CHAPTER 7
AREA MINIMIZING CURRENTS

This chapter provides an introduction to the theory of area minimizing
currents. In the first section (§33) .of the chapter we derive some basic
preliminary properties, and in particular we discuss the fact that the
integer multiplicity varifold corresponding to a minimizing current is
stable (and indeed minimizing in a certain sense). In §34 there are some
existence and compactness results, including the important theorem that if
{Tj} is a sequence of minimizing currents in U with supjzl(gw(Tj)4~§W(3Tj))
< YWccu, andif Tj ~ T € Dn(U) , then T is also minimizing in
U and the corresponding varifclds converge in the measure theoretic sense
of §15. This enables us to discuss tangent cones and densities in 8§35, and
in particular make some regularity statements for minimizing currents in §36.
Finally, in 837 we develop the standard codimension 1 regularity theory, due
originally to De Giorgi [DG], Fleming [FW], Almgren [A4], J. Simons [SJ] and

Federer [FH2].

§33. BASIC CONCEPTS

. +k R +k
Suppose A is any subset of Ifl A CU, U open in Igl , and

T € Dn(U) an integer multiplicity current.

33.1 DEFINITION we say that T is minimizing in A if

r;iw(T) < b;iw(s)

whenever W cc U, 3S = 3T (in U) and spt(S-T) is a compact subset of

ANwW.
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There are two especially important cases of this definition:

(1) when A

1]
(=}

(2) when A =NNU,N an (n+k1)-dimensional embedded submanifold of

+
R™™* (in the sense of §7).

As a matter of fact, these are the only cases we are interested in here.

Corresponding to the current T = ;(M,S,E) € Dn(U) we have the integer
multiplicity varifold V = g(M,G) . As one would expect, V is stationary

in U if T is minimizing in U and 3T=0 ; indeed we show more:

33.2 LEMMA  Suppose T <is minimizing in N N U , where N <is an
(n+kl)-dimensﬂonal c2 submanifold of Rn+k(k15k) and suppose 3T = 0 1in
U. Then V <s stationary in N N U <in the sense of 16.4, so that in

particular V has locally bounded generalized mean curvature in U (in

the sense of 16.5).

In fact vV is minimizing in N N U in the sense that

(*) t;lw(V) 5§w(¢#V) ’

whenever W cc U and ¢ <is a diffeomorphism of U such that ¢(NNU) < NNU

and ¢$|u~K = Lok for some compact X ¢ W N N.

Note: Of course N = U (when kl= k) is an important special case; then V

is stationary and in fact stable in U .

33.3 REMARK  In view of 33.2 (together with the fact that 6=1) we can
apply the theory of chapters 4 and 5 to V ; in particular we can represent
T=1IM,,0,,8) where M, is a relatively closed countably n-rectifiable
subset of U, and 6, is an upper semi-continuous function on M, with

8,21 everywhere on M, (and 6, integer-valued H -a.e. on M) .
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Proof of 33.2 Evidently (in view of the discussion of §16) the first claim
in 33.2 follows from (*) (by taking ¢= ¢t in (¥*) , ¢t is in 16.1 with

UNN in place of U) .

To prove (*) we first note that, for any W, ¢ as in the statement of

the theorem,

(1) gw(¢#V) = §W(¢#T)

by Remark 27.2(3). Also, since 0T = 0 (in U) , we have

(2) 3¢#T = ¢#3T =0 .
Finally,
(3) spt(T—¢#T) CKCW .

By virtue of (2), (3) we are able to use the inequality of 33.1 with

S = ¢#T . This gives (*) as required by virtue of (1).
We conclude this section with the following useful decomposition lemma:

33.4 LEMMA  Suppose T, ,T, € Dn(U) are integer multiplicity and suppose

T, + T, is minimizing in A , A C U, and

Mg (7T = Mo (T)) + M (T)

for each w cc u . Then T, , T, are both minimizing in A .

Proof 1et X ¢ Dn(U) be integer multiplicity with spt X ¢c K, X a
compact subset of A N W , and with 09X = 0 . Because Tl + T2 is minimizing

in A we have (by Definition 33.1)

gW(Tl+T2+X) = gw(Tl+T2) .
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However since M _(T_+T, ) = M (T.) + M (T,)) , and M (T +T_+X) < M _ (T +X) +
By (Ty¥Tp) = By (Tp) + My (T By (T1%T5 % Ty

§W(T2) , this gives

gw(Tl) = gw(Tl+X) .

In view of the arbitrariness of X , this establishes that Tl is minimizing

in A N W (in accordance with Definition 33.1). Interchanging T_ , T in

the above argument, we likewise deduce that T2 is minimizing in AN W .

§34. EXISTENCE AND COMPACTNESS RESULTS

We begin with a result which establishes the rich abundance of area

minimizing currents in Euclidean space.
n+k . e .
(R ) be integer multiplicity with spt S compact

and 3s = 0 . Then there is an integer multiplicity current T € Dn(RF+k)

34.1 LEMMA  Let s €D
n-1

such that spt T <s compact and M(T) < M(R) for each integer multiplicity

R € Dn(Rn+k) with spt R compact and R = S .

34.2 REMARKS

L. . +] . C s
(1) Of course T is minimizing in .Rn k in the sense of Definition 33.1.

(2) By virtue of 33.2 and the convex hull property 19.2 we have auto-

matically that spt T C convex hull of spt § .
n-1

3) M@m s cM(s)

by virtue of the isoperimetric theorem 30.1.

Proof of 34.1 rLet

+k
IS = {R¢€ Dn(mn ) : R is integer multiplicity, spt R compact, dR=S} .
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Evidently IS #0 . (e.g. 0Xs € IS' ) Take any sequence {Rq} c Is with
(1) lim M(R_ ) = inf M(R) ,
= R =
q eIs
X n+k
let BR(O) be any ball in R such that spt § C BR(O) , and let
£ Rn+k-+ gR(O) be the nearest point (radial) retract of Rp+k onto
ﬁR(O) . Then Lip f =1 and hence
2 M(f, R = M(R .
(2) M( " q) M( q)
on the other hand Bf#Rq = f#BRq = f#s =S , because ijR(O) = ;BR(O) and
spt S C BR(O) . Thus f#Rq C IS and by (1), (2) we have
(3) lim M(£,R ) = inf M(R) .
g #q REIS =

Now by the compactness theorem 27.3 there is a subsequence {q'} ¢ {gq} and an

+
integer multiplicity current T € DnCRn k) such that f#Rq,

and lower semi~continuity of mass with respect to weak convergence)

=~ T and (by (3)

(4) M(T) < inf; M(R) .

S
However spt T C §;(O) and 9T = lim Bf#Rq| = lim f#aRq, =S , so that
T € IS , and the lemma is established (by (4)) .

The proof of the following lemma is similar to that of 34.1 (and again

based on 27.3), and its proof is left to the reader.

34.3 LEMMA  Suppose N is an (n+kl)—dimensional compact ct submanifold

embedded in R®E and suppose R, € DnLRn+k) 18 given such that OR,; =0,

spt R; ¢ N and
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_ n+k . _ -
IRl = {R¢ Dn(R ) : R-R; = 35S

for some integer multiplicity S € Dn+1(Rn+k) with spt S C N} # @ .

Then there is T € IR such that
1

B = infper  Mwm)

34.4 REMARKS

(1) R-Rl = 3S with S integer multiplicity and spt S € N means

that R, R represent homologous cycles in the n-th singular homology class

1

(with integer coefficients) of N . (See [FH1l] or [FF] for discussion.)

(2) It is gquite easy to see that T 1is locally minimizing in N ;
thus for each & € spt T there is a neighbourhood U of £ such that T

is minimizing in N 1 U .

We conclude this section with the following important compactness

theorem for minimizing currents:

34.5 THEOREM  Suppose {Tj} is a sequence of minimizing currents in U

with supjzl(gw(Tj)-+§W(8Tj)) < ® for each W cc U, and suppose

Tj ~ T € Dn(U) . Then T is minimizing in U and My 7 Mo (in the usual
J

sense of Radon measures in U) .

34.6 REMARKS

(1) Note that UT +-UT means the corresponding sequence of varifolds
B

converge in the measure theoretic sense of §15 to the varifold associated

with T . (T 4is automatically integer multiplicity by 27.3.)

(2) If the hypotheses are as in the theorem, except that spt TjC NjC U

and Tj is minimizing in N,

j {Nj} a sequence of C1 embedded

+
(n+k1)—dimensional submanifolds of Rn k converging in the Cl sense to
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(*)
N , N cU an embedded (n+k1)—dimensional Cl submanifold of :Rn+k , then

T minimizes in N (and we still have uT ks UT in the sense of Radon
]
measures in U) . We leave this modification of 34.5 to the reader. (It

is easily checked by using suitable local representations for the Nj and

by obvious modifications of the proof of 34.5 given below.)

Proof of 34.5 ©ILet K c U be an arbitrary compact set and choose a smooth
¢ : U+ [0,1] such that ¢ = 1 in some neighbourhocd of K , and
spt ¢ € {x€ U : dist(x,K)<e} , where 0<e<dist(K,3U) is arbitrary.

For O0<A<1, let

W, = {x€uU:d(x)>A} .

Then

(1) KCW, ccu

for each A, 0=sA<1.

By virtue of 31.2 we know that dw(Tj,T) + 0 for each W cc U ,

hence in particular we have

- T, =0R,+S., , M_ (R.)+ S. 0
(2) T TJ 3R3+ 5 =w(3) bzdwo( ])-»

0

W, = {x€u: dp(x) >0} .

By the slicing theory (and in particular by 28.5) we can choose
0<a<1 and a subsequence {j'} ¢ {j} (subsequently denoted simply by

{3}) such that
(3) B(RjLWOL) = (BRj) Lwa + Pj

where spt Pj C awa B Pj is integer multiplicity, and

(*) Thus 3 wj: uru, wj[Nj in a diffeomorphism onto N, and Wj - iU locally

in U with respect to the Cl metric.
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(4) b;l(Pj) -0 .
We can also of course choose o to be such that

(5) g(TjL ow,) =0 Vi and M(TLOwW) =0 .

Thus, combining (2), (3), (4) we have

6 TLWw =T.LW_ + 8R, + S,

(6) o 5L ¥y BR] s3
with R, , §. integer multiplicity ®R.=R.Lw ,S. =s.Lw + P.) with

J J 3 J ) J J o4 J

(7)

=

(Ry) +M@Ey >0 .

Now let X € Dn(U) be any integer multiplicity current with 93X = 0
and spt X € K . We want to prove

=W

(8) M (T) < M (T+X) .
[ o

(In view of the arbitrariness of K, X this will evidently establish the

fact that T is minimizing in U. )

By (o), we have

(9) gwa(T+x) = gwa(Tj+x+aRj+sj)

v

T +X+3R.) - M(S.) .
1‘='Iwoc( §HEHORy) = M(Sy)

Now since Tj is minimizing and 3(x+3§j) = 0 with spt(x+8§j) C ﬁa ’
we have
10 T.4X+3R,) = M (T.
(10) QWA(J J) =WA(J)
for A > a . But by (3) we have n=4(af<jL BW,) = M(P)) >0, and by (5)

Q(TjL awa) =0, g(TL Bwa) = 0 . Hence letting A ¥+ o in (10) we get
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D;LWOL(T].+X+3RJ.) z l\éwOL<Tj) - b:i(Pj) '

and therefore from (9) we obtain
(11) gwu(T+X) z gwu(Tj) - Ej ' €. v 0 .

In particular, setting X = 0 , we have
12 (T) = T.) - €. €. ¥+ 0.
(12) By By By Sy E

Using the lower semi-continuity of mass with respect to weak convergence

in (11), we then have (8) as regquired.

It thus remains only to prove that - U in the sense of Radon

T T

3
measures in U . First note that by (12) we have

1i . ,
im sup D;lwa (TJ) < b;lwa (T)

so that (since K ¢ Wu c {x: dist(x,K)<e} by construction)

lim sup Mo (K) =

3 g{x:dist(x,K)<8}(T)

Hence, letting e + O

(13) lim sup e K) = p(®) .
]

(We actually only proved this for some subsequence, but we can repeat the
argument for a subsequence of any given subsequence, hence it holds for the

original sequence {Tj} )

By the lower semi-continuity of mass with respect to weak convergence,

we have

(14) uT(W) < lim inf U (W) Y open W cc U .
J
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Since (13), (14) hold for arbitrary compact K and open W C U , it
now easily follows (by a standard approximation argument) that

ffduT d ffduT for each continuous £ with compact support in U , as
3

required.

§35. TANGENT CONES AND DENSITIES

In this section we prove the basic results concerning tangent cones and
densities of area minimizing currents. All results depend on the fact that
(by virtue of 33.2) the varifold associated with a minimizing current is
stationary. This enables us to bring into play the important monotonicity

results of Chapter 4.

Subsequently we take N to be a smooth (at least C2) embedded

+
(n+k1)-dimensional submanifold of ]Rn k (klsk) , U open in ]Rn+k and

(ﬁ~N) NU=@ . Notice that an important case is when N = U (when kl=k) .

35.1 THEOREM  Suppose T ¢ Dn(U) i¢ minimizing in UNN, spt TC UNN ,

and 3T =0 in U . Then

(1) @n(uT,x) exists everywhere in U and @n(uT,-) is upper semi-

continuous in U ;

(2) For each x € spt T and each sequence {kj} ¥ 0, there is a

k k

N , n+ , n+
X:)\j '#T C in R , where C € Dn (R )
k

is integer multiplicity and minimizing in R,

subsequence {)\j,} such that n
nol}\#c=c Y A>0, and
n n

0 (uc,O) =0 (uT,x) .

35.2 REMARKS

If C is as in (2) above, we say that C is a tangent cone for T
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at x . If spt C is an n-dimensional subspace P (notice that since C
is integer multiplicity and 9C = 0 , it then follows from 26.27 that
Cc = ml[p] for some m € %, assuming P has constant orientation) then

we call C a tangent plane for T at x .

(2) Notice that is not clear whether or not there is a unique
tangent cone for T at x ; thus it is an open question whether or not C
depends on the particular sequence {Aj} or subsequence {Kj,} used in its
definition. Recently it has been shown ([SL3]) that if C is a tangent cone
of T at x such that On(uc,x) =1 for all x € spt c~{0} , then C is
the unique tangent cone for T at x , and hence nx,X#T ~C as A Y O
Also B. White [WB ] has shown in case n = 2 that C is always unique

(with spt C consisting of a union of 2-planes meeting transversely at 0) .

Proof of 35.1 By virtue of Lemma 33.2 we can apply the monotonicity formula
of 17.6 (with o = 1) and Corollary 17.8 in order to deduce that @n(uT,x)
exists for every x € U and is an upper semi-continuous function of x in

U

Similarly the existence of C as in part (2) of 35.1 follows directly
(*)
from Theorem 19.3 and the compactness theorem 34.5 (more particularly from

Remark 34.6 with Nj = ) . Notice that Remark 34.6 establishes first

nx,)\.#N
J
that C is minimizing only in the (n+kg)-dimensional subspace TyN C Rn+k.

. . . n+k .
However since orthogonal projection of R onto TXN does not increase

area, and since spt C C TxN , it then follows that C 1is area minimizing

+
in Rn k.

(*) Actually 19.3 gives no A#VC=:VC for the varifold VC associated with

C , but then x A C(x)=0 and hence C=C by 26.22 with

No, A#
ht,x) = tAx+ (1-t)x .
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35.3 THEOREM™ Suppose T € Dn(U) 18 mintmizging in UNN, spt TCUNN,

and 3T =0 (in U). Then

(1) On(uT,x) € z for all X € U~E , where Hn_3+ugE) =0 Ya>o ;

n—2+a(F) -0

(2) There is a set F CE (E as in (1)) with H
Vo >0 and such that for each x € spt T ~F there is a tangent plane ({see

35.2(1) above for terminology) for T at x .
Note: We do not claim E , F are closed.

The proof of both parts is based on the abstract dimension reducing
argument of Appendix A. 1In order to apply this in the context of currents

we need the observation of the following remark.

35.4 REMARK Given an integer multiplicity current § € Dn(Rn+k) , there

+ +
is an associated function ¢S = (¢g,¢;,...,¢g) :ZRn k-+ RN L ; where

N =

3 » such that (writing Ss(x) = O*n(uslx))
021x) = B_1x) , 02(x) = 6_(E (%) , G=1,....n
Pg 1% s Pl s s S 7 ] Foee e v

j -
where gg(x) is the jth component of the orientation §S(x) relative to the

usual orthonormal basis e, A ...Ae, , 1=i <i_ <...<i = n+k for
i, i 1 2 n
+ +
An(Rn k) (ordered in any convenient manner). Evidently, for any x EiRn k,
bgety) =0y Ly € B,
%, A\#

. n+k
and, given a sequence {Si} c Dn(I+R ) of such integer multiplicity

currents, we trivially have

I ayn J oo .
aH aH" ¥ 5¢ vees = ~
¢Si > 9 je{1,...n} s, ~s

* Cf. Almgren [a2]
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and

>
S. H
i

4] n 0 n
¢SidH - cbs aH H s

(where lpidHn + paH® means J'fwidHn + [epaH™ v £ € CC(RnH{)) _

We shall also need the following simple lemma, the proof of which is

left to the reader.

35.5 LEMMA  Swppose S is mimimizing in R4, 3s = 0 , and

n S =8 Y x € B x {0} c &%

k

., . . +.
for some positive integer m < n . (Recall Ny 1Y "™ y-x, y € r" ) Then
’

s = [R']x s, .

. N . n+k-
where 3sg = 0 and S, ts minimizing in R kem

Furthermore 1f S 18 a cone (i.e. 1N
0, \#
so is S,

Proof of 35.3(1) For each positive integer m and B € (0,3) let

U

n
0B = {x€u:0 (uT,x) < m-B} .

Now T is minimizing in U (1 N , so by the monotonicity formula of 17.6

is

(which can be applied by virtue of 33.2) we have, firstly, that Um B
14

open, and secondly that for each x € Um g there is some ball sz(x)C:Um
14

such that

Un (B (y))
(1) ———n———sm-B/Z Yo<p, y€B (x).
w0 ?

s=s for each A>0) , then

B



206

We ultimately want to prove

Hn-3+d[ ®

U {xe¢u
m

s m=1+8< 0% (u_,x) < m—B}} =0
T
m=1

B

for each sufficiently small o, B>0 , and, in view of (1), by a rescaling

and translation it will evidently suffice to assume

g (B ()
(2) B,() =U, ——— =m-B Vo<1l,y€B (0,
w o
Il
and then prove
(3) H* 3% e B (0) - 0% (uy %) = m-148} = 0 .

We consider the set T of weak limit points of sequences Si= nx A #T
i’7i
where |x,|<1-A, , 0<A,<1, with lim x, € B_(0) and lim A,=A20 both
i i i i 1 i

existing. For any such sequence si we have (by (2))
. <
lim sup gw(si)

for each W cc nx A(U) in case A >0, and for each W cc Rp+k in case
’
A =0 . Hence we can apply the compactness theorem 34.5 to conclude that

each element S of T is integer multiplicity and

s . . - 14
(4) S minimizes in nx,AU N nx,AN in case S im nx.,k,#T

with 1lim X, =X and lim ki =)X>0, and

+
(5) S minimizes in all of R"™ in case S = lim n,

1

A 4T
1

with lim X, =x and lim Ai = 0 . (Cf. the discussion in the proof of

35.1(2).)
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For convenience we define

n U in case 1lim >\i> 0 (as in (4))

X, A

Rn+k in case 1lim Ai=0 (as in (5)) .

so that § € Dn(Us) for each S € T .

Now by definition one readily checks that

(7 ‘ N gl =T 0<A<1, [x] <1-n,
and, by (2),

n
(8) @(Us,y)fm—B VyEUS,SeT.

Furthermore by using 34.5 together with the monotonicity formula 17.6, one
readily checks that if Si -~ S (Si,Sé T)Y and if y,yi € Bl(O) with
lim yi = vy , then
(9) 0™ (u.,y) = lim sup 0" (u_ ,v.)
s’ - si’ i’
It now follows from (7), (8), (92) and 34.5 that all the hypotheses of

Theorem A.4 (of Appendix A) are satisfied with (using notation of Remark 35.4)
F = {CPS :S5€T}
and with sing defined by
. n
sing ¢g = {x¢ Ug: 0 (ug,®) =2 m-1+8}

for s € T . We claim that in this case the additional hypothesis is
satisfied with d = n~3. Indeed suppose d= n-2; then there is S€7T and n X#S= S
Yo
. , . +k
Yy €L, A>0 with L an (n-2)-dimensional subspace of ®rYT, L C sing qbs . Since we

k

. + . . . . . n-
can make a rotation of R" to bring L into coincidence with R 2 {0} ,

we assume that L = ]Rn_zx {0} . Then by Lemma 35.4 we have
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s = [R"?] x So v

where SO € Dz(n33 , N = 24k , with S0 a 2-dimensional area minimizing
q

is contained in a finite union U P, of
i=1

2-planes, with P, n Pj = {0} ¥i # j . (For a formal proof of this

cone in ng. Then spt S0
characterization of 2 dimensional area minimizing cones, see for example [WB ].)
In particular, since @n(ps,-) is constant on Pi ~ {0} (by the constancy

+
theorem 26.27), we have that @n(us,y) € Z for every vy € Rp k ;, and by

+
(8) it follows that @n(ps,y) < m-1 Yy r" k . That is, sing ¢s =@, a

contradiction, hence we can take 4 = n-3 as claimed. We have thus established

(3) as required.

Proof of 35.3(2) The proof goes similarly to 35.3(1). This time we assume

(again without loss of generality) that
(1) U= B2(0) ’
and we prove that T has a tangent plane at all points of spt T N Bl(O)

except for a set F c spt T N Bl(O) with

-2+
(2) %% F) =0 Va>o.

T 1is as described in the proof of 35.3(1), and for any S € T and
B >0 we let

RB(S) = {x€ sptS : Bp(x) ¢ Uy and

h(spt SILIQIX) < Bp for some 0] >0

n+k}

and some n-dimensional subspace L of R B

where Us is as in the proof of 35.3(1) (so that S € Dn(US)), and where we

define
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h(sptS,L,p,x) = sup lay=-x)]|

yésptSﬂBp(x)

. . +k
with g the orthogonal projection of r" onto L .

Now notice that (Cf. the proof of 35.3(1))

(2) Mgl =7 v Oo<A<1, || <1-a ,
and
(3) N, R (8) = Rg(M 148) s €T .

Furthermore if S. ~S , S.,S € T , then by the monotonicity formula
17.6 it is quite easy to check that if vy € RB(S) and if yj € spt Sj with
yj +y , then yj € RB(Sj) for all sufficiently large Jj . Because of this,

and because of (2), (3) above, it is now straightforward to check that the

hypotheses of Theorem A.4 hold with (again in notation of Remark 35.4)

F = {¢S: seT}
and

sing ¢S = spt Gn(us,') n Us ~ RB(S)

(Notice that RB(S) is completely determined by ®n(us,°) , and hence this
makes sense.) In this case we claim that d < n-2. Indeed if d > n-2

(i.e. d=n-1) then 3 S € T such that

= > i
nx,A#S IS VxernL, A 0 , and LcC sing ¢S

where L 1is an (n-l)-dimensional subspace. Then, supposing without loss of

generality that L = mp'lx {0} , we have by Lemma 35.5 that

(3) ' s = IR M= sy,
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. . . R . k+1 - R
where S0 is a l-dimensional minimizing cone in R . However it is easy

to check that such a l-dimensional minimizing cone necessarily has the form

SO =mfe] ,

+ .
where m € Z and £ is a l-dimensional subspace of Rk 1. Thus (3) gives

that S = m[L] where L is an n-dimensional subspace and hence

sing ¢s = @ , a contradiction, so d = n-2 as claimed.

We therefore conclude from Theorem A.4 that for each s € T

H“'2+°‘(sptS~RB(S) NB () =0 Va>o0.

If Bj ¥ 0 we thus conclude in particular that

(sptT~ N R, (T) N Bl(O)) =0 Ya>o0.
=1 P5

(4) Hn—2+a

However by (1) we see that

0
x € 0N RB (T) = T has a tangent plane at x ,
=1 73

and therefore (4) gives (2) as required.

§36. SOME REGULARITY RESULTS (Arbitrary Codimension)

In this section, for T € Dn(U) any integer multiplicity current, we

define a relatively closed subset sing T of U by
36.1 sing T = spt T ~ reg T ,

where reg T denotes the set of points & € spt T such that for some p > 0

there 'is an m € Z and an embedded n-dimensional oriented C1 submanifold

M of Rn+k with T = m{M] in Bp(g) .
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Recently F.J. Almgren [A2] has proved the very important theorem that

-2+0, . . . e
H® (sing T) =0 VYo > 0 in case spt TCN, oT=0 and T is minimizing
in N , where N is a smooth embedded (n+k1)—dimensional submanifold of

+ . .

Rn k . The proof is very non-trivial and requires development of a whole

new range of results for minimizing currents. We here restrict ourselves

to more elementary results.

Firstly, the following theorem is an immediate conseqguence of Theorem

24,4 and Lemma 33.2.

36.2 THEOREM  Suppose T € Dn(U) is integer multiplicity and minimizing in
U NN for some embedded c? (n+k1)—dimensional submanifold N of Rn+k,
(N~N) NU =g, and suppose spt T < UNN , OT =0 (in U) . Then reg T

18 dense in spt T .

(Note that by definition reg T 1is relatively open in spt T. ).

The following is a useful fact; however its applicability is limited

by the hypothesis that GD(UT,Y) =1.

36.3 THEOREM  Suppose {Ti} c Dn(U) , T € Dn(U) are integer multiplicity
currents with T, minimizing in U N Ny, T minimizing tn UNN , N, N,
embedded (n+k1)-dimensional c? submanifolds , and spt T, C N, , spt TCN,
BTi =03T =0 (in U) . Suppose also that N, converges to N in the c?
sense in U , Tj ~T in Dn(U) , and suppose y € NNU with @n(uT,y) =1,
y = lim Yy where Y 18 a sequence such that Yy € spt Tj Yy . Then

y € reg T and Y5 € reg Tj for all sufficiently large 3 .

Proof By virtue of the monotonicity formula 17.6(1) (which is applicable

by 33.2) it is easily checked that
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lim sup % (4, +v.) <O (W ,y) =1,
T. “3 T
J
hence (since On(uT ,yj) > 1 by 17.8) we conclude @n(uT ,yj) - Gn(uT,y)= 1.
j J
Hence by Allard's theorem 24.2 we have y € reg T and Yj € reg ‘I‘j for all

sufficiently large j . (33.2 justifies the use of 24.2.)
Next we have the following consequence of Theorem A.4 of Appendix A.

36.4 THEOREM  Suppose T <s as in 36.2, and in addition suppose §& € spt T

18 such that @n(uT,E) < 2. Then there is a p > 0 such that

HR=2%% (ging TNB () = 0 Va>o.

Proof 1Let a = %(Z—On(uT,g)) and let Bp(g) be such that sz(g) c U and

K, (B_(2))
(1) -2 — < 20-0/2)
wnO

YV zé€sptTN BQ(E) , 0<0<p . (Notice that such p exists by virtue of

the monotonicity formula 17.6(1), which can be applied by 33.2.) Assume
without loss of generality that £ =0, p=1 and U= B2(0) , and
define T to be the set of weak limits S of sequences {Si} of the

form S,

= - <A< d i
i nxi’Ai#T , Ixii < (1 ki) , 0 Xi 1, where 1lim X, and

lim Ai = A are assumed to exist. Notice that
. <
lim sup gw(si)

+
for each W ccC nx A(U) in case A > 0 and for each W cC R k in case
1
A = 0 . Hence by the compactness theorem 34.5 any such S is integer

multiplicity in US

+
(Us=nX }\U in case A>0, US=:1Rn kJ'.n case A=0 )
’

and (Cf. the proof of 35.1(2))
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. . . S
(2) S minimizes in nx,XU N nX,AN in case A 0
+
(3) S minimizes in ®" k in case A =0
One readily checks that, by definition of T ,

(4) n T,0<t<1, |y] < 1-1

T

Furthermore we note that (by (1))

(5) @n(us,x) =1, Hg —a.e. x € Ug -

and by Allard's theorem 24.2 there is § > 0 such that
. n
(6) sing s = {x¢€ Ug: 0 (Hg,x) 2 1+8} , s €T .

Now in view of (2), (3), (4), (5), (6) and the upper semi-continuity
of On as in (9) of £he proof of 35.3(1), all the hypotheses of Theorem A.4
of Appendix A are satisfied with F = {¢S: SET} (notétion as in Remérk 35.4)
and with sing ¢S = {x¢€ US: Gn(us,x) > 1+8} (= sing s by (6)). 1In fact we
claim that in this case we may take d=n-2, because if d=n-1 3 s € T and

nx A#s=:s Vx€L , >0 , where LCsing S is an (n-1)dimensional subspace of
14

Rn+k , then (Cf. the last part of the proof of 35.3(2)) we have S = m[Q]

for some n-dimensional subspace Q . Hence sing S = @, & contradiction.

The following lemma is often useful:

36.5 THEOREM  Suppose cC ¢ Dn(mn+k) is minimizing in Rn+k, 3c = 0 , and
C s a cone: Ny € =€ Y A >0 . Suppose further that spt C c H where
+k

H <s an open 3%-space of R with 0 € 9H. Then sptC c 3H .

36.6 REMARK The reader will see that the theorem here is actually valid
with any stationary rectifiable varifold V in :Rn+k satisfying no A#V =V
’

in place of C .
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Proof of 36.5 since the varifold V associated with C is stationary (by
. n+k . 1 .
33.2) in R we have by 18.1 (since (Dr) = 0 Dby virtue of the fact that

C is a cone),

d 6 -n _ =n-1 . (vC
(1) Eﬁp J Mkmuvmwa—p fn&x<Vthvmwc

R R

for each p > 0, where r = |x[ and ¢ 1is a non-negative C1 function
. . . 1 n+k .
on R with compact support, and h is an arbitrary C~ (R ) function.

(Vch(x) denotes the orthogonal projection of grad n+kh(x) onto the tangent
R

space TxV of V at x.)

Now suppose without loss of generality that H = {x= (xl,...,xn+k): x1> 0}
and select h(x) = x1 . Then x'Vch = ef*x = el-xT = rel-VCr , where vT

denotes orthogonal projection of v onto TXV . Thus the term on the right

side of (1) can be written - J n+k(el'Vcr)(rcb(r/p))dpC , which in turn can
R
{eo]

be written -Vcwpduc , where wp(x1 = J

- e
JRn+k 1 . o ]xa
has compact support in R . ) But el-V wa divv(wpel)" and hence the

rp (z/p)dr . (Thus wp

term on the right of (1) actually vanishes by virtue of the fact that V 1is

stationary. Thus (1) gives

-n
b LRm'k x,¢(r/p)du, = const., 0<p<e® .

In view of the arbitrariness cf ¢ , this implies

p_n J xldpC = const.
B _(0)

However trivially we have lim p-n

J x.du, = 0 , and hence we deduce
pY¥0 Bp (0)

17cC

p ™ J x du, = 0 Vep>o0.
Bp(O)
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Thus since Xz 0 on spt C (cH , we conclude spt C C 9H

(=1{x: x1=0}) .

The following corollary of 36.5 follows directly by combining 36.5 and

35.1(2).

36.6 COROLLARY If T 4s as in 36.2, if E€ sptT, if Q isa cv
hypersurface in R such that £E€Q and if spt T is locally on one
side of Q mnear & , then all tangent cones C of T at & satisfy

spt C € T,0 N T,N .
S

g

§37. CODIMENSION 1 MINIMIZING CURRENTS

We begin by looking at those integer multiplicity currents T € Dn(U)

with spt TCNNU, N an (n+l)-dimensional oriented embedded submanifold

n+k

of R with (N~N)NU =@ and such that
(*) oT = [E]
(in U), where E is an Hn+1-measurable subset of N . (We know by 27.8, 33.4

that all minimizing currents T € Dn(U) with OT=0 and spt T in N can be

locally decomposed into minimizing currents of this special form.)

37.1 REMARK The fact that T has the form (*) and T is integer multiplicity
evidently is equivalent to the requirement that if V C U is open, and if ¢

+
is a C2 diffeomorphism of V onto an open subset of r" k such that

. +1 L .
¢(VAN) = G, G open in R, then ¢ (E) has locally finite perimeter
in G . This is an easy consequence of Remark 26.28, and in fact we see from

this and Theorem 14.3 that any T of the form (*) with gW(T) <

VW cc U is automatically integer multiplicity with
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(*%) % (r,x) =1, u.-a.e. x €U .

T

We shall here develop the theory of minimizing currents of the form (*) ;
indeed we show this is naturally done using only the more elementary facts
about currents. In particular we shall not in this section have any need
for the compactness theorem 27.3 (instead we use only the elementary‘compactness
theorem 6.3 for BV functions), nor shall we need the deformation theorem and

the subsequent material of Chapter 6.

The following theorem could be derived from the general compactness

theorem 34.5, but here (as we mentioned above) we can give a more elementary

. +k
treatment. In this theorem, and subsequently, we take U C IJI to be open,

and ( will denote the collection of (n+l)~dimensional oriented embedded
2 . n+k . =
C“ submanifolds N of R with (N~N) N U=#¢, NNU#® . A seguence

{Nj} c 0 is said to converge to N € 0 in the c? sense in U if there

are orientation preserving C2 embeddings wj : NN U ~» Nj with wj -+ lNﬂU
locally relative to the C2 metric in NN U . In particular if x € N
then N, AN converges to TXN in the C2 sense in W as A ¥ 0, for

14

+
each W CC Rn k.

In the following theorem p is a proper C2 map U~ NN U such that,

in some neighbourhood V ¢ U of NNU , p coincides with the nearest point

projection of V onto N . (Since the nearest point projection is C2 in

some neighbourhood of NN U it is clear that such p exists.)

37.2 THEOREM (Compactness theorem for minimizing T as in (*))

n+1

Suppose T €D @ . T, = aﬂEjﬂ(in U) , E. H ~T-measurable subsets of

J
erlU . Ny €0, Ny >N € 0 inthe c? sense described above, and suppose

T, ts integer multiplicity and minimizing in U N N. .
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Then there is a subsequence {Tj,} with Ty, T tn D (U) , T integer

in Ll (Hn+l

multiplicity, T = 9[E] (in U) , XP(Ej.) T Xg 1oc

A0) BT

(in the usual sense of Radon measures) in U, and T <8 minimizing in

NNu.

37.3 REMARKS
(1) Recall (from Remark 37.1) that the hypothesis that Tj is integer

multiplicity is automatic if we assume merely that Mw(Tj) < Vwcecu.

(2) We make no a-priori assumptions on local boundedness of the mass
of the Tj (we see in the proof that this is automatic for minimizing

currents as in (*)).

(3)y Let hi{x,t) = x+t(p(xX)-xX) , X€U , 0st=<1 . Using the homotopy
formula 26.22 (and in particular the inequality 26.23) together with the
fact that Nj +N in the C2 sense in U , it is straightforward to check

that

Tj-T = aRj ’ Rj = h#(ﬂ(orlm X Tj) + P#EEjﬂ - [E]

with
¥W(Rj') -+ 0 VWcu,

rovided that

> Xg as claimed in the theorem. Thus once we establish

)
Xp(E ) - XE for some E , then we can use the argument of 34.5 (with Sj= 0)
EN
J

in order to conclude

(1) T 4is minimizing in U
., - uT in U .
J

(Notice we have not had to use the deformation theorem here.)
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In the following proof we therefore concentrate on proving Xp(E ) - XE
j'

. 1 n+1 .

in LloC(H ,NNU) for some subsequence {j'} and some E such that

3[E] has locally finite mass in U . (T is then automatically integer

multiplicity by Remark 37.1.)
Proof of 37.2 We first establish a local mass bound for the Tj in

Us: if & €N and Bp () c U, then
0

1 ,n 1
(1) g(TjL Bp(i)) =3 H (3Bp(€)le) , L7 ale. pe (O.DO) .
This is proved by simple area comparison as follows:

With r(x) = |x—£] , by the elementary slicing theory of 28.5(1), (2)
we have that, for tt-ae. o € (O,po) , the slice <|[Ej],r,p> (i.e. the

slice of |IEj]] by aBp(g)) is integer multiplicity, and (using Tj=31[Ej]]) .
E.B = T.LB + E.|l,x, .
aujn p@ﬂ JL p@) <[ ﬂ r,p>
Hence (applying 9 to this identity)
e 1.. ‘
a(TjLBp(F,)) = a<[[Ej]],r,p>, L"-a.e. pe (0,pg) -
But by definition 33.1 of minimizing we then have
1
L}(TJLBQ(E)) = I='4< ﬂEj]]rrrp>r L™ -a.e. pE€ (pro) .
Similarly, since —Tj is also minimizing in NN U ,
~ 1
M LB €) = M<[ESL xp>, [T -ace. p€ (0ipg)
where Ej =NNU~ Ej . Thus
(2) uer LB, (8) = minlu[eylx 0>, ¥<IE; L r,0>}

for Ll- a.e. p € (O,po) . Now of course ﬂﬁjﬂ + ﬂEjH = [NNU] , so that
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(for a.e. p€ (O,DO))
<[Ej]],r,p>+<|[Ej]1,r,p>=<N,r,p>

and hence (2) gives (1) as required (because M(N,x,0>) = Hn(NﬂE)Bp(g))

by virtue of the fact that |Dr| =1 , hence ]VNr] =1) .

Now by virtue of (1) and Remark 37.1 we deduce from the BV compactness
theor 6.3 that ubsequence of converges i
orem at some s q {XP(Ej.)} {XP(Ej)} verg in

1 ( Hn+1

+
Toc ,NNU) to Xg where ECN is H""l-measurable and such that

3[E] is integer multiplicity (in U) . The remainder of the theorem now

follows as described in Remark 37.3(3).

37.4 THEOREM (Existence of tangent cones)
Suppose T = d[E] € D_(u) <is integer multiplicity, with ECNNU ,
NE€EO, and T <s minimiging in UNN . Then for each x € spt T and each

sequence D\j} V¥ 0 there is a subsequence {Aj,} and an integer multiplicity

k +k

+ . e .
C € Dn(JRn ) with C minimizing in r" , 0€ sptcCcc TN,

On(uc,O) = @n(uT,x) , c=0lrl, F an H*'measurable subset of TN,

k . 1 Hn+l

. n+
Y tn R , me L ©) > Xp T Lloc( ’TxN) ,
"3

where p 1is the orthogonal projection of rME onto TN, and

(2) ”o,x#c =C, no'AF =F YA>0.

37.5 REMARK  The proof given here is independent of the general tangent

cone existence theorem 35.1.

Proof of Theorem 37.4 As we remarked prior to Theorem 37.2, N,y N
AL
J

. . +k
converges to TXN in the 02 sense in W for each WccC Rn . By the
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compactness theorem 37.2 we then have a subsequénce Aj' such that all the
required conclusions, except possibly for 37.4(2) and the fact that 0¢€ spt C,
hold. To check that O0€ spt C and that 37.4(2) is valid, we first note by
33.2 that the varifold V associated with T is stationary in NN U (and

that V therefore has locally bounded generalized mean curvature H in

NN U) . Therefore by the monotonicity formula 17.6(1), and by 17.8, we have
(1) On(uv,x) exists and is = 1 .
Since U -+ U, , we then have @n(u ,0) = @n(u ,x)21 , so 0O€sptcC,
n T C C T
X,Xj#

and by 19.3 we deduce that the varifold VC associated with C is a cone.
s . - - n+k .
Then in particular x A C(x) = 0 for uc-a.e. x € R and hence, if we
let h be the homotopy h(t,x) = tx+ (1-t)Ax , we have h#(ﬂ(O,l)BX Cy=0,
and then by the homotopy formula 26.22 (since 3C=0 ) we have no A#C==C
14
as required. Finally since spt C has locally finite Hn—measure (indeed

by 17.8 spt C is the closed set {yGIRn+k: @n(uc,y)z 1}), we have

el = [F1 ,

n+1 Hn+1

where F is the (open) set {y¢€ T N~ spt C: €] ( /TN, Y) = 1} . Evidently

no A(%) = F (because no >\(spt C) = spt.C) . Hence the required result is
1 I

established with F in place of F .

37.6 COROLLARY" Suppose T is as in 37.4 and in addition suppose there is

an n-dimensional submanifold I embedded in rYE

with x € L ¢ NNU for
some x € spt T , and suppose spt T ~ I lies locally, near x , on one
stde of L . Then x € reg T . (reg T is as in 36.1.)

Proof 1et c = 3[r] (FCT N) be any tangent cone for T at x . By

assumption, sptl[F] ¢ B, where H is an open %-space in TN with

0 € 3H . Then, by 36.5, spt C ¢ 3H and hence by the constancy theorem 26.27,

* Cf. Miranda [MM1]
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since C is integer multiplicity rectifiable, it follows that ¢ = #3[ul .

However spt[F] ¢ H, hence C = +3[H] . Then @Q(uc,y) =1 for v € 9H ,

and in particular On(uC,O) (= @n(uT,x)) =1, so that x € reg T (by

Allard's theorem 24.2) as required.

We next want to prove the main reqgularity theorem for codimension 1

currents. We continue to define sing T , reg T as in 36.1.

37.7 THEOREM  Suppose T = 3[E] ¢ Dn(U) is integer multiplicity, with

E

n

Y

C

<

e}

NNUu, N€O0, and T minimizing in NN U . Then singT =0 for
. . .. . n-7+0 , .
6, sing T is locally finmite in U for n=7, and H (sing T) =0

>0 in case n > 7.

Proof We are going to use the abstract dimension reducing argument of

Appendix A (Cf. the proof of Theorem 36.4).

To begin we note that it is enough (by re-scaling, translation, and

restriction) to assume that

(1)

U= B2(0)

and to prove that

(2)

sing T N B, (0) = ¢ if n<6 , sing T N B, (0) discrete if n=7 ,

K74 (ging T NB (0)=0 Vo>0 if n>7

Let T be the set of currents as defined in the proof of 36.4f and for

n+k

+
each S € T let ¢S be the function : R - RY 1 associated with S as

in Remark 35.4. Also, let

F = {¢S: seT}

and define

*

We still have On(us,x)= 1 for Ug-a.e. x € Ug + this time by 37.2and 37.1 (*%*).
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sing ¢s = sing S .

(sing S as defined in 36.1.)

By Theorem A.4 we then have either sing S = @ for all s € T (and

hence sing T=@) or
(3) dim Bl(O)ﬂ sing s =4 ,
where d € [0,n-1] is the integer such that

dim Bl(O) Nsing s =d for all s €T

and such that there is S € T and a d-dimensional subspace L of ZRn+k
such that
= >
nx,K#S S Yxe€e€L, A>0
and
(4) sing 8 = L .

Ssupposing without loss of generality that L = I#EX{O} , we then (by Lemma

35.5) have
(5) s=|[Rd]}xso

. NI . n+k=-1 X X
where BSO =0, S0 is minimizing in R , and sing SO = {0} . (With
S as in (5), sing S = {0} = (4).) Also, by definition of T , spt S c some
(n+1) ~-dimensional subspace of :Rn+k , hence without loss of generality we

. . . S e . n-d+1 .

have that S is an (n-d)~-dimensional minimizing cone in R with

0

sing s, = {0} . Then by the result of J.Simons (see Appendix B) we have

n-d > 6 ; i.e. d < n-7 . Notice that this contradicts d = 0 in case n<7.
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Thus for n < 7 we must have sing T = § as required. If n=7 , sing T

is discrete by the last part of Theorem A.4.

37.8 COROLLARY If T s as in 37.7, and 2f T, € Dn(U) is obtained by

1
equipping a component of reg T with multiplicity 1 and with the orientation

of T , then BTl =0 (Zn U) and T, <s minimizing in U N N .

1
37.9 REMARK wNotice that this means we can write

(*) T= ) T,,

where each Tj is obtained by equipping a component Mj of reg T with

multiplicity 1 and with the orientation of T ; then Mi n Mj =0

Vi # 3, BTj =0, and Tj is minimizing in U Vj . Furthermore (since
n

uT (Bp(x)) > cp for Bp(x) C U and x € spt Tj by virtue of 33.2 and the

J

monotonicity formula 17.6(1)) only finitely many Tj can have support

intersecting a given compact subset of U .
Proof of 37.8 The main point is to prove

(1) aTl =0 in U .

The fact that T1 is minimizing in U will then follow from 33.4 and the

fact that gw(Tl) + ﬁW(T—Tl) = gW(T) VYVWccuU.

To check (1) let w € Dn—l(U) be arbitrary and note that if ¢ = 0 in

some neighbourhood of spt T ~ M1
(2) Tl(d(Cw)) = T(d(Cw)) = 9T(Cw) = 0 .

Now corresponding to any € > O we construct 7 as follows: since
-1, . . . .
Hn (sing T) = 0 (by 37.7) and since sing T () spt w is compact, we can

find a finite collection B ).
on { p.(gj)}]=l,

of balls with ij € sing TN spt w
J

-
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P
and. Z n-1 K

Py <e . Foreach j=1,...,p let ¢, ¢ c°c°(1R“ ) be such that
j=1

= n+k
. =1 on B . . =0 on R ~ B . and 0=¢.=<1 everywhere.
o 055 1 b 20,55 ¢ o, ry

P
Now choose = 1 ¢j
j=1 P P .
neighbourhood of spt T~ spt Tl . Then dr= 2 II ¢jd¢i on spt Tl , and hence
i=1 j#i

© in a neighbourhood of spt 'I‘l and so that =0 in a

P
la(zw) - caw| = clw| } prjl-l < celw| on sptT, .
5=1

Then letting € ¥ 0 in (2), and noting that zdw - dw H' - a.e. in spt Tl n
N N spt w (and using |C| <1) , we conclude Tl(dw) = 0 . That is

aTl =0 in U as required.

Finally we have the following lemma.

37.10 LEMMA  IFf T. = ofe;1 , T, = 93[E,] € Dn(U) , U bounded,

1

4 .
E;,E, CUNN, N of class ¢ ,N€0 , T , T minimizing in UNN ,

1 2

reg T, , reg T, are connected, and Elﬂv c Ezﬂv for some neighbourhood
V of 99U, then spt [[El]] c sptIIEz]] and either I[El]] = [[Ez]] or

spt Tl 1 spt T, C sing Tl 1 sing T

2 2"

Proof Since Hn+1(spt Tj) = 0 (in fact spt Tj has locally finite

H'-measure in U by virtue of the fact that @n(uT ,X) = 1 Y x € spt Tj) .
]

we may assume that E, and E, are open with U N Z)Ej

UNJE. = spt T.
3 pE Ly

9=1,2 .
Let S1 R 82 € Dn(U) be the currents defined by
s, = BI[ElﬂEZ]] P8, = a[[E1UE2]l .

Using the hypothesis concerning V we have

(1) ) sj L vnu) =Tj L (vnu , j=1,2 .
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On the other hand we trivially have

[e,ne,] + [E UE,] = [E] +[£,],
so (applying 9 ) we get
(2) S, +8, =T, +T, .

Furthermore ElﬂE c E1U E, + S0

2

3) M (Sq) + M (S)) = M(S,45,)

M (T +T))  (by (2))

IA

M (T)) M (T )

Y W cc U . On the other hand, choosing an open VO so that 29U C V0 ccv ,

and using (1) together with the fact that T is minimizing, we have

1

b=IIW(S:L) 2%(1‘1) s W= U"'VO ’

and hence (combining this with (3))

%(32) = l'=4w(T2)

for W=1U~ \70 . Thus (using (1) with j=2) S, is minimizing in U .

Likewise Sl is minimizing in U .

We next want to prove that either Tl = T2 or reg Tl N reg ‘I‘2= g .
Suppose reg Tlﬂ reg T2 # @ . If the tangent spaces of reg Tl and reg T2
coincide at every point of their intersection, then using suitable local

coordinates (x,z) € Rnx R for N near a point £ € reg Tl N reg T2 ,  we

can write

Teg Tj = graph uj , Jj=1,2 ,
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where Du, = Du2 at each point where u, = u, and where both u

u

1 1 1772

are (weak) Cl solutions of the equation

3 oF oF

= | 3p. (x,u,Du)] - 32 (x,u,Du) = 0 ,
i i

where F = F(x,2,p) , (x,2,p) € R x RX I{l, is the area functional for
graphs =z = u(x) relative to the local coordinates x, z for N . Since
N is C4 we then deduce (from standard quasilinear elliptic theory - see
e.g. [GT]) that u u are C3’a . Now the difference u,-u of the

1 %2 1”72

solutions evidently satisfies an equation of the general form

D.(a..D.u) + b.D.u+cu=20,
jooiji iTi

2,0 X . .
where aij'bi’c are C°’7 . By standard unique continuation results (see

e.g. [PM]) we then see that Du1 = Du2 at each point where u1 =u, is

impossible if wu, -u

1 5 changes sign. On the other hand the Harnack inequality

i = - > i -
([GT]) tells us that either u1 u2 or [ul u2| 0 in case u1 u, does

not change sign. Thus we deduce that either T. =T or reg Tl Nl reg T

1 2 =9

2
or there is a point § € reg 'I'1 N reg T2 such that reg Tl and reg T2

intersect transversely at & . But then we would have Hn—l(sing BﬂElr1E2ﬂ) >0,
which by virtue of 37.7 contradicts the fact (established above) that

BHEIFIEZE is minimizing in U .

Thus either T, =T or reg T1 Nreg T, =@, and it follows in

1 2 2

either case that El C E2 . On the other hand we then have

sing Tlf]reg T2 = @ and sing Tzr]reg ’I‘1 = @ by virtue of Corollary 37.6.

Thus we conclude that E, CE, and spt Tlflspt T,C sing T, Nl sing T, as

required.



