\left(B_{1}(0)\right)^{\beta(S) d V_{j}(y, S)}}^{\mu_{V_{j}}\left(B_{1}(0)\right)}}{l_{j}}=\beta(T)
$$

and hence (8) gives

$$
\beta(T)=\int_{G(n+k, n)} \beta(S) d \eta_{V}^{(x)}(S)
$$

thus showing that $\theta_{0} \underline{\underline{v}}(T)$ is the unique element of Var $\operatorname{Tan}(V, x)$. Thus $\lim _{\lambda \downarrow 0} \eta_{x, \lambda \#} V=\theta_{O} \underline{=}(T)$, so that T is the tangent space for V at x in $\lambda \downarrow 0$
the sense of 38.1 . This completes the proof.

The following compactness theorem for rectifiable varifolds is now a direct consequence of the rectifiability theorem 42.4 , the semi-continuity theorem 40.6, and the compactness theorem 4.4 for Radon measures, and its proof is left to the reader.
42.7 THEOREM Suppose $\left\{\mathrm{v}_{\mathrm{j}}\right\}$ is a sequence of rectifiable n -varifolds in U which are locally of bounded first variation in U ,

$$
\sup _{j \geq 1}\left(\mu_{v_{j}}(W)+\left\|\delta v_{j}\right\|(W)\right)<\infty \quad \forall W \subset c u
$$

and $\theta^{n}\left(\mu_{V_{j}}, x\right) \geq 1$ on $U \sim A_{j}$, where $\mu_{V_{j}}\left(A_{j} \cap W\right) \rightarrow 0$ as $j \rightarrow \infty \quad \forall W \subset \subset U$.

Then there is a subsequence $\left\{\mathrm{v}_{\mathrm{j}},\right\}$ and a rectifiable varifold v of locally bounded first variation in U, such that $V_{j^{\prime}} \rightarrow V$ (in the sense of Radon measures on $\left.G_{n}(U)\right), \Theta^{n}\left(\mu_{V}, x\right) \geq 1$ for $\mu_{V}-a . e . ~ x \in U$, and $\|\delta V\|(W) \leq \underset{j \rightarrow \infty}{\lim \inf }\left\|\delta V_{j}\right\|(W)$ for each $W \subset \subset U$.
42.8 REMARK An important additional result (also due to Allard [AW1]) is the integral compactness theorem, which asserts that if all the V_{j} in the above theorem are integer multiplicity, then V is also integer multiplicity. (Notice that in this case the hypothesis $\theta^{n}\left(\mu_{v_{j}}, x\right) \geq 1$ on $U \sim A_{j}$ is automatically satisfied with an A_{j} such that $\mu_{V_{j}}\left(A_{j}\right)=0$.)

Proof that V is integer multiplicity if the V_{i} are:

Let $W \subset C U$. We first assert that for $\mu_{V}-a . e . x \in W$ there exists c (depending on x) such that

$$
\begin{equation*}
\lim \inf \left\|\delta V_{i}\right\|\left(\bar{B}_{\rho}(x)\right) \leq C \mu_{V}\left(\bar{B}_{\rho}(x)\right) \quad, \rho<\min \{1, \operatorname{dist}(x, \partial U)\} . \tag{1}
\end{equation*}
$$

Indeed otherwise \exists a set $A \subset W$ with $\mu_{V}(A)>0$ such that for each $j \geq 1$ and each $x \in A$ there are $\rho_{x}>0, i_{x} \geq 1$ such that $\bar{B}_{\rho_{x}}(x) \subset W$ and

$$
\mu_{V}\left(\bar{B}_{\rho_{x}}(x)\right) \leq j^{-1}\left\|\delta V_{i}\right\| \cdot\left(\bar{B}_{\rho_{x}}(x)\right), i \geq i_{x} .
$$

By the Besicovitch covering lemma 4.6 we then have

$$
\mu_{\mathrm{V}}\left(\mathbb{A}_{\mathrm{i}}\right) \leq \mathrm{cj} j^{-1}\left\|\delta \mathrm{~V}_{\ell}\right\|(W), \ell \geq i
$$

where $A_{i}=\left\{x \in A: i_{x} \leq i\right\}$. Thus

$$
\mu_{V}\left(\mathbb{A}_{i}\right) \leq c j^{-1} \lim _{l \rightarrow \infty} \sup _{l}\left\|\delta V_{l}\right\|(W)
$$

and hence since $A_{i} \uparrow A$ as $i \uparrow \infty$ we have

$$
\mu_{\mathrm{V}}(\mathrm{~A}) \leq \mathrm{cj}^{-1}
$$

for some $c(<\infty)$ independent of j. That is, $\mu_{V}(A)=0$, a contradiction. and hence (1) holds. Since $\theta^{n}\left(\mu_{V}, x\right)$ exists $\mu_{V}-a . e . ~ x \in U$, we in fact have from (1) that for $\mu_{V}-a . e . ~ x \in U$ there is a $c=c(x)$ such that

$$
\begin{equation*}
\lim \inf \left\|\delta V_{i}\right\|\left(B_{\rho}(x)\right) \leq c \rho^{n}, 0<\rho<\min \{1, \operatorname{dist}(x, \partial U)\} . \tag{2}
\end{equation*}
$$

Now since $V=\underline{\underline{V}}(M, \theta)$, it is also true that for $\mu_{V}-$ a.e. $\xi \in$ spt μ_{V} we have $\eta_{\xi, \lambda \#} \mathrm{~V} \rightarrow \theta_{0} \underline{\underline{v}}(\mathrm{P})$ as $\lambda \downarrow 0$, where $\mathrm{P}=\mathrm{T}_{\xi} \mathrm{M}$ and $\theta_{0}=\theta(\xi)$. Then (because $V_{i} \rightarrow V$, and hence $\eta_{\xi_{, ~}, \lambda \#} V_{i} \rightarrow \eta_{\xi_{, ~} \# \#} V$ for each fixed $\lambda>0$), it follows that for $\mu_{V}-a . e . ~ \xi \in U$ we can select a sequence $\lambda_{i} \downarrow 0$ such that, with $w_{i}=\eta_{\xi, \lambda_{i} \#} V_{i}$,

$$
W_{i} \rightarrow \theta_{0} \underline{=}(P)
$$

and (by (2)) for each $R>0$

$$
\begin{equation*}
\left\|\delta W_{i}\right\|\left(B_{R}(0)\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

We claim that θ_{0} must be an integer for any such ξ; in fact for an arbitrary sequence $\left\{W_{i}\right\}$ of integer multiplicity varifolds in \mathbb{R}^{n+k} satisfying (3), (4), we claim that θ_{0} always has to be an ineger.

To see this, take (without loss of generality) $P=\mathbb{R}^{n} \times\{0\}$, let q be orthogonal projection onto $\left(\mathbb{R}^{n} \times\{0\}\right)^{\perp}$, and note first that (3) implies

$$
\begin{equation*}
p_{\mathbb{R}_{\#}^{n}}\left(W_{i} L G_{n}\left\{x \in \mathbb{R}^{n+k}:|q(x)|<\varepsilon\right\}\right) \rightarrow \theta_{0} \underline{\underline{v}}\left(\mathbb{R}^{n}\right) \tag{5}
\end{equation*}
$$

for each fixed $\varepsilon>0$. However by the mapping formula for varifolds (§15), we know that (5) says
$(5)^{\prime}$

$$
\underline{\underline{\mathrm{v}}}\left(\mathbb{R}^{\mathrm{n}}, \psi_{i}\right) \rightarrow \theta_{0} \underline{\underline{\mathrm{v}}}\left(\mathbb{R}^{\mathrm{n}}\right)
$$

where

$$
\begin{equation*}
\psi_{i}(x)=\sum_{y \in p_{\mathbb{R}^{n}}^{-1}(x) \cap\left\{z \in \mathbb{R}^{n+k}:|q(z)|<\varepsilon\right\}_{i}(y)} \theta_{i} \tag{6}
\end{equation*}
$$

$\left(\theta_{i}=\right.$ multiplicity function of W_{i}, so that ψ_{i} has values in $\mathbb{Z} \cap\{\infty\}$). Notice that (5)' implies in particular that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \mathrm{f} \psi_{i} d L^{n} \rightarrow \theta_{0} \int_{\mathbb{R}^{n}} f d L^{n} \quad \forall f \in C_{c}^{0}\left(\mathbb{R}^{n}\right) \tag{7}
\end{equation*}
$$

(i.e. measure-theoretic convergence of ψ_{i} to θ_{0}.)

Now we claim that there are sets $A_{i} \subset B_{1}(0)$ such that

$$
\begin{equation*}
\psi_{i}(x) \leq \theta_{0}+\varepsilon_{i} \quad \forall x \in B_{1}(0) \sim A_{i}, L^{n}\left(A_{i}\right) \rightarrow 0, \quad \varepsilon_{i} \ngtr 0 ; \tag{8}
\end{equation*}
$$

this will of course (when used in combination with (7)) imply that for any integer $N>\theta_{0}, \max \left\{\psi_{i}, N\right\}$ converges in $L^{1}\left(B_{1}(0)\right)$ to θ_{0}, and, since $\max \left\{\psi_{i}, N\right\}$ is integer-valued, it then follows that θ_{0} is an integer.

On the other hand (8) evidently follows by setting $W=W_{i}$ in the following lemma, so the proof is complete.

In this lemma, p, q denote orthogonal projection of \mathbb{R}^{n+k} onto $\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{n+k}$ and $\{0\} \times \mathbb{R}^{k} \subset \mathbb{R}^{n+k}$ respectively.
42.9 LEMMA For each $\delta \in(0,1)$, $\Lambda \geq 1$, there is $\varepsilon=\varepsilon(\delta, \Lambda, n) \in\left(0, \delta^{2}\right)$ such that if W is an integer multiplicity varifold in $B_{3}(0)$ with

$$
\begin{equation*}
\mu_{W}\left(B_{3}(0)\right) \leq \Lambda,\|\delta w\|\left(B_{3}(0)\right)<\varepsilon^{2}, \int_{B_{3}(0)}\left\|p_{S}-p\right\| d w(y, S)<\varepsilon^{2} \tag{*}
\end{equation*}
$$

then there is a set $A \subset B_{1}^{n}(0)$ such that $L^{n}(A)<\delta$ and, $\forall x \in B_{1}(0) \sim A$.

$$
\sum_{y \in p^{-1}(x) \cap \operatorname{spt} \mu_{W} \cap\{z:|q(z)|<\varepsilon\}} \theta^{n}\left(\mu_{W} \cdot y\right) \leq(1+\delta) \frac{\mu_{W}\left(B_{2}(x)\right)}{\omega_{n} 2^{n}}+\delta
$$

42.10 REMARK It suffices to prove that for each fixed N there is $\delta_{0}=\delta_{0}(\mathbb{N}) \in(0,1)$ such that if $\delta \in\left(0, \delta_{0}\right)$ then $\exists \varepsilon=\varepsilon(n, \Lambda, N, \delta) \in\left(0, \delta^{2}\right)$ such that (*) implies the existence of $A \subset B_{1}^{n}(0)$ with $L^{n}(A)<\delta$ and, for $x \in B_{1}^{n}(0) \sim A$ and distinct $y_{1} \ldots, y_{N} \in p^{-1}(x) \cap \operatorname{spt} \mu_{W} \cap\{z:|q(z)|<\varepsilon\}$,

$$
\begin{equation*}
\sum_{j=1}^{N} \Theta^{n}\left(\mu_{W}, y_{j}\right) \leq(1+\delta) \frac{\mu_{W}\left(B_{2}(x)\right)}{\omega_{n} 2^{n}}+\delta . \tag{**}
\end{equation*}
$$

Because this firstly implies an α-priori bound, depending only on n, k, Λ, on the number \mathbb{N} of possible points y_{j}, and hence the lemma, as originally stated, then follows. (Notice that of course the validity of the lemma for small δ implies its validity for any larger δ.)

Proof of 42.9 By virtue of the above Remark, we need only prove (**). Let $\mu=\mu_{W}$. and consider the possibility that $y \in B_{1}(0)$ satisfies
(1)

$$
\begin{aligned}
& \|\delta w\|\left(B_{\rho}(y)\right) \leq \varepsilon \mu\left(B_{\rho}(y)\right), 0<\rho<1 \\
& \int_{B_{\rho}(y)}\left\|p_{S}-p\right\| d w(z, S) \leq \varepsilon \rho^{n}, 0<\rho<1 .
\end{aligned}
$$

(2)

Let

$$
\begin{aligned}
& A_{1}=\left\{y \in B_{2}(0) \cap \text { spt } W:(1) \text { fails for some } \rho \in(0,1)\right\} \\
& A_{2}=\left\{y \in B_{2}(0) \cap \text { spt } W:(2) \text { fails for some } \rho \in(0,1)\right\}
\end{aligned}
$$

Evidently if $y \in \operatorname{spt} \mu_{W} \cap B_{2}(0) \sim A_{1}$ then by the monotonicity formula 40.2 we have
(3)

$$
\frac{\mu\left(B_{\rho}(y)\right)}{\omega_{n} \rho^{n}} \leq e^{\varepsilon} \frac{\mu\left(B_{1}(y)\right)}{\omega_{n}} \leq c, 0<\rho<1
$$

($c=c(\Lambda, n)$), while if $y \in A_{2} \sim A_{1}$ we have (using (3))
(4)

$$
\int_{B_{\rho}(y)}\left\|p_{S}-p\right\| d w(z, S) \geq \varepsilon \rho_{y}^{n} \geq c \varepsilon \mu\left(B_{\rho_{y}}(y)\right)
$$

for some $\rho_{y} \in(0,1)$. If $y \in A_{1}$ then
(5)

$$
\mu\left(B_{\rho_{y}}(y)\right) \leq \varepsilon^{-1}\|\delta w\|\left(B_{\rho_{y}}(y)\right)
$$

for some $\rho_{Y} \in(0,1)$.
since then $\left\{B_{\rho_{y}}(y)\right\}_{y \in A_{1} \cup A_{2}}$ covers $A_{1} \cup A_{2}$ we deduce from (4), (5)
and the Besicovitch covering lemma 4.6 that

$$
\begin{align*}
\mu\left(A_{1} \cup A_{2}\right) & \leq c \varepsilon^{-1}\left(\int_{B_{3}(0)}\left\|p_{S}-p\right\| d w\left(a_{,} s\right)+\|\delta w\|\left(B_{3}(0)\right)\right) \tag{6}\\
& \leq c \varepsilon
\end{align*}
$$

by the hypotheses on W.

Our aim now is to show (**) holds whenever $x \in B_{1}^{n}(0) \sim p\left(A_{1} \cup \bar{A}_{2}\right)$. In view of (6) this will establish the required result (with $A=p\left(A_{1} \cup A_{2}\right)$). So let $x \in B_{1}^{n}(0) \sim p\left(A_{1} \cup A_{2}\right)$. In view of the monotonicity formula 40.2 it evidently suffices (by translating and changing scale by a factor of $3 / 2$) to assume that $\left.x=0 \in B_{1}^{n}(0) \sim p\left(A_{1} \cup A_{2}\right)\right)$. We shall subsequently assume this.

We first want to establish the two formulae, for $y \in B_{1}(0) \sim\left(A_{1} \cup A_{2}\right)$ and $\tau>0$:

$$
\begin{equation*}
\theta^{n}(\mu, y) \leq e^{\varepsilon \sigma} \frac{\mu\left(U_{\sigma}^{2 \tau}(y)\right)}{\omega_{n} \sigma^{n}}+c \varepsilon \sigma / \tau, \quad 0<\sigma<1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu\left(U_{\sigma}^{\tau}(y)\right)}{\omega_{n} \sigma^{n}} \leq e^{\varepsilon \rho} \frac{\mu\left(U_{\rho}^{2 \tau}(y)\right)}{\omega_{n} \rho^{n}}+c \varepsilon \rho / \tau, \quad 0<\sigma<\rho \leq 1 \tag{8}
\end{equation*}
$$

where

$$
U_{\sigma}^{\tau}(y)=B_{\sigma}(y) \cap\left\{z \in \mathbb{R}^{n+k}:|q(z-y)|<\tau\right\} .
$$

Indeed these two inequalities follow directly from 40.2 and 40.4 . For example to establish (7) we note first that 40.2 gives (7) directly if $\tau \geq 0$, while if $\tau<\sigma$ then we first use 40.2 to give $\theta^{n}(\mu, y) \leq e^{\varepsilon \tau} \frac{\mu\left(B_{\tau}(y)\right)}{\omega_{n} \tau^{n}}$ and then use 40.4 with h of the form $h(z)=f(|q(z-y)|), f(t) \equiv 1$ for $t<\tau$ and $f(t) \equiv 0$ for $t>2 \tau$.

Since $\left|\nabla^{S} f(|q(z-y)|)\right| \leq f^{\prime}(|q(z-y)|)\left|p_{S}-p\right| \quad$ (Cf. the computation
in 19.5) we then deduce (by integrating in 40.4 from τ to σ and using (3))

$$
\frac{\mu\left(B_{\tau}(y)\right)}{\omega_{n} \tau^{n}} \leq \frac{\mu\left(U_{\sigma}^{2 \tau}(y)\right)}{\omega_{n} \sigma^{n}}+c \varepsilon \sigma / \tau
$$

(8) is proved by simply integrating in 40.4 from σ to ρ (and using (3)).

Our aim now is to use (7) and (8) to establish
(9)

$$
\sum_{j=1}^{N} \frac{\mu\left(U_{\sigma}^{\tau}\left(y_{j}\right)\right)}{\omega_{n} \sigma^{n}} \leq\left(1+c \delta^{2}\right) \frac{\mu\left(B_{2}(0)\right)}{\omega_{n} 2^{n}}+c \delta^{2}
$$

with $c=c(n, k, N, \Lambda)$, provided $\quad 2 \delta^{2} \sigma \leq \tau \leq \frac{1}{4} \min _{j \neq \ell}\left|y_{j}-y_{\ell}\right|$.
$y_{j} \in \operatorname{spt} \mu \cap p^{-1}(0) \cap\{z:|q(z)|<\varepsilon\}, 0 \notin p\left(A_{1} \cup A_{2}\right)$. (In view of (7) this will prove the required result (**) for suitable $\delta_{0}(N)$.)

We proceed by induction on N. $N=1$ trivially follows from (8) by noting that $U_{\rho}^{2 \tau}\left(y_{1}\right) \subset B_{\rho}\left(y_{1}\right)$ (by definition of $U_{\rho}^{2 \tau}\left(y_{1}\right)$) and then using the monotonicity 40.2 together with the fact that $\left|Y_{1}\right|<\varepsilon$. Thus assume $N \geq 2$ and that (9) has been established with any $M<N$ in place of N.

Let y_{1}, \ldots, y_{N} be as in (9), and choose $\rho \in[\sigma, 1)$ such that $\min _{j \neq \ell}\left|q\left(y_{j}\right)-q\left(y_{\ell}\right)\right|\left(=\min _{j \neq \ell} \quad y_{j}-y_{\ell} \mid\right)=4 \delta^{2} \rho$, and set $\tilde{\tau}=2 \delta^{2} \rho(\geq 2 \tau)$. Then

$$
\begin{aligned}
\frac{\mu\left(U_{\sigma}^{\tau}\left(y_{j}\right)\right)}{\sigma^{n}} & \leq \frac{\mu\left(U_{\sigma}^{\frac{1}{2} \tilde{\tau}}\left(y_{j}\right)\right)}{\sigma^{n}} \\
& \leq e^{\varepsilon \rho} \frac{\mu\left(U_{\rho}^{\tilde{\tau}}\left(y_{j}\right)\right)}{\rho^{n}}+c \varepsilon \quad \text { (by (8)) }
\end{aligned}
$$

$c=c(n, k, \delta)$. Now since $\tilde{\tau}=\frac{1}{2} \min _{j \neq \ell}\left|q\left(y_{j}\right)-q\left(y_{l}\right)\right|$ we can select $\left\{z_{1}, \ldots, z_{Q}\right\} \subset\left\{y_{1}, \ldots, y_{N}\right\} \quad(Q \leq N-1)$ and $\hat{\tau} \leq c \tilde{\tau}$ such that $\hat{\tau} \geq 3 \delta^{2} \rho$ and

$$
\bigcup_{j=1}^{\mathbb{N}} U_{\rho}^{\tilde{\tau}}\left(y_{j}\right) \subset \bigcup_{\ell=1}^{Q} \rho\left(1+c \delta^{2}\right)^{\left(z_{l}\right)}
$$

where $c=c(\mathbb{N})$, and such that $\quad \hat{\tau} \leq \frac{1}{4} \min _{i \neq j}\left|z_{i}-z_{j}\right|$. Since $c \delta^{2}<1 / 2$ for $\delta<\delta_{0}(\mathbb{N})$ (if $\delta_{0}(N)$ is chosen suitably) we then have $\hat{\tau} \geq 2 \delta^{2} \tilde{\rho}$ and

$$
\sum_{j=1}^{N} \frac{\mu\left(U_{\rho}^{\tilde{\tau}}\left(y_{j}\right)\right)}{\rho^{n}} \leq\left(1+c \delta^{2}\right) \sum_{j=1}^{Q} \frac{\mu\left(U_{\tilde{\rho}}^{\hat{q}}\left(z_{j}\right)\right)}{\tilde{\rho}^{n}}
$$

where $\tilde{\rho}=\left(1+c \delta^{2}\right) \rho$ and $c=c(N)$. Since $Q \leq N-1$, the required result then follows by induction (choosing ε appropriately).

