CHAPTER 4
THEORY OF RECTIFIABLE n-VARIFOLDS

k

v

Let M be a countably n-rectifiable, H"-measurable subset of 1Rn+
and let 6 be a positive locally Hn—integrable function on M . Corresponding
to such a pair (M, 0) we define the rectifiable n-varifold g(M,G) to be ‘
simply the equivalence class of all pairs (M,6) , where M is countably
n-rectifiable with H"((M~M) U (M~M)) = 0 and where 8 =6 H'-a.e. on
MNM .* 8 is called the multiplicity function of viM,8) . v(M,0) is

called an integer multiplicity rectifiable n-varifold (more briefly, an

integer n-varifold) if the multiplicity function is integer-valued H' - a.e.

In this chapter and in Chapter 5 we develop the theory of general
n-rectifiable varifolds, particularly concentrating on stationary (see §16)
rectifiable n-varifolds, which generalize the notion of classical minimal
submanifolds of Fp+k . The key section is 8§17, in which we obtain the

monotonicity formulae; much of the subseguent theory is based on these and

closely related formulae.

§15. BASIC DEFINITIONS AND PROPERTIES

Associated to a rectifiable n-varifold V = g(M,G) {as described above)

there is a Radon measure |, (called the weight measure of V) defined by

15.1 ; uv=H"Le,

* We shall see later that this is essentially equivalent to Allard's ([AW1])
notion of n-dimensional rectifiable varifold. In case MCU , U opéen in
ROPK and 6 is locally HPB-integrable in U , we say V = Z(M,e) (as
defined above) is a rectifiable n-varifold in U .
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. _ +
where we adopt the convention that 6 = 0 on r" k. M . Thus for

HP-measurable A ,

Wy () =J o aH” ,
AMM

The mass (or weight) of V , M(V) , is defined by

nt+k
15.2 M(V) = U (R .

Notice that, by virtue of Theorem 11.8, an abstract Radon measure U is
actually Wy for some rectifiable varifold V if and only if 1 has an
approximate tangent space TX with multiplicity 6(x) € (0,%) for

k

+
U~-a.e. x € R (See the statement of Theorem 11.8 for the terminology.)

In this case V = y(M,6) , where M= {x : o*™(u,x) > 0} .

Given a rectifiable n-varifold V = X(M,S) ;, we define the tangent
space TXV to be the approximate tangent space of uv (as defined in the

statement of Theorem 11.8) whenever this exists. Thus

15.3 Tv=TM H'-a.e. x€M
X X

where TXM is the approximate tangent space of M with respect to the

multiplicity © . (See 11.4, 11.5.)
We also define, for V = g(M,G) ,
15.4 spt V = spt Wy

k

.
and for any H'-measurable subset A C R , vLA is the rectifiable

n-varifold defined by
15.5 via=ym0aelmnNa)) .

Given V = v(M,0) and a sequence Vk = X(Mk,ek) of rectifiable
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n-varifolds, we say that V., +V provided uv e 1&] in the usual sense of Radon

k
measures. {(Notice that this is not varifold convergence in the sense of Chapter 8.)

k

Next we want to discuss the notion of mapping a rectifiable n-varifold

relative to a Lipschitz map. Suppose V = X(M,G) B M cU, U open in 1Rn+k,
n+k

W open in R and suppose f :sppvf1U -+ W 1is proper*, Lipschitz and 1:1.

Then we define the image varifold £,V by

15.6 £,V = v(EM) 8071 |

We leave it to the reader to check using 12.5 that £(M) is countably
n-rectifiable and that 0. £ © is locally Hn—integrable in W, and therefore
that 15.6 does define a rectifiable n-varifold in W . Moregenerally if £

satisfies the conditions above, except that £ is not necessarily 1:1 , then

we define f#V by
£,V = y(£m,0) ,
where § is defined on £ (M) by Z 0(x) |= 8 aH®| . Notice

x€f “(y)NmM f-l(y) ™

that 8 is locall Hn—inte rable in W by virtue of the area formula (see
Y g

§12), and in fact

15.7 M(£,V) = j 8 an”
£ (M)

( n
Jg £ 6 aH" ,

where JMf is the Jacobian of £ relative to M as defined in §12; that is

3£ =/aet(ds yv. d'
M ; x x

. -1 ‘ . ;
L i.e. £ "(K) N spt V is compact whenever K is a compact subset of W.
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n+k
where deX : TXM -+ R 1 is the linear map induced by £ as described

in §12.

§16. FIRST VARIATION

Suppose {9, }

> i - ily of Qiff i
£ —e<e<e (e>0) is a l-parameter family of diffeomorphisms

-+ .
of an open set U of Rn k satisfying

. 3 compact KCU such that ¢t[U~K=_1:U~K YV t€ (-g,€)

16.1

(ii) (x,t) > ¢t(x) is a smooth map UX (-€,€) = U .

Then if V = y(M,G) is a rectifiable n-varifold and if K € U is compact

as in (i) above, we have, according to 15.7 above,

M(d (VLK>>=j I 6.6 i,
=" Tt# MK M "t

and we can compute the first variation é%»g(¢t#(vl_K)) exactly as in §9.
t=0
We thus deduce

s

a .
16.2 < Mo (va))| =J div X du., ,
= M \Y%
dt t# =0 M
where XIX = g% d(t,x) is the initial velocity vector for the family
=0
{¢t} and where divyX is as in §7:;

ivx=Myize . 3
divx = T, x0(= e, Mxdyy .

(VMXJ as in §12) we can therefore make the following definition.

16.3 DEFINITION v = v(M,0) is stationary in U if I divMX duv = 0 for

any Cl vector field X on U having compact support in U .
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More generally if N is an (n+k1)—dimensional submanifold of Rn+k

(k,<k) , if U 1is an open subset of N , 1f M c N , and if the famil
1 34
{¢t} is as in 16.1, then by Lemma 9.6 it is reasonable to make the following

definition (in which B is the second fundamental form of N) .

16.4 DEFINITION If UCN is open and M C N is as above, then we say

V=yv(M,0) is stationary in U if

div X du =-J X H o du
JU M v g M

whenever X is a C1 vector field in U with compact support in U ;

n
here EM = izl BX(Ti,Ti) ’ Tl,...,Tn any orthonormal basis for the
approximate tangent space TxM of M at ¥ . (Notice that by 16.2, which
remains valid when U C N , this is equivalent to é% g(¢t#(vl.K)) =0

t=0

whenever {¢t} are as in 16.1 with U C N .)

It will be convenient to generalize these notions of stationarity in

the following way:

16.5 DEFINITION  suppose H is a locally ’uv—integrable function on M N U

+ .
with values in B°% . we say that V(= v(M,0)) has generalized mean

. + .
curvature H in U (U open in ®" k) if

div. X du., = - [ X+ H du
JU M v - v

1

whenever X is a C vector field on U with compact support in U .

16.6 REMARKS
(1) Notice that in case M is smooth with (M~M)NU = § , and when

6 = 1, the generalized mean curvature of V is exactly the ordinary mean
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curvature of M as described in §7 (see in particular 7.6).

. . X . n+k .
(2) V 'is stationary in U (U open in R ) in the sense of 16.3

precisely when it has zero generalized mean curvature in U , and V is
stationary in U (U open in N) in the sense of 16.4 precisely when it has

generalized mean curvature EM .

§17. MONOTONICITY FORMULAE AND BASIC CONSEQUENCES

. . . . +
In this section we assume that U is open in Rn k , V = x=7(M,6) has

generalized mean curvature H in U (see 16.5), and we write U for

L. (=H"L O as in 15.1).

v

Our aim is to obtain information about V by making appropriate choices

of X in the formula (see 16.5)

17.1 J div X & = - J XeH U, X € C(l:(U;JRnH{) .

First we choose X = y(r)(x-f) , where £ € U is fixed, r = |x-g] , ana

Y is a Cl(R) function with

Y'(t) =0 Yt, vy =1 for t<p/2, y) =0 for t>p0 .,

where O > O is such that §p(€) C U . (Here and subsequently Bp (€) denotes

the open ball in :Rn+k with centre & and radius p .)

For any £ € Cl(U) and any X € M such that TXM exists (see 11.4-11.6)
n+k ’
i
we have (by 12.1) VMf(x) = z e f(x)e. , where D,f denotes the
. 2 3 2
i, =1
partial derivative _B_g of f taken in U and where (eji) is the matrix
9x
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. X + cas
of the orthogonal projection of :Rn k onto TxM . Thus, writing

V? = ej-VM (as in §16), with the above choice of X we deduce
n+k . ntk .. n+k j -3 L 2 .
dgivx = ) W=y eI+ ryr(o y (x"-€7) (x-€) 3%
M . J . . r r
=1 =1 i, =1
0 n+tk ..
Since (eJ ) represents orthogonal projection onto TxM we have Z e33= n
21
n+k TR 9 9 J
J_73 - .
and Z (x"-£7) (x -£) ejg =1 - ]Dlr|2 , where Dlr denotes the

j. =1 r r

orthogonal projection of Dr (which is a vector of length = 1) onto (TXM)l.

The formula 17.1 thus yields

| 2au

: 1
(*) n J Y(xr)dy + J ry'(r)du = - J He (x-§) y(r)au + J rY'(r)l(Dr)
provided ﬁp(a) C U . Now take ¢ such that ¢(t) = 1 for t < 1/2,
¢(t) = 0 for t =1 and ¢'(t) =0 for all t . Then we can use (*)

with 7vY(r) = ¢(r/p) . Since rYy'(x) = rp_1¢'(r/p) = -p g% [¢p(x/p)] this

gives
nI(p)-pI'(p) = J'(p) - L(p)

vwhere

I(p) = j d(x/p)au , L(p) = J ¢ (x/p) (x=§) -H au

1,2

J(p) = J ¢ (x/p) | (Dr)” | “au .
Thus, multiply by p-n_l and rearranging we have
17.2 -(% PPl =™ 3 + 0 e .

Thus letting ¢ increase to the characteristic function of the interval

(-~,1) , we obtain, in the distribution sense,



d -1 d
17.3 - {p TU(B_(£))) = — J
d d
P P ° s (&)
p
This is the fundamental monotonicity
o'e 2
D r . , )
j -——5—-— are 1necreasing in P
B (&) x

for a.e. p > 0 such that Ep(g) cu.

tells us that the ratio p'nu(sp(g))

by integrating with respect to p in

17.4 o™ ue(8) = p uB, (€)

for all 0 < 0 <p with Eo(g) cu,

iDlr‘Z
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a+ p J (x-E)°H .

Bp(E)

n
r

identity; since ﬂ(Bp(g)) and
it also holds in the classical sense

Notice that if E’E 0 then 17.3

is non-decreasing in 0 . Generally,

17.3 we get the identity

1 L2
B J Ip'r| au
B, (E)~B(E) &
*%f O e T
B_(E) S
9] g

where r_ = max{r,0} , so that if

H =0 we have the particularly interesting identity

17.5 o H(BL(E)) =

-n ,
p u(Bp(E)) J

L2
ID il au .
BD(£)~BG(E) r

We now want to examine the important question of what 17.3 tells us in

case we assume boundedness and LP

17.6 THEOREM 0<a=1

If t£cu,

conditions on H .

, Ah=0, andif

-1 -
(*y o J lalan = Ao/m)® . u(Bp(g)) for all p € (O,R) ,
B _(£)
D

_ ARl~u (o
where BR(g) cuU, then & p

of p € (0,R) , and in fact

eARl'aoa AR

(1) B (E) s e

1-0 o

p_nu(Bp(i)) 18 a non-decreasing function

P iDlrl2 a

=N
o (B _(8)) - J
e B, (E)~B () o
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whenever 0 <0 < p <R . Also,

- -0
_AptOg0 1-0 o

(2) e o Mu(B,(E) = IR

Ipte]? a

b ¢
p B (&) - J L
9] n
B (E~B(E) ¥

whenever 0 < 0 < p <R .

Proof 1o get (1) we simply multiply the identity 17.3 by the integrating

1-0 O

factor e Ar P , whereupon, after using (*), we obtain

1-0 O i12

A -
=l e R P o) nu(B Enl = iL l2~£L— dy , in the sense of distributions.
dp o] dp “n
B (&) «
P
(2) is proved similarly except that this time we multiply through in 17.3
. N _ARl-upa

by the integrating factor e .

|5|® au

i/p .
17.7 THEQOREM 1f £ e u, and { } =T , where BR(S) cu

jBR(E)
and » > n , then

-n i/p ., -n vp I 1-n/p_1-n/p
(o U(BG(E))) = (p u(Bp(E))) + oon (p g )

whenever 0 < o0 < p =R .
Proof Using the Holder inequality, we obtain from 17.2 that

4a ~-n . _ ,n 1-1/p
b (p "I(p)) = p "T(z(p))

for troa.e. p € (0,R) . Hence

< (0™ (o))

/p
dap -

-p o ™P T

Thus, integrating over (0,0) and letting ¢ increase to the characteristic

function of (-%,1) as before, we deduce the required inequality.
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17.8 COROLLARY If H ¢ Lﬁoc(u) in U for some p > n , then the density
N (B _(x)) N
O (U,x) = lim exists at every point x € U, and © (U,*) s an

n
p¥0 wnp

upper-semi-continuous function in U :

0™ (u,x) = lim sup On(u,y) ¥Yx€u.
y > X
Proof The inequality 17.7 tells us that (p"“u(Bp(E))l/p + 5%; PP o
a non-decreasing function of p ; hence 1lim p—nu(Bp(E)) exists (and is
V0
the same as lim P nu(ﬁp(i))) . We also deduce that

A

(0 (1N Y < (0 uE NP+ o ot

-n 1/p 1-n/p
(p U(Bp+€(x))) +cp

IA

whenever 0 < p , € >0, Bp+€(x) €U and |y-x| < e . Letting o ¥ 0

we thus have

LN TP are/p) P 4 TR

n Vp _ -1 -n
©" (1,¥)) = (W " (p+e) u(Bp+

Now let § > O be given and choose € << p < § so that

W L ore) Pue 0 YPves/0)™P < (@ @ YP v s .
n o+e
Then the above inequality gives
@,y P < @,z YR 4 ¢ ptT/P

(c depends on x but is independent of &, €) provided [y—x[ < g . Thus

the required upper-semi-continuity is proved.
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17.9 REMARKS

(1) If 9= 1 Y-~a.e. in U, then O"(u,x) > 1 at each point of
spt 4 N U, and hence we can write VL U= v(M,,6,) where
M, =spt u NU, B8,(x)=0"(x), x€U. Thus VL U is represented in
terms of a relatively closed countébly n-rectifiable set with wpper-semi-

continuous multiplicity function.

- 1i/p
(2) 1f £e€¢vuUu, @“(u,a) > 1, and (wnlj [Elpdu} <:I(1-n/p), where

B (€)

§R(£) CU and p > n , then both inequalities 17.6(1), (2) hold

with A = 2T ﬁn/p and o = 1l-n/p , provided T pl_n/P £1/2 . To

see this, just use Holder's inequality to give

() f lElas = T ENTYP o1 ue @) we @)n VP .
Bp(g) P P p

On the other hand, letting ¢ ¥ 0 in 17.7 we have

1-
(B (E) 2 wp(1-T o n/pye

so that u(Bp(é::)) > %pwnpn for T pl‘n/P 5% , and (*) gives

J [Eldu =27 u(BD(E))Q_n/P . Thus the hypotheses of 17.6 hold
B (&)
p

with A= 2T r™P
(3) Notice that either 17.6(1) oxr 17.7 give bounds of the form
u(BO(i)) <=g", 0<0 <R for suitable constant B . Such an inequality
implies
- -1 a
j 1x-g]a ®au < nBa 1
B (&)
o €

for any p¢€ (0,R) and O0<&<n . This is proved by using the following general

fact with f(t) = t-l B to= p—l , and with n-0 in place of o .
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17.10 LEMMA If X <8 an abstract space, | 1s a measure on X , & > 0,

fettay , £20, andif a_ = {x€x: £ >t}, then

(o]

J to"lu(At)dt =at j £ an .
0 a,

More generally

“ 1 1 o Lo

j £ W(B)dE = o j (£t au
t a
0 tO

for each ty = 0.

This is proved simply by applying Fubini's theorem on the product
X > .
space Ato [tO,W) for to 0

The observation of the following lemma is important.

17.11 LEMMA  Suppose € =1 u-a.e. in U, HE€ILD (W in U for
some p > n . If the approwimate tangent space TV (see §15) exists at a
given point x € U, then TV is a "classical” tangent plane for spt u

in the sense that

lim (sup{p_ldist(y,TXV) : vE sptuf}Bp(x)}) =0 .

o244}

Proof For sufficiently small R (with BZR(X) cu), 17.7, 17.8 (with o ¥+ 0 )

evidently imply

(1) ‘*’r—;l T (B,(£) 21/2, 0<p <R, £€&sptul Bplx) .

Using this we are going to prove that if a € (0,1/2) and p € (O,R) then

L

(2) u(Bp(x)~{y : dist(y,T V) <ep}) < -illoanp“ =

sptu N Bp/z(x) c{y: dist(y,TxV)< (e+a)pl} .
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Indeed if & € {y : dist(y,TXV) > (e+a)p}NB then

p/2(><) ’
Bap(g) C Bp(X) ~ {y : dist(y,TXV)<<Ep} and hence the hypothesis of (2)

wnunpn . On the other hand (1) implies

Y=

implies u(Bap(g)) <

so we have a contradiction. Thus (2) is proved,

1 n n
U(Bap(g)) z5wop

and (2) evidently leads immediately to the required result.

§18. POINCARE AND SOBOLEV INEQUALITIES

In this section we continue to assume that V = v(M,0) has generalized
mean curvature H in U, and we again write u  for Uy - We shall also

assume O = 1 Y -a.e. x € U (so that (by 17.9) On(u,x) > 1 everywhere

p

in sptu N U if H € Lo

() for some p >n ).

We begin by considering‘the possibility of repeating the argument of
the previous section, but with XX = h(x)Y(r) (x~§) (rather than xx = y(r) (x=£)
as before), where h 1is a non-negative function in Cl(U) . In computing
diVMX we will get the additional term 7Y (r) (x-§) ° VMh , and other terms
will be as before with an additional factor h(x) everywhere. Thus in place

of 17.2 we get

=N

2 -n~ ) 1,2
18.1 35 (P "T(p)) = p %J | (Or)™|“h ¢(x/p)au
+ o7t j (x=€) » (V"'a + Hhl¢(x/p)du

where now TI{p) = j o(x/p)h du .

Thus
3% "1 = ot j (x=E) + (V'h+ Bh) ¢ (x/p) du

= R say .

(*) The results of this section are not needed in the sequel.
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We can estimate the right-side R here in two ways: if |§l = A we have
(*) Rz -p "t J |V ¢(x/pran - (ho)p ™ T(p)
Alternatively, without any assumption on H we can clearly estimate
(%%) R > -p Pt J r(lVMh] +hlE) o(x/p)an .

If we use (*) in 18.1 and integrate (making use of 17.10) we obtain (after

letting ¢ increase to the characteristic function of (-*,1) as before)

fB h du f h du

(&) B (&)

18.2 _L‘S__SQAD__ei_,+_1_J _l‘Z‘_"ih_l_E
wnon wnpn oy Bp(?,) |x-g|®"

provided BQ(E) CU and 0<0<p .

If instead we use (**) then we similarly get

/ haw f h au
B, (&) . Bp(i)

p
— < - + w;l J -t J r(]VMh]+-h|§|)dudT.
B_(&)

w_ o W
n np 9 T

and hence (by 17.10 again)

s @@ Jo gn .
18.3 <P + () j

n n
w_ o w p
n n

(|v*n| +nlm)

B, (&) |x-g |22

provided Bp(i) cU and 0<0<p .

If we let 0o ¥+ 0 in 18.2 then we get (since O(u,&) =1 for & € sptu)

fB h du
(&) 74
hg e 2o, L vl ,E€sptyu, B (E)cU .
n nw n-1 o]
w P n Bp(g) {x—gi
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We now state our Poincaré-type inequality.

18.4 THEOREM Suppose h € cl(v) , nh=o0 , BZD(E) cu, [H=A,021u-a.e.

in U and

Ao =l+a

(i) u{x€B_(€) : h(x) >0} < (1w p" , e
for some o € (0,1) . Suppose also that

.. n
(ii) u(sz(E))SFp , T >0 .

Then there are constants B = B(n,a,I') € (0,1/2) and ¢ = c(n,a,T) > 0 such

that

Proof To begin we take f to be an arbitrary parameter in (0,1/2) and

apply 18.2 with 1n € B, (£) N sptuy in place of & . This gives
Bp

(f h au
ra-yp| Ba-g)p™ 1 [v"% |
(L) h(n) = e = o 3 du
w_ ((1-8)p) n By g (8 [xn|
f h du
_ ‘B (&)
= eAp (1-8) n ——9———;——— + ;%— j _iyfﬁéji du
w P n /B (§) |x-n|
n p
Now let Y be a fixed C1 non-decreasing function on R with Y(t) =0

for t =0 and 7Y(t) =1 everywhere, and apply (1) with vY(h-t) in place

of h, where t >0 is fixed. Then by (1)

y(h(m-t) s 2 y'(h-t) V"]

n
. nwn JBQ(E) ‘x_nln—l

au + (1-0?) (1-py ™" .
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Selecting B small enough so that (l—B)“n(l—az) = 1—a2/2 . we thus get

2
ot _ 1+o
2 T nw

v (h-t) | V"]

(2) J —
n Bp(g) ‘x—nln b

au

for any n € BBO(E) N spty such that y(h(n)-t) 21 . Now let € > 0 and

choose Yy such that +vy(t) =1 for t = 1+¢ . Then (2) implies

X' (h-t |V . ne BBp(g) 0 A,

(3) 1 < ¢ J L
B, (€) |x-n| "7t

7

€

where A= {ye sptu : h(y)>T} . Integrating over A ne

tte Bp(g) we

thus get (after interchanging the order of integration on the right)

(B, By (£)) = J Y‘(h(x)—t)lVMh(x)l[ j — I ) [ x)
£ -
Bp(g) BBp(b) Ix n}
< clp j Y'(h-t)]VMhl du
Bp(i)
by hypothesis (ii) and Remark 17.9(3). Since vy'(h(x)-t) = - g% Y (h(x)-~t)

we can now integrate over t ¢ (0,®) to obtain (from 17.10) that

(h-g) = cTp J |9"n] au .

AEOBBp(g) Bp(i)

Letting € ¥+ 0 , we have the required inequality.

18.5 REMARK  If we drop the assumption that 6 = 1 , then the above argument

still yields

hdu < cp J ]VMhl au .

B (&)

{x:@(x)zl}ﬂBBp(E) o
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We can also prove a Sobolev inequality as follows.

18.6 THEOREM Suppose h € Cé(U) , h=20, and 6 =1 pu-a.e. in U .

Then
n-1
n n-:

_— n
f nt au =< cJ al+njgha . = c)

Note: ¢ does not depend on k .

Proof 1In the proof we shall need the following simple calculus lemma.
18.7 LEMMA  Suppose £ , g are bounded and non-decreasing on (0,%) and

- - 6
(1) 1 =0 nf(o) <=p nf(p) + J T ng(T)dT ;, 0<0<p <™,
6]

/D (g ) = 1lim £(p)) such that

then 3 p with 0<p < py = 2(£()*
phe

(2) £50) = 5 S%, 90

Proof of Lemma Suppose (2) is false for each p € (O,po) . Then (1) =

-n pO
-n -n 2.5 -n
1= sup 0 £(0) =p  £lpg)+ =——— J p £(5p)dp
0<a<p,, Po Jo
-n 2 500 -n
oy Elpg) + 353 Jo P Tf(p)dp

"

Py

5p
-n 2 -n 0
Po flog) + 355 { Jo p f(p)dp + J

p—nf<o)d0}
Po

-n 2 -n 2 -n
Spp E® 4 g S%P0cp<p, Elo) *+ 5Ty P £ -

Thus

o PE(0) < 2p5nf(W) = 2", which is a

1_ 1
2 2 P0<o<pO

contradiction.
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Continuation of the proof of Theorem 18.6

First note that because h has compact support in U , the formula
18.3 is actually valid here for all 0 < 0 < p < ® ., Hence we can apply

the above lemma with the choices

-1

hdu ,
-
B, (£)

£(p) = w

g(p) = wglj (|#n| + nlg)) au ,
B_(

&
provided that & € sptu and h(§) = 1 .

Thus for each £ € {x¢€ spti : h(x) = 1} we have p < Z(w;1 J h du)l/n
M
such that
1 j haws st J n oy /® J (|| +nlg)) au .
Bsp(i) M BQ(E)

Using the covering Lemma (Theorem 3.3) we can select disjoint balls

Bpl(gl) , sz(gz) e gi € {€€ spty :h(§) =1} such that

{€eM : ni&)yz1} c U B (Ej) . Then applying (1) and summing over Jj we
=

1 Py

have

nf{ -1 /n M
j hat < 5 (m Jh du] J (|v"n| + nlag]) au .
{x€sptu:h(x) =1} noy M -

Next let Y be a non-decreasing Cl(IU function such that 7vYy(t) = 1 for
t>¢€ and Y(t) =0 for t <0, and use this with vYy(h=-t) , £t =0, in

place of h . This gives

um,, ) s st

1
M,e (@ (u01)) /n IM (v* (h=t) |[V"n] + v (h-t) B @y,

where

M = {xé€M : hix)>a} , a=0.
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1
Multiplying this inequality by (t+€)n_l and using the trivial inequality
1 1
n-1 n-1 .
(t+e) u(Mt) = (h+e) du  on the right, we then get

Me

(t+€) HM_ ) =

L
n-1 e w-l/n j
t+e n

Now integrate of t € (0,®) and use 17.10. This then gives

n n ' ny1l/n

j hn—l__en—l au < Sn+lw—1/n J (h+€)n—l
M M

- JM (|"n[+n|B)) au .

€

n+1w—l/n
n

The theorem (with ¢ = 5 ) now follows by letting € ¥ O .
18.8 REMARK  Note that the inequality of Theorem 18.6 is valid without any

boundedness hypothesis on H : it suffices that H is merely in L1

loc(U) :

§19. MISCELLANEOUS ADDITIONAL CONSEQUENCES OF THE MONOTONICITY FORMULAE

RPN . . + .
Here V = g(M,S) is a rectifiable n-varifold in Rn k and we continue

. . n+k
to assume V has an Lioc(uv) mean curvature g in U, U open in R .

We first want to derive convex hull properties for V in case H is
bounded.
L
ntk = -1
19.1 LEMMA  Suppose U= R ~B.(§) and n ) e (x-€) | <1 -a.e. x€U,

and suppose spt V 1is compact. Then

spt V ¢ §R(E) .

(i.e. VLU=0.)
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Proof Since spt V 1is compact it is easily checked that the formulae

(see §17)
n J Yrydy, + J rY‘(r)(l-lDlrlz)duv = - | B(x) (=) Y(r)du, (x)

(where r = {x-@[) actually holds for any non-negative non-decreasing
c'(®m) function Yy with y(t) = 0 for t <R+e . (e>0 arbitrary.) We

see this as in §17, by substituting X(x) = ¥{(x) v(x) (x-E) , where Y =

1]
i

1
in a neighbourhood of spt V . Since 1 = !D r[z > 0 and fg-(x~§)}<

=]

Hy—a.e. , we thus deduce J Y(r)duv = 0 for any such Y . Since we may
select Y so that Y(t) >0 for t > R+¢€ , we thus conclude

spt V (= spt pv) c B (€) . Because € > 0 was arbitrary, this proves the

R+€

lemma.

19.2 THEOREM (Convex hull property for stationary varifolds)

. : : . n+k
Suppose spt V18 compact and V is stationary in R ~K, K

compact. Then
spt V C convex hull of K .

Proof The convex hull of K can be written as the intersection of all balls

BR(i) with K C'BR(E) . Hence the result follows immediately from 19.1.

Next we want to derive a rather important fact concerning existence of
"tangent cones" for V in U . We will actually derive much more general
theorems of this type later (in Chapter 10); the present simple result suffices

for our applications to minimizing currents in Chapter 7.

The main idea here is to consider the possibility of getting a cone (or
a plane) as the limit when we take a sequence of enlargements near a given

point & € U . Specifically, we use the transformation T X P k_l(x-E) ,

L3\
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and we consider the sequence Vj = ng ALl V (see 15.6 for notation) of
P AL
J

"enlargements" of V centred at § for a sequence Xj v 0 .

N uv(ﬁp(a))
19.3 THEOREM  Suppose £ € u, O (uv,E) = lim ———— exists, and, with
o+0 w_p
n
V. =1 V as above, suppose . = U. 1in the sense of Radon measures in
J E,Aj# v W
Rn+k, where W 1is a rectifiable n-varifold which is stationary in all of
Rn+k . Then W <s a cone, 1in the sense that W = v(c,y) , where C 1is a

countably n-rectifiable set invariant under all homotheties x N S
A>0, and Y is a positive locally Hn—integrable function on C with

Vx) SV Ix) for x€c , A>0.

19.4 REMARK We do not need to assume V has a generalized mean curvature

here. However note that (by 17.8) generalized mean curvature in Lﬁoc(uv) B
p > n , guarantees the hypothesis that Gn(u,x) exists. Furthermore, in

later applications the fact that the limit varifold W is stationary will
often be a consequence of the fact that V has a generalized mean curvature

which satisfies suitable restrictions near § .

Proof of 19.3  whenever UW(BBO(O)) = 0 (which is true except possibly for

countably many ¢ ) we have

]

(1) 0y (B (0)) = Lim o™, (B (0)

J7® J

]

. -n = s
¥1m (kjc) uV(BX.O(g)) (by definition of Vj)
e J

]

n
(J.)ne (UVI g) 12
independent of 0o .

On the other hand since W is stationary in If”k we know by 17.5 that

(with r = |x|)
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7

12

-n, -1 ]D rl

o U (B (0O))y=p0 U_(B (0))—J = dy
weo We B )~ 0 £ "

so that from (1) we deduce

(2) inlrlz =0 y,-a.e.

. R . +k
But recall that (letting grad denote gradient taken in :Rn )

Dlr(x} = qx(grad r{x)) (= r—qu(x)) 5 UW-a‘e, X

. . +
where qy denotes the orthogonal projection of Rn k onto (TXW)’L B
TxW the tangent space of W at x (see §15). Therefore (2) implies
Q. (®) =0, W-a.e x;

in other words
(3) x € wa uw-a.e. X

+
Next note that if h is a Cl(Rn k~{O}) homogeneous function of degree

X

zero, so that h(x) = h(TzT) , then xegrad h(x) =0, x # 0, and so, for
such a function h , (3) implies
(4) x +Vn=o0
W.
(V'h(x) (grad h(x))) .

= Pry
X

Thus for any homogeneous degree zero function h we see from (2), (4)

and 18.1 that

(5) p " J h dy, = const. (independent of p ).
Bp(O)

(Notice the fact that it is valid to substitute h in 18.1, even though h

is not C at 0 , is a consequence of a simple approximation argument,
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using the fact that o u(Bg(O)) is constant.)

It is easy to check that (5) (for arbitrary non-negative Cl (Rn+k~ {o}hH

homogeneous degree zero functions} implies that uw is invariant under

homotheties in the sense that A © uw()\A) = uW(A) for any subset A C Rn+k

Thus the theorem is proved by taking

c = {x: @n(uw,x)>0} ,

Voo = @n(uw,x) .

Finally we wish to prove a technical lemma concerning densities which

we shall need in the next chapter.

19.5 LEMMA  Suppose 0< 2,8 <1, R>0, ﬁR(O)CU,P>n,

- 1/p -
(*) [w t j | 1| Pau ] < (-n/p)T , TRT™P <172
n = v
B_(0)
R
and suppose y,z € BBR(O) with ]y—z[ > BrR/4, G)n(uv,y) ’ G)n(uv,z) >1, and
|a(y-2z)| = &|y-z| , where q <is the orthogonal projection of & onto
Rk. Then

1

0%y oy) + 07y m) = (1re(28) TRYYE) (1-8) TR (8, (0))

+ cug) IR J lle-pllau -
B, (0)

where c¢ = c(n,k,p) . p

]
s}

¢+ Py =P

(=P H_a.e. X) .
r Txv TxM v

19.6 REMARK By (*) and Remark 17.9(2) we can use the monotonicity formulae

17.6 with A = ZFR_H/P , o&=1-n/p, and. £ =y or =z . Notice that in

1-0_0 1-n/p

fact the quantity AR P is then just 2Ip and, since et < 1+2t for
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t <1, we have by 17.6(1) that
-1 - 1~ -1 -
(*%) wnlr nu(BT(g)) < (1+4TC n/P)mnlc ! (B (E))

whenever BO(E) c BR(O) , 0<T1T<0, and On(u,i) > 1 , where we write

u  for uv .

Proof of 19.5 First note that by 18.3 we have
-n -n o -n f M.
g J hdp =op J hdu+JT (|v'n| + |g|myau at
B,(E) B, (£) o B (®)

for any non-negative Cl(an+k) function h , provided 0<o<p< (1-B)R and

E=y or z . We make a special choice of h such that h = f(iq(x—g)!) B

where £ is CY(R) with:

£(£) 21 for |t|<BR/16,£(t) =0 for |t|>LBR/8, |£'(t)]=3(BR)™Y and

O=f(t)=1 Vt.

A

i

Then, since IVb;(q(x—«i))l < |peal = [ -p)ea| = |p -p| = vo¥k |p -pll for

ej-VM as in §12), we deduce, with

it

j=1,...,ntk (where \7";I

[of

1A

2BR/2 , p = (1-B)R

~1 -n 1

(1 w0 u(BO<E))5wn

oM (B (8) N {x: |q(x-E)| = 2BR/8})

reo™ugm o [ bl a
B (&)

+co o J lg| au .
BQ(E)

Now (see 17.9(2)) from (*) we have

(2) J lg| au = 2Tp” (B (E))
B_(£)
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Taking alternately & =y , £ = z and adding the resultant inequalities in
(1), (2) and 19.6 (**), we deduce the required result (upon letting T ¥+ O

in 19.6 (**) and taking 0 = BR/8 and p = (1-B)R in all inequalities).



