
CHAPTER 7 

AREA MINIMIZING CURRENTS 

c£'his chapteJ~ provides an int:roduction to the theor_y of area min:L.'11izing 

curren·ts. In the first sec'cion (§33) of the chapter ;,e derive some basic 

preliminary properties, and in particular we discuss the fact that ·the 

integer mul·tiplicity varifold corresponding to a minimizing· current is 

stable (and indeed minimizing in a certain sense). In §34 t.here are some 

exis·tence and compactness results, including the important theorem that if 

< co then T is also minimizing in 

U and the corresponding varifolds converge in the measure theoretic sense 

of §15. This enables us to discuss tangent cones and densities in §35, and 

in particular make some regularity statements for minimizing currents in §36. 

Finally, in §37 we develop the standard codimension l regularity ·theory, due 

originally to De Giorgi [DG], Fleming [FW], Almgren (A4], J. Simons (SJ] and 

Federer [FH2] . 

§33. BASIC CONCEPTS 

Suppose A is any subset of 
n+k 

JR ,AcU, U open in 

T E Vn(U) an integer multiplicity current. 

33.1 DEFINITION We say that T is minimizing in A if 

n+k 
JR and 

whenever w cc u , as 3T (in U) and spt(S-T) is a compact subset of 

A n w • 
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There are two especially important cases of this definition: 

(1) when A U 

(2) when A = N n U, N an (n+k1 ) -dimensional embedded submanifold of 

Rn+k (in the sense of §7). 

As a matter of fact, these are the only cases we are interested in here. 

CorJcesponding to the ctu::r.ent T = I(M,8,t;) E vn (U) 'l'l'e havc9 the integer 

multiplicity varifold V = ~(M,8) As one would expect, V is stationary 

in U if T is minimizing in U and ClT = 0 ; indeed we show more: 

33.2 LEMMA Suppose T is minimizing in N n U , where N is an 

' +k ) d ·m -: l c2 subman"· .Pold of .,.,n+k (k1., k) ,n 1- 1- ensvona vJ' = - and suppose ClT = 0 in 

u . Then v is stationary in N n u in the sense of 16.4, so that in 

particular v has locally bounded generalized mean curvature in u (in 

the sense of 16.5). 

In fact V is minimizing in N n U in the.sense that 

(*) 

whenever w cc u and ¢ is a diffeomorphism of u such that ¢(Nnu) c Nnu 

and ¢I U ~ K = 1 for some comnact 
=u~K "'"' 

K c W n N. 

Note: Of course N = U (when k 1 =k) is an important special case; then V 

is stationary and in fact stable in U . 

33.3 REMARK In view of 33.2 (together with the fact that 8::: 1) we can 

apply the theory of chapters 4 and 5 to V in particular we can represent 

T = ~(M*,e*,t;) where M* is a relatively closed countably n-rectifiable 

subset of U , and 6* is an upper semi-continuous function on M* with 

6*::: 1 everywhere on M* (and 6* integer-valued Hn- a.e. on M*) 
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Proof of 33.2 Evidently (in view of the discussion of §16) the first claim 

in 33.2 follows from (*) (by taking ¢= ¢t in (*) , ¢t is in 16.1 with 

U n N in place of U) . 

To prove ('') >o•re first no·te tha'c, for any W, ¢ as in the statement of 

the ·theorem, 

(l) 

by Remark 27.2(3). Also, since Cl'r 

(2) 

Finally, 

(3) 

lV1 (OJ T) 
=W , ~~ 

0 (in U) , v'fe have 

0 • 

By virtue of (2), (3) we are able to use the inequality of 33.1 with 

S = ¢#T . This gives (*) as required by virtue of (l) . 

We conclude this section with the following useful decomposition lemma: 

33.4 LEMMA Suppose T 1 , T 2 E V11 (UJ are integer multiplicity and suppose 

T1 + T2 is minimizing in A , A c u , and 

for each W cc u . Then T1 , T2 are both minimizing in A . 

Proof Let X E D11 (U) be integer multiplicity with spt X c K, K a 

compact subset of A n W , and with ax = o . Because is minimizing 

in A >ve have (by Definition 33 .1) 



However since ~(T1+T2 ) 

~(T2 ) , this gives 
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In view of the arbitrariness of X , this establishes that T1 is minimizing 

in A n W (in accordance with Definition 33 .1) . Interchanging T 1 , T 2 in 

the above argument, we likewise deduce that T2 is minimizing in A n W 

§34. EXISTENCE AND COMPACTNESS RESULTS 

We begin with a result which establishes the rich abundance of area 

minimizing currents in Euclidean space. 

34.1 LEMMA Let S E Vn_1 (~n+k) be integer multiplicity with spt s compact 

and as = o Then there is an integer multiplicity current 

such that spt T is compact and ~ (T) s ~ (R) for each integer multiplicity 

R E V (~n+kl with spt R compact and oR = s . 
n 

34.2 REMARKS 

(1) Of course T is minimizing in Rn+k in the sense of Definition 33.1. 

(2) By virtue of 33.2 and the convex hull property 19.2 we have auto-

matica1ly that spt T c convex hull of spt S . 

n-1 

(3) ~(T) n S c~(S) 

by virtue of the isoperimetric theorem 30.1. 

Proof of 34.1 Let 

R is integer multiplicity, spt R compact, oR= S} . 
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Evidently I 8 t 0 o (e.g. 0 ~ S E I 5 • ) Take any sequence {Rq} c I 5 \vith 

(1) lim M(R ) = infREI ~(R) , 
q+oo = q s 

let BH(O) be any ball in 
n+k 

JR such that spt S c BR (0) , 

f JRn+k -~ BR (0) be ·the nearest point (radial) re·tract of 

(0) Then Lip f = 1 and hence 

(2) 

on t.he other hand Clf,H 
11 q 

!li(f R ) :0 M(R ) 
= # q = q 

f#CJR . q = f s = 
# 

because 

spt S c (0) o Thus f#Rq c I 8 and by (1), (2) we have 

(3) lim !'1 (f#R ) = inf El ~(R) 
q+oo - . q R S 

(0) 

and let 

onto 

and 

Now by the compactness theorem 27.3 there is a subsequence {q'} c {q} and an 

integer multiplicity current such that and (by (3) 

and lower semi-continuity of mass with respect to weak convergence) 

(4) 

However spt T c BR (0) 

~(T) :': infREI ~(R) 
s 

and 

T E I 5 , and the le~ma is established (by (4)) . 

s ' so that 

The proof of the following lemma is similar to that of 34.1 (and again 

based on 27.3), and its proof is left to the reader. 

34o3 LEMMA Suppose N ·is an (n+k1 )-dimensionaZ compact c1 submanifoZd 

embedded in JRn+k and suppose R1 E V n (JRn+k) is given such that aR1 = 0 , 

spt R1 c N and 
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for some integer multiplicity s E V (JRn+kl with spt s c N} i' 0 . 
n+l 

34.4 REMARKS 

Then there is T E IR such that 
1 

(1) R- R1 = Cls with S integer multiplicity and spt S c N means 

that represent homologous cycles in the n-th singular homology class 

(with integer coefficients) of N (See [FHl] or [FF] for discussion.) 

(2) It is quite easy to see that T is locally minimizing in N 

thus for each ~ E spt T there is a neighbourhood U of ~ such that T 

is minimizing in N n U 

We conclude this section with the following important compactness 

theorem for minimizing currents: 

34.5 THEOREM Suppose {Tj} is a sequence of minimizing cv~rents in u 

with < co for each w cc u and suppose 

T. ~ T E V (U) 
J n 

Then T is minimizing in u and ]JT · + \lT 
J 

(in the usual 

sense of Radon measures in u). 

34.6 REMARKS 

(1) Note that ).!T· + ).!T means the corresponding sequence of varifolds 
J 

converge in the measure theoretic sense of §15 to the varifold associated 

with T . (T is automatically integer multiplicity by 27.3.) 

(2) If the hypotheses are as in the theorem, except that spt T. c N. c U 
J J 

and Tj is minimizing in Nj , {N.} a sequence of c1 embedded 
J 

(n+k1 )-dimensional submanifolds of JRn+k converging in the c1 sense to 
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(*) 

N f N c U an embedded (n+k1 )-dimensional submanifold of t.hen 

T minimizes in N (and 1;1e still have ll ~,. ]lT 
Tj 

in the sense of Radon 

measures in u) We leave t:his modification of 34.5 to the reader. (It 

is easily checked by using suitable local represelTtations for the N. and 
J 

by obvious mod if ica tions of the proof of 3 4. 5 given belmv. ) 

Proof of 34.5 Let K c U be an arbitrary compact set and choose a smooth 

cp ' U + [0,1] such that ¢ _ 1 in some neighbourhood of K and 

spt ¢ c {x E U dist(x,K) < t:} where 0 < s < dist. (K, 3 U) is arbitrary. 

For 0 < A < 1 , let 

W, {x E U : ¢ (x) > A} • 
1\ 

'rhen 

(1) 

for each A , 0 S A < 1 • 

By virtue of 31.2 we know tha·t '\q(Tj,T) + 0 for each W cc U, 

hence in particular we have 

(2) T - T. 
J 

oR. + S. , ~W (RJ.) + ~ (SJ.) -+ 0 
J J 0 0 

(W0 {xE u: rjJ(x) > O}) 

By the slicing theory (and in particular by 28.5) we can choose 

0 < a< 1 and a subsequence { j '} c { j} (subsequently denoted simply by 

{j }) 

(3) 

where 

(*) 

such that 

Cl(R.LW l = (ClR.) Lw + P. 
J a J a J 

spt P j c ClW 
(]. 

P. 
J 

is integer multiplicity, and 

in U 

3 1jJ. : u+ U, 1jJ .IN. in a diffeomorphism onto 
J J J 

with respect to the c1 metric. 

Thus N, and 1P . -+ 
J 

1 
=U 

locally 
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M(P .) + 0 • = J 

We can also of course choose a to be such that 

(5) M(T. Law > = o 
= J a 

Vj and M(TL aw > 
= Ci. 

Thus, combining (2), (3), (4) we have 

(6) 

with R. 
J 

S. integer multiplicity (R. = R. L W , S. 
J J J a J 

(7) M(R.) + M(S.) .... 0 • 
= J = J 

0 • 

s . L w + PJ.) with 
J Ci. 

Now let x E Vn(U) be any integer multiplicity current with ax 0 

and spt X c K . We want to prove 

(8) ~ (T) S ~ (T+X) . 
a a 

(In view of the arbitrariness of K, X this will evidently establish the 

fact that T is minimizing in U • ) 

By (6), we have 

(9) 

Now since 

we have 

(10) 

for A > a 

M(T. Law > = J a 

~ (T+X) 
a 

~ ~- (T.+X+aR.) - M(S.) 
=wa J J = J 

is minimizing and a (X+ClR .) 
J 

0 with spt(x+aii. .) c w 
J a 

But by (3) we have M(ClR. Law) = M=(PJ.) .... 0 I and by (5) = J a 

0 I ~ (T L awa) = 0 . Hence letting A .j. a in (10) we get 
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t\J (T .+X+ClR.) ::: 
a J J 

and ·therefore from (9) \ve obtain 

(11) 

(12) 

~\J (T+X} :::: 
CJ. 

In particular, setting X 

f:'I1,1 (T) ;:: 
CJ. 

- E. E. f 0 . 
J J 

0 , we have 

E. + 0 • 
J 

Using the lower semi-continuity of mass with respect 'co weak convergence 

in (11), we then have (8) as required. 

It thus remains only to prove that ~T. + ~T in the sense of Radon 
J 

measures in U . First note that by (12) we have 

so that (since 

lim sup M_ (T.) ~ M (T) , 
=W J '='N 

a a 

K c W c {x: dist(x,K)<s} 
a 

by cons·truction) 

lim sup ~T. (K) ~ ~{x:dist(x,K)<s}(T) · 
J 

Hence, letting s + 0 

(13) lim sup ~T. (K) ~ ~T (K) . 
J 

(We actually only proved this for some subsequence, but we can repeat the 

argument for a subsequence of any given subsequence, hence it holds for the 

original sequence {T.} . ) 
J 

By the lower semi-continuity of mass with respect to weak convergence, 

we have 

(14) ~T {W) ~ lim inf ~T. (W) 
J 

V open W cc u . 
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Since (13), (14) hold for arbitrary compact K and open W c U, it 

now easily follows (by a standard approximation argument) that 

Jtd~ + jfd~ for each continuous f with compact support in U , as 
T, T 

J 

required. 

§35. TANGENT CONES AND DENSITIES 

In this section we prove the basic results concerning tangent cones and 

densities of area minimizing currents. All results depend on the fact that 

(by virtue of 33.2) the varifold associated with a minimizing current is 

stationary. This enables us to bring into play the important monotonicity 

results of Chapter 4. 

Subsequently we take N to be a smooth (at least c2 ) embedded 

(n+k1 )-dimensional submanifold of 
n+k 

JR (kl :Ok) , U open in lRn+k and 

(N- N) n U = fll • Notice that an important case is when N = U (when k 1 = k) . 

35.1 THEOREM Suppose T E V (U) 
n 

is minimizing in U n N, spt T c U n N 

and aT = 0 in u . Then 

(1) exists everywhere in u and 

continuous in u ; 

(2) For each x E spt T and each sequence 

subsequence {;\J,,} such that n T 
X,Aj,# 

C in 

is integer multiplicity and minimizing in 

35.2 REMARKS 

is upper semi-

{A,,}+o, 
J 

where 

there is a 

'V!t>O, and 

If C is as in (2) above, we say that C is a tangent cone for T 



203 

at x . If spt C is an n-dimensional subspace P (notice that since C 

is in·teger multiplicity and ac ~ 0 ' it then follows from 26.27 that 

C = mi[P] for some m E ZZ , assuming P has constant orientation) then 

we call C a tangent plane for T a·t x • 

(2) No·tice that is not clear whe·ther or not there is a unique 

·tangent cone for T at x thus it is an open ques·tion 'N-hether or not C 

depends on the particular sequence p,j} or subsequence [Aj.} used in its 

definition. Recently it has been shown ([SL3]) that if C is a tangent cone 

of T at x such tha·t 1 for all 1: E spt C ~ { 0} then C is 

the unique tangent cone for T at x , and hence as A + o 

Also B. 'O'lhite [WB ] has shown in case n = 2 that C is always unique 

(with spt C consisting of a union of 2-planes mee·ting transversely at 0) • 

Proof of 35.1 By virtue of Lemma 33.2 we can apply the monotonicity formula 

of 17.6 (with a = 1) and Corollary 17.8 in order to deduce tha'c 

exists for every x E U and is an upper semi-continuous function of x in 

u . 

Similarly the existence of C as in part (2) of 35.1 follows directly 

(*) 
from Theorem 19.3 and the compactness theorem 34.5 (more particularly from 

Remark 34.6 with N. Notice that Remark 34.6 establishes first 
J 

that C is minimizing only in the (n+k1 )-dimensional subspace TxN c Rn+k 

However since orthogonal projec·tion of Rn+k onto T N 
X 

does not increase 

area, and since spt C c TxN , it then follows that C is area minimizing 

in 

(*) 

n+k 
R 

Actually 19.3 gives+ n 0 , A# V C = V C for the varifold V C associated with 

C, but then x/\ C(x)=O and hence nO,A#C=C by 26.22 with 

h (t,x) = tAx+ (1-t) x . 
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* 35.3 THEOREM Suppose T E Vn(U) is minimizing in u n N. spt T c u n N ' 

and CJT = 0 (in Ul • Then 

0 'rf a > 0 

(2) There is a set F c E (E as in (1)) with Hn- 2+a(F) = 0 

'rf a > 0 and such that for e.aah x E spt T F there is a tangent plane (see 

3 5. 2 ( 1) above for terminology) for T at x 

Note: We do not claim E , F are closed. 

The proof of both parts is based on the abstract dimension reducing 

argument of Appendix A. In order to apply this in the context of currents 

we need the observation of the following remark. 

35.4 REMARK Given an integer multiplicity current there 

is an associated function where 

(n+k.) N = ' ' n, /, such that (writing 88 (x) 

~~ (x) is the jth component of the orientation 
+ 

where S(x) relative to the 

usual orthonormal basis e, II ••• II e, 
ll ln 

1 S i 1 < i 2 < •.• < in S n+k for 

A (JRn+k) (ordered in any convenient manner) . Evidently, for any x E lRn+k , 
n 

<Ps (x+A.y) 

and, given a sequence {si} c Vn(I+Rn+k) of such integer multiplicity 

currents, we trivially have 

~j dHn + ~j dHn 'rf 'E {1 } '~'s '~' J , ••• ,N ' s 
l 

* Cf. Almgren [A2] 

S, ~ S 
l 
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\Js. + lls 
l 

\i\!e shall also need ·the follO\ving· simple leiTLma, the proof of which is 

1ef"t to the reader" 

35. 5 LE~1~1A Suppose s is 1-n. , as = o and 

for some positive integer rn < n . (Recall n+k 
T)x' 1 : y + y-x ' y E JR • ) Then 

where Cls 0 0 and s0 is minimizing in JRn+k-m 

Purthe.rmore if s is a cone (i.e. nO,A#S = S for each A> 0) , then 

so is s 0 . 

Proof of 35.3(1) For each positive integer rn and B E (0,1) let 

Now T is minimizing in U n N so by the monotonicity formula of 17.6 

(which can be applied by virtue of 33.2) we have, firstly, that um,B is 

open, and secondly that for each x E um,B , 

such that 

(1) 
n w (J 

-n 

't/ (J < p ' 

there is some ball 

y E B (x) • 
p 

B2 (x) c u a 
p m,!-J 
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We ultimately want to prove 

Hn-3~ ( ~ {x E u S : m-1+13 < 0n (ll ,x) < m-S}) 0 l m, T 
m=l 

for each sufficiently small a, S > 0 , and, in view of (1), by a rescaling 

and translation it will evidently suffice to assume 

(2) 

and then prove 

(3) 

u ' n w 0 
n 

't/ 0 < 1 , y E B 1 (0) , 

Hn-3+a{x E B1 (0) Gn ( ) 1 13} - ).!T,x ::: m- + 0 . 

We consider the set T of weak limit points of sequences s. = n T 
~ X.,A.# 

~ ~ 

where lx.l < 1-A. , 0< A.< 1 , with lim x; E B1 (0) and lim A.= A:': 0 both 
~ ~ ~ ~ 1 

existing. For any such sequence Si we have (by (2)) 

< 00 

for each W cc nx,A(U) in case A > 0 I and for each 
n+k 

W cc JR in case 

A = 0 • Hence we can apply the compactness theorem 34.5 to conclude that 

each element S of T is integer multiplicity and 

(4) S minimizes in n ,U n n ,N in case S 
X 1 1\ X 1 A 

with lim x. = x and lim A. 
1 1 

(5) S minimizes in all of 

with lim x. = x and lim A. 
~ ~ 

35.1 (2).) 

A > 0 1 and 

S =lim nx.,A.#T 
1 1 

0 . (Cf. the discussion in the proof of 
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For convenience \Ve define 

I llx, >Y in case lim A.> o (as in ( 4) ) 
~ 

(6) u s l :IRn+k in case lim A.= o (as in (5)) ' l 

so that s E ·o n(Usl for ea.ch s E r 

Now by definition one readily checks ·that 

(7) T 0 < A< l ' I X I < 1-A ' 

and, by (2), 

(8) V y E u~ , S E T . .. , 

Furthermore by using 34. 5 tog· ether with the monotonici ty formula 17. 6, one 

readily checks that if Si ~ S (Si,S E T) and if y,yi E B 1 (0) with 

lim yi = y , then 

(9) 
n 

::: lim sup 8 (]15 . ,y i) 
l 

It now follows from (7), (8), (9) and 34.5 that all the hypotheses of 

Theorem A.4 (of Appendix A) are satisfied with (using notation of Remark 35.4) 

F {¢5 :sET} 

and with sing defined by 

{xEU ·8n(]15 ,•) :::m-l+S} s. 

for S E T . We claim that in this case the additional hypothesis is 

satisfied with d = n-3. Indeed suppose d::: n-2 ; then there is S E T and lly, A#S = s 

(n-2) -dimensional subspace of JRn+k, L c sing ¢ . Since we 1/ y EL , A> 0 with L an 
s 

can make a rotation of JRn+k to bring L into coincidence with JRn- 2x {o} , 

we assume that L Then by Lemma 35.4 we have 
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cone in 

2-planes, with 
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s [ n-2] 
JR X SQ I 

N = 2+k , a 2-dimensional area minimizing 

Then spt s0 

P. n P. = {0} 
l J 

is contained in a finite union 
q 
u P. 

l 
of 

i=l 
IJi i j . (For a formal proof of this 

characterization of 2 dimensional area minimizing cones, see for example [WB l .) 

In particular, since is constant on P. ~ {O} 
l 

(by the constancy 

theorem 26. 27) , we have that. 
n 

G (Jls, y) E .'iZ for every and by 

(8) it follows that IJ y That is, sing a 

contradiction,hence we can take d = n-3 as claimed. We have thus established 

(3) as required. 

Proof of 35.3(2) The proof goes similarly to 35.3(1). This time we assume 

(again without loss of generality) that 

(1) u 

and we prove that T has a tangent plane at all points of spt T n B1 (0) 

except for a set F c spt T n s 1 (0) with 

(2) Hn-2+a(F) 0 \1 ct > 0 . 

T is as described in the proof of 35.3(1), and for any SET and 

i3 > 0 we let 

{xE sptS Bp(x) c US and 

h(spt S,L,p,x) < Bp for some p > 0 

and some n-dimensional subspace L of Rn+k} , 

where US is as in the proof of 35.3(1) (so that S E Vn(U8 )), and where we 

define 



with 

(2) 

and 

(3) 

q 
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h(spts,L,p,x) = supyEsptsnB (x) jq(y-x) I ' 
p 

the orthogonal projection of JRn+k onto 
1 

L 

Now no-tice that (Cf. the proof of 35.3 (1)) 

n T x,A# T 'if 0 < A< 1 , I X I < 1-A ' 

Furthermore if then by the monotonicity formula 

17.6 it is quite easy to check that if y E RS(S) and if with 

then for all sufficiently large j Because of this, 

and because of (2) , (3) above, it is now straightforward °CO check that the 

hypotheses of Theorem A.4 hold with (again in notation of Remark 35. 4) 

F {¢5 :sET} 

and 

(Notice that is completely determined by and hence this 

makes sense.) In this case we claim that d s n-2. Indeed if d > n-2 

(i.e. d = n-1) then 3 S E T such that 

'if x E L , A > o , and L c sing ¢5 

where L is an (n-1)-dimensional subspace. Then, supposing without loss of 

generality that L = JRn-l x {o} , we have by Lemma 35.5 that 

(3) s 
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where is a !-dimensional minimizing cone in 
k+l 

:R . However it is easy 

to check that such a !-dimensional minimizing cone necessarily has the form 

where m E ~ and ~ is a !-dimensional subspace of :Rk+l Thus (3) gives 

that S m[L] where L is an n-dimensional subspace and hence 

0 , a contradiction, so d ~ n-2 as claimed. 

We therefore conclude from Theorem A.4 that for each S E T 

n-2+a 
H (spts- Rs <sl n B1 <OJ> 0 v (). > 0 . 

If S. + 0 we thus conclude in particular that 
J 

co 

(4) 0 

However by (1) we see that 

co 

v (). > 0 . 

X E n RS. (T) ~ T has a tangent plane at x, 
j=l J 

and therefore (4) gives (2) as required. 

§36. SOME REGULARITY RESULTS (Arbitrary Codimension) 

In this section, for T E Vn(U) any integer multiplicity current, we 

define a relatively closed subset sing T of U by 

36.1 sing T spt T - reg T , 

where reg T denotes the set of points ~ E spt T such that for some p > 0 

there is an m E ~ and an embedded n-dimensional oriented c1 submanifold 

M of :Rn+k with T = m[M] in Bp (~) . 
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Recently F.J. Almgren [A2] has proved the very· important theorem that 

Hn- 2+a (sing T) = 0 \j a > 0 in case spt T c N, 8T = 0 and T is minimizing 

in N , where N is a smooth embedded (n+k1 )-dimensional submanifold of 

JRn+k '!.'he proof is very non-trivial and requires development of a whole 

new range of results for minimizing currents. ;;\le here restrict ourselves 

to more elemen·tary results. 

Firstly, the follov<ing theorem is an immediate consequence of Theorem 

24.4 and Lemma 33.2. 

36.2 THEOREM Suppose T E Vn(U) is integer multiplicity and minimizing in 

u n N for some embedded c 2 (n+k1 ) -dimensional submanifold N of .Rn+k 

0 , and suppose spt T c un N dT = 0 (in U) Then reg T 

is dense in spt T . 

(Note that by definition reg T is relatively open in spt T . )_ 

The following is a useful fact; however its applicability is limited 

by the hypothesis that l . 

36.3 THEOREM Suppose {T.} c D (U) , T E Vn(U) 
l n 

are integer multiplicity 

currents with Ti minimizing in u n N. 
]. 

T minimizing in 

embedded (n+k1 ) -dimensional c 2 submanifolds 

ClT. = dT = 0 
]. 

(in U) • 

sense in U , T. ~ T in 
J 

Suppose also that N. 
l 

and suppose 

and sp'c T i c N i , spt T c N , 

converges to N in the 

y E N n u with 

y lim yj 

y E reg T 

where yj is a sequence such that yj E ~pt Tj 1:/j . Then 

and for all sufficiently large j 

Proof By virtue of the monotonicity formula 17.6(1) (which is applicable 

by 33.2) it is easily checked that 



212 

n n 
lim sup 8 (~T.'yj) S 8 (~T,y) 1 , 

J 

hence (since 
n e <~T . , y j J ::: 1 

J 

we conclude 

Hence by Allard's theorem 24.2 we have y E reg T 

sufficiently large j . (33.2 justifies the use of 24.2.) 

Next we have the following consequence of Theorem A.4 of Appendix A. 

36.4 THEOREM Suppose T is as in 36. 2, and in addit·ion suppose E; E spt T 

Proof Let 

(1) 

Then there is a p > 0 such that 

Hn- 2+a (sing T n B (s)) = 0 
p 

n w 0 
n 

and let Bp(s) 

< 2 (1-a/2) 

V a > o . 

be such that B2P(sl c u and 

V 1; E spt T n Bp (s) , 0 < 0 < p • (Notice that such p exists by virtue of 

the monotonicity formula 17.6(1), which can be applied by 33.2.) Assume 

without loss of generality that E; = 0 , p = 1 and U = B2 (0) , and 

define T to be the set of weak limits S of sequences {si} of the 

form S. 
l 

< (1-A.), O<A.<l 
l l 

lim A. - A are assumed to exist. Notice that 
l 

where lim x. and 
l 

for each W cc llx,A (U) in case A > o and for each 
n+k 

W cc JR in case 

A= 0 . Hence by the compactness theorem 34.5 any such S is integer 

multiplicity in u8 

(u U · A > o u JRn+k · A o ) S = llx, A 1n case , s = ln case = 

and (Cf. the proof of 35.1(2)) 



(2) 

(3) 

(4) 

s minimizes in 
n+k 

JR 
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in case 

One readily checks that, by definii:ion of T , 

n r 
y,T# 

T ' 0 < l < 1 1 ! y I < l-T 

0 • 

Furthenuore \'Je note tha'c (by (1)) 

{5) 

and by Allard's theorem 24. 2 there is 8 > 0 such ·that 

(6) sing S 

Now in view of (2), (3), (4), (5) , (6) and the upper semi-continuity 

of Gn as in (9) of the proof of 35.3(1), all the hypotheses of Theorem A.4 

of Appendix A are satisfied with F = {¢5 : SET} (notation as in Remark 35.4) 

and with sing ¢5 = {xE u5 : 8n(]l8 ,x) :::: l+o} <=singS by (6)). In fact we 

claim that in this case we may ·take d = n-2 1 because if d = n-1 3 S E T and 

n s = S V x E L , ~- > 0 , where LC sing S is an (n-1) dimensional subspace of 
x,A# 

JRn+k, then (Cf. the last part of the proof of 35.3(2)) we have S = m[Q] 

for some n-dimensional subspace Q . Hence sing s = 0, a contradiction. 

The following lemma is often useful: 

36.5 THEOREM Suppose c V (JRn+k) is minimizing in n+k Clc = o and JR 1 n 

c is a cone: no,A.#c = c v A. > 0 Suppose further that spt c c H where 

H is an open ~-space of lRn+k with 0 E ClH • 'l'hen spt C c ClH 

36.6 REMARK The reader will see that the theorem here is actually valid 

with any stationary rectifiable varifold V in JRn+k satisfying nO,A.#V v 

in place of C . 
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Proof of 36.5 Since the varifold V associated with C is stationary (by 

n~ 1 
33.2) in E we have by 18.1 (since (Dr) = 0 by virtue of the fact that 

C is a cone), 

(1) 

for each p > 0 , where r = Jxl and ¢ is a non-negative c1 function 

on ~ with compact support, and h . b"t cl (..,;n+kl 
lS an ar ~ rary ·"" . function" 

denotes the orthogonal projection of grad kh (x) onto the tangent 
:Rn+ 

space TV 
X 

of V at x. ) 

Now suppose without loss of generality that H 

and select h(x) 
1 

- X Then where 
T 

v 

denotes orthogonal projection of v onto TxV . Thus the term on the right 

side of (1) can be written- J:Rn+k(e1•Vcr) (r¢(r/p))d~C which in turn can 

be written - JFn+k e1 •17C1/!pd~C , where 1/Jp(x) = f~x/ r¢(r/p)dr (Thus 1/Jp 

has compact support in JRn+k. ) But e 1 • Vel/! p::: divv (1p p e 1 ) , and hence the 

term on the right of (1) actually vanishes by virtue of the fact that V is 

stationary. Thus (1) gives 

const., O<p<co. 

In view of the arbitrariness of ¢ , this implies 

However trivially we have lim 
pto 

-n 
p 

-n 
p J X d~ 

B (0) 1 C 
p 

0 , and hence we deduce 

0 v p > 0 . 
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Thus since x 1 ::: 0 on spt C ( c ih 

={x: x 1 =0}) 

we conclude spt C c oH 

The following corollary of 36, 5 follmV'S directly by combining 36.5 and 

35.1 (2). 

36. 6 COROLU\RY If is in if ~ E if -is 
1 rr as 36,2 , spt rr· , Q a c-

n+k sueh that I; E and if i:a ZocaUy ]R Q spt ·r on one hypersurfaee 1>1 

side of Q near I; then aU tangent cones c of T a:t I; satisfy 

spt C c T~Q n TeN 
'-.> '-.> 

§37. CODIMENSION 1 MINIMIZING CURRENTS 

We begin by looking at those integer multiplicity curren·ts T E V (U) n 

with spt T c N n U , N an (n+l)-dimensional oriented embedded submanifold 

of :JRn+k with (l\i ~ N) n U = fll and such that 

(*) dT [E] 

(in U), where E is an Hn+l_measurable subset of N (We know by 27.8, 33.4 

·that all minimizing currents T E V n (U) with 3T = 0 and spt T in N can be 

locally decomposed into minimizing currents of this special form.) 

37.1 REMARK The fact that T has the form (*) and T is integer multiplicity 

evidently is equivalent to the requirement that if V c U is open, and if ¢ 

is a c2 diffeomorphism of V onto an open subset of such that 

cjJ (V n N) = G , G open in 
n+l 

R ' then ¢(E) has locally finite perimeter 

in G . This is an easy consequence of Remark 26.28, and in fact we see from 

this and Theorem 14.3 that any T of the form (*) with ~(T) < 00 

V W cc U is automatically integer multiplicity with 
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(**) 1 , lJT - a • e • x E U • 

we shall here develop the ·theory of minimizing currents of the form (*) 

indeed we show this is naturally done using only the more elementary facts 

about currents. In particular we shall not in this section have any need 

for the compactness theorem 27.3 (instead we use only the elementary compactness 

theorem 6.3 for BV functions), nor shall we need the deformation theorem and 

t.'le subsequen-t material of Chap·te:c· 6. 

The following theorem could be derived from the general compactness 

theorem 34.5, but here (as we mentioned above) we can give a more elementary 

n+k 
U c JR to be open, In this theorem, and subsequently, we take treatment. 

and 0 will denote the collection of (n+l)-dimensional oriented embedded 

c2 submanifolds N of JRn+k with (N ~ N) n U = !il , N n u I' !1) A sequence 

{Nj} c 0 is said to converge to N E 0 in the c2 sense in u if there 

are orientation preserving c2 embeddings ~~. : Nnu+N. with ijJ. + ~Nnu J J J 

locally relative to the c2 metric in N n u In particular if X E N 

then converges to TN 
X 

in the sense in w as A + o , for 

each W cc JRn+k 

In the following theorem p is a proper c2 map U+ Nnu such that, 

in some neighbourhood v c u of Nnu , p coincides with the nearest point 

projection of v onto N (Since the nearest point projection is c2 in 

some neighbourhood of N n U it is clear that such p exists.) 

37.2 THEOREM (Compactness theorem for minimizing T as in (*)) 

Suppose T. E V (U) , T. = 3[E.~(in U) , 
J n J J 

E. 
J 

Hn+l~easurable subsets of 

Njnu, Nj E 0, Nj + N E 0 in the c 2 sense described above, and suppose 

T. 
J 

is integer multiplicity and minimizing in u n N. 
J 
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Then there is a subsequence {Tj,} with Tj' ~ T in Vn(U) , T integer 

multipUeity, T = Cl[E] (in U) 1 in 1 Hn+1 
Ll ( IU) I oc 

(in the usual sense of Radon measures) in u , and T is minimizing in 

N n u . 

37 • 3 REMARKS 

(1) Recall (from Remark 37.1) that the hypothesis that To 
J 

is integer 

multiplicity is automatic if we assume merely that ~(Tj) < oo 1/ w cc u 

(2) We make no a-priori assumptions on local boundedness of the mass 

of the (we see in the proof that this is automatic for minimizing 

currents as in (*)). 

(3) Let h(x~t) = x+t(p(x)-x) 1 xE u, Osts1. Using the homotopy 

formula 26.22 (and in particular the inequality 26.23) together with the 

fact that in the sense in u I it is straightforward to check 

that 

with 

To-T 
J 

Ro 
J 

v w cc u , 

provided that as claimed in the theorem. Thus once we establish 

Xp(E o ,) + XE 
J 

for some E , then we can use the argument of 34.5 (with 

in order to conclude 

(1) T is minimizing in U 

(2) ].lT + ].lT in U . 
j I 

(Notice we have not had to use the deformation theorem here.) 

s 0 = 0) 
J 
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In the following proof we therefore concentrate on proving Xp(Eo,) + XE 
J 

in 
l n+l 

Lloc (fi ,N n U) for some subsequence {j'} and some E such that 

<l[E] has locally finite mass in u . (T is then autom,atically integer 

multiplicity by Remark 3 7 .l.) 

Proof of 37.2 We first establish a local mass bound for the To in 
J 

u : if s EN and B (s) c U , 
Po 

then 

This is proved by simple area comparison as follows: 

With r(x) = Jx-sl , by the elementary slicing theory of 28.5(1), (2) 

we have that, for L 1 - a.e. p E (O,p 0 ) , the slice < [Ej] ,r,p> (i.e. the 

slice of by is integer multiplicity, and (using 

<l[EonB (/;)] =TolB (!;} +<[Eo],r,p). 
J p J p J 

Hence (applying (l to this identity) 

l a (T 0 L B (/;)) = - a<[E o],r,p>' L - a.e. p E (O,po) . 
J p J 

But by definition 33.1 of minimizing we then have 

Similarly, since 

-

-To 
J 

is also minimizing in N n U , 

where E 0 = N n U ~ E o Thus 
J J 

(2) 

To= <l[E o]) , 
J J 

[N n U] , so that 
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(for a.e. p E (O,p 0 )) 

and hence (2) gives (1) as required (because ~(<N,r,p>) ~ Hn(Nn3Bp(~)) 

by virtue of the fact that lnrj = 1 , hence jV'Nrj ~ 1) 

Now by virtue of (1) and Remark 37.1 we deduce from the BV compactness 

theorem 6.3 that some subsequence {x (E ,} 
p j •' 

of converges in 

1 n+l 
Lloc (H ,N n U) to where E c N is Hn+l_measurable and such that 

3[E] is integer multiplicity (in U) . The remainder of the theorem now 

follows as described in Remark 37.3(3). 

37.4 THEOREM (Existence of tangent cones) 

Suppose T = 8[E] E Vn(U) is integer multiplicity, with ECNnu, 

N E 0 and T is minimizing in u n N . Then for each x E spt T and each 

sequence {/..j} J. 0 there is a sUbsequence {/..j ,} and an integer multiplicity 

C E V n (JRn+k) with C minimizing in JRn+k 0 E spt C c TxN , 

(1) 

(2) 

C = 3[F] , F an Hn+l~easurable subset of TN 
X 

]l + Jl in :Rn+k X +X in L 1 (Hn+l TN) 
n A T c ' p(nx,'. {E)) 'F lac , X 

X, . ,# A 
J J 

p is the orthogonal projection of :Rn+k onto 

F if A > o . 

TN 
X 

and 

37.5 REMARK The proof given here is independent of the general tangent 

cone existence theorem 35.1. 

Proof of Theorem 37.4 As we remarked prior to Theorem 37.2, nx,A.N 
J 

converges to in the sense in W for each 
n+k w cc JR By the 
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compactness theorem 37.2 we then have a subsequence Aj' such that all the 

required conclusions, except possibly for 37.4(2) and the fact that OE spt C, 

hold. To check that OE spt C and that 37.4(2) is valid, we first note by 

33.2 that the varifold V associated with T is stationary in N n U (and 

that V therefore has locally bounded generalized mean curvature ~ in 

N n u) • Therefore by the monotonici ty formula 17.6 (1) , and by 17.8, we have 

(1) 8n(l'v,x) exists-and,is ::0: 1 . 

Since so 0 E spt C , ~n T + ~c , we then have 
x,A.# 

J 
and by 19.3 we deduce that the varifold VC associated with C is a cone. 

+ x E lRn+k and hence, ;f we Then in particular x 1\ C (x) = 0 for ~C-a. e. • 

let h be the homotopy h (t,x) = tx + (1-t) Ax , we have h# ( [ (0, 1)] x C) = 0 , 

and then by the homotopy formula 26.22 (since ac= o > we have 

as required. Finally since spt C has locally finite Hn-measure (indeed 

by 17.8 spt C is the closed set n+k n 
{yE lR , e <~c'Y> :o: l}l, we have 

[F] [F] 

-where F is the (open) set { n+l n+l } 
yETN~sptC:8 (H ,TN,y)=l 

X X 
Evidently 

n0 ,A(F) = F (because n0 ,A(spt C)= spt C) 

established with F in place of F . 

Hence the required result is 

* 37.6 COROLLARY Suppose T is as in 37.4 and in addition suppose there is 

an n-dimensional submanifold l: embedded 1:n lRn+k with x E l: c N n U for 

some x E spt T , and suppose spt T l: lies locally, near x , on one 

side of l: • Then x E reg T • (reg T is as in 36.1.) 

Proof Let C = d [F] (F C TxN) be any tangent cone for T at x • By 

assurnption, spt[F] c H , where H is an open !-space in TN 
X 

with 

0 E !3H • Then, by 36.5, spt C c !3H and hence by the constancy theorem 26.27, 

* Cf. Miranda [MMl] 
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since C is integer multiplicity rectifiable, it follmvs that C = ±()[H] . 

However spt[F] c H , hence C = +Cl[H] . Then \P()lc,y) ::: 1 for y E 3H , 

and in particular 1 ' so that x E reg T (by 

Allard's theorem 24.2) as required. 

\'lie next want ·to prove the main regularity theorem for codimension 1 

currents. We continue to define sing T , reg T as in 36.1. 

37.7 THEOREM Suppose T = 3[E] E Vn(U) is integer multiplicity, with 

E c N n U , N E 0 , and T minimiz-ing 1--n N n U Then sing T = 0 for 

n < 6 sing T is locally finite in u for n = 7 and Hn- 7-K:l (sing T) = 0 

V a > 0 in case n > 7 

Proof We are going to use the abstract dimension reducing argument of 

Appendix A (Cf. the proof of Theorem 36.4). 

To begin we note that it is enough (by re-scaling, translation, and 

restriction) to assume that 

(1) u 

and to prove that 

(2) l sing T n B1 (0) = )') 

Hn-7-K:l ( - n ( ) ) Slng T B1 0 = 0 

if n:"' 6 , sing T n Bl (0) discrete if n = 7 , 

V a > 0 if n> 7 • 

Let T be the set of currents as defined in the proof of 36.4; and for 

each S E T let ¢5 be the function : :lRn+k + :lRn+l associated with S as 

in Remark 35.4. Also, let 

F {¢5 : s E T} 

and define 

* We still have 8n(]l5 ,x)=l for )15-a.e. xEu5 , this time by 37.2and37.1(**). 
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sing S . 

(sing S as defined in 36.1.) 

By Theorem A.4 we then have either sing S ~ for all S E T (and 

hence sing T = !2l ) or 

(3) dim Bl (0) n sing s < d I 

where d E [O,n-1] is the integer such that 

dim B1 (0) n sing s s d for all s E T 

and such that there is S E T and a d-dimensional subspace L of Rn+k 

such that 

s \1 X E L I A > 0 

and 

(4) sing S L • 

Supposing without loss of generali·ty that L Rd x{o} 1 we then (by Lemma 

35.5) have 

( 5) 

where aso = 0 

s d 
[ R ] X SO 

S is minimizing in Rn+k-l 
0 

and sing s0 {o} . (With 

s as in (5) 1 sing s 0 = {0} ., (4).) Also, by definition of T 1 spt S c some 

(n+l)-dimensional subspace of Rn+k hence without loss of generality we 

have that s0 is an (n-d)-dimensional minimizing cone in En-d+l with 

{0} Then by the result of J.Simons (see Appendix B) we have 

n-d > 6 i.e. d s n-7 . Notice that this contradicts d:: 0 in case n< 7. 
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Thus for n < 7 we must have sing T = 0 as required. If n= 7 , sing T 

is discrete by the last part of Theorem A.4. 

37.8 COROLU\RY If T is as in 37.7, and if T 1 E Vn(UJ is obtained by 

equipping a component of reg T with multiplicity 1 and with the orientation 

of T , then 3T1 = 0 (in U) and T1 is minimizing in U n N . 

37. 9 RH<lARK Notice that this means we can write 

(*) 

where each T , 
J 

multiplicity 1 

T 

is obtained by 

and with the 

00 

I 
j=l 

T, 
J 

equipping a component M. 
J 

orientation of T then 

of reg T 

M, n Mj = f/) 
l 

with 

'di f j , ClTj 0 and T, is minimizing 
J 

in u \fj Furthermore (since 

n 
~T (B (x)) ::: cp for B (x) c u and X E spt T, by virtue of 33.2 and the 

j p p J 

monotonicity formula 17.6(1)) only finitely many Tj can have support 

intersecting a given compact subset of U . 

Proof of 37.8 The main point is to prove 

(1) 0 in U • 

The fact that T1 is minimizing in U will then follow from 33.4 and the 

If w cc u 

To check (1) let 
n-1 

wE V (U) be arbitrary and note that if <;; - 0 

some neighbourhood of spt T ~ M1 

(2) T1 (d(<;;w)) T(d(<;;w)) ClT(<;;w) 0 . 

Now corresponding to any s > 0 we construct <;; as follows: since 

n-1 H (sing T) = 0 (by 37.7) and since sing T n spt w is compact, we can 

in 

find a finite collection {B (£; ,) }, 
p, J J=l, .•• ,P 

J 

of balls with t;, E sing T n spt w 
J 



p 

l 
j=l 

and 
n-1 p. < £ • 
J 

For each 

1 on i3 o;·. > , <PJ. = o 
Pj J 

p 
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j=l, ... ,P let¢. E 
J 

n+k 
on ll. - B2p. (l;j) , 

J 

oo n+k 
CC (:R ) be such that 

and everywhere. 

Now choose 1;; = II ¢. in a neighbourhood of spt T1 and so that 1;; = 0 in a 
j=l J p p 

neighbourhood of spt T- spt T 1 • Then dl;; = L II <P • d¢ . on spt T 1 , and hence 
i=l j~i J ~ 

p 
\ n-1 
L. pj ::: 

j=l 
csjwj on spt T1 . 

Then letting £ -t 0 in (2), and noting that l;;dw + dw Hn- a.e. in spt Tl n 

N n spt W (and using j?;;j :S 1) we conclude T1 (dw) = 0. That is 

3T1 = 0 in U as required. 

Finally we have the following lemma. 

37.10 LEMMA If T1 = 3[E1 ] , T2 3[E2] E Vn(U) U bounded, 

E1 , E 2 c un N , N of aZass c4 , N E 0 , T 1 , T 2 minimizing in U n N , 

reg T1 , reg T 2 are aonneated, and E1 n V c E2 n v for some neighbourhood 

v of au , then spt [E1] c spt[E2] and either [E1] = [E2] or 

spt T1 n spt T2 c sing T1 n sing T2 . 

Proof Since Hn+J. (spt Tj) = 0 (in fact spt Tj has locally finite 

Hn-measure in n 
U by 11irtue of the fact that 8 (JlT. ,x) =:: 1 

J 

we may assume that E1 and E2 are open with u n 3Ej 

j = 1,2 

Let s1 , s 2 E Vn(U) be the currents defined by 

using the hypothesis concerning V we have 

(1) T . L <v n u> , j = 1 , 2 • 
J 

un aE. 
J 

'r/ X E spt T .) , 
J 
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On the other hand we trivially have 

so (applying Cl ) we get 

(2) 

(3) 

(by (2)) 

V W cc U • On the other hand, choosing an open V O so that 3U c V O cc V , 

and using (1) together with the fact that T1 is minimizing, we have 

and hence (combining this with (3)) 

for W = U ~ v 0 Thus (using (1) with j = 2) s 2 is minimizing in U . 

Likewise s1 is minimizing in U . 

We next want to prove that either T1 = T 2 or reg T1 n reg T 2 = !1! • 

Suppose reg T1 n reg T 2 # !1! • If the tangent spaces of reg T1 and reg T 2 

coincide at every point of their intersection, then using suitable local 

coordinates (x,z) E :Rn x JR for N near a point ~ E reg T 1 n reg T 2 , we 

can write 

reg Tj graph u. , j = 1, 2 , 
J 
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where Du1 = Du2 at each point where u 1 

are (weak) c1 solutions of the equation 

a ( a F J ax. 3P. (x,u,Du) 
~ 1. 

aF - 3z (x,u,Du) 0 ' 

where F = F (x,z,p) , (x,z,p) E JRn x JR x JRn is the area functional for 

graphs z = u(x) relative to the local coordinates x, z for N. Since 

N is c4 we then deduce (from standard quasilinear elliptic theory - see 

e.g. [GT]) that u 1 , u 2 are c3,a: . Now the difference of the 

solutions evidently satisfies an equation of the general form 

where 

e.g. 

a .. ,b. ,c 
l.J 1. 

are By standard unique continuation results 

[PM]) we then see that Du1 = Du2 at each point where u 1 

(see 

is 

impossible if u 1 -u2 changes sign. On the other hand the Harnack inequality 

([GT]) tells us that either u 1 = u 2 or lu-uj>o 
1 2 

in case does 

not change sign. Thus we deduce that either T1 = T2 or reg T1 n reg T2 ~ 

or there is a point ~ E reg T1 n reg T2 such that reg T1 and reg T 2 

intersect transversely at ~ But then we would have Hn- 1 (sing a[E1 n E2]) > 0' 

which by virtue of 37.7 contradicts the fact (established above) that 

Cl[E1 n E2] is minimizing in U . 

Thus either T1 T2 or reg T1 n reg T2 = ¢ , and it follows in 

either case that E1 c E2 On the other hand we then have 

sing T l [l reg T 2 = ¢ and sing T 2 n reg T l = j1l by virtue of Corollary 3 7. 6. 

Thus we conclude that E1 c E2 and spt T1 n spt T2 C sing Tl n sing T2 as 

required. 


