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APPENDIX I

DISCRETE SPECTRAL VALUES

This appendix is a supplement to Section 7. We give necessary and

sufficient conditions for an isolated spectral value of T € BL(X) to

be a pole of the resolvent operator R(z) . These conditions do not
involve the knowledge of R(z) for z near A . They, in turn, give
conditions for A to be in the discrete spectrum of T . We show that

a spectral value A of T belongs to the discrete spectrum of T if
and only if some commuting compact perturbationlof T dislodges A
from the spectrum.

Let A be a linear operator on X . Consider the ascending chain

of subspaces of X :
2
{0} CZ(A) CZ(A™) C ...
and also the descending chain
2
X D3 R(A) DR(A™) O ...

As we have seen in Remark 7.2, if equality holds at any of the
inclusions in the above two chains, then it persists at all later
inclusions. This property allows us to define the following concepts.

0

As usual, A~ =1, the identity operator.

The ascent of A is
0, if Z(A) = {0} .
a(A) =4 p . if Z(APY) 2 z(aP) = z(AP*hy L 1 <(p < w

©  otherwise.
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The descent of A is

0., if R(A) =X,
5(A) =4 p. if R(APL) zR(AP) =R(AP™) , 1¢p<w,

© ,  otherwise.

IEMMA 1 Let A € BL(X) witﬁ a(A) < © and 6(A) < ©» . Then
(1) a(A) = 6(A) = a , say.
The subspaces Y = R(A%) and Z = Z(A%) are closed in X and
(2) X = R(A%) ® z(A%) .

Further, the operator A 1is decomposed by (Y.Z) ; AIY is invertible

and AZ is nilpotent: (Az)a =0 .
Proof Let af(A) =a < ® and &6(A) =6 < © . We claim that

(3) R(A%) n z(a%*Yy = {0} .

a+l

(4) R(A%Y) + za%) = x .

For, if y € R(Aa) n Z(A6+1) , then y = A%, x€X, and

0 = A6+1y - Aa+5+1x

so that x € Z(Aa+6+1) = Z(Aa) since a(A) = a« . Thus, y = A% =0,
proving (3). Next, for x € X, we have Aﬁx € R(Aﬁ) = R(A5+a+1)
since 6(A) = 6 . Then Aéx = A5+a+1u for some, u € X, so that
A%(x-2%1a) =0 . Now,

a+l a+l

x=A u+ (x-A" "u)

a+l a+l a+l

with A” "u € R(A ) and x - A7 "u € Z(Aa) , proving (4).
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since z(A%"1) 5 z(a%) and R(A™!) c R(A%) . (3) and (4) give
(5) R(A%) N Z(A%) = {0} and R(A%) +z(A%) =X .
o+1

To show a { 8 , we note that if x € Z(A~ ") ., then by (5). we

have x = X+ Xy with X, € R(Aa) and %, € Z(Aé) . Since
X, = X%, € Z(A6+1) also, we see that (3) implies x; = 0, or
6+1

x = x, € Z(A%) , Thus, z(aA®*') =2(A%) . showing a (5 .

Similarly, to show &6 { o , we note that if x € R(Aa) , then by

. atl
(4}, x = X + Xy with x € R(A
R(Aa+1) c R(Aa) , and (5) shows that x, =0, or x = %, € R(Aa+1) .

5 =
Thus, R(Aa) = R(Aa+1) , proving 6 { @, and consequently a =6 .

) and %, € Z(Aa) . But

Thus, (5) implies (2).

The subspace Z = Z(Aa) is closed in X because A% is
continuous. We now show that Y = R(Aa) is also closed in X .
Consider the space W =X xZ with Ili{(x,z)Il = lixll + lizl , and the

continuous linear map B : W = X given by
B(x.,z) = A% + z (x.z) €W .

Since 6 =a , we see from (5) that B maps W onto X , and hence
it is an open map, i.e.., there exists e > O such that if [IBwll < e ,

then Bw = Bw' for some w' € W with Ilw'll <1 . Thus, for we W,
e dist(w,Z(B)) < IBwll .

For x € X, let w= (x,0}) . Then the above inequality reduces to
e dist(x,Z(A%)) < 1A% .

Considering the induced quotient map from X/Z onto X , we conclude

from this inequality that the range Y of A% is closed in X .
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at+l

Finally, it is clear that A(Y) = R(A® ") =R(A") =Y , and

A(Z) C Z(Aa) =7Z , so that A 1is decomposed by the pair (Y,Z} . The
restriction map AY : Y=Y is onto since R(Aa) C R(Aa+1) , and it is
one to one since Z(A) CZ . Hence AY is invertible in BL(Y) .

Also, for every z € Z = Z(Aa) . we have (Az)az = 0 , proving that AZ

is nilpotent. /7

We remark that if A € ¢(T) but is not an eigenvalue of T , then
6(T-AI) = , by Lemma 1. For, otherwise &(T-AI) = a(T-AI) =0 , and

T = AI would be one to one and onto, contradicting A € o(T) .

THEOREM 2 Let T € BL{X) and A € o(T) . Then A 1is pole of R(z)

if and only if
(6) aT-AI) < ® and O&6(T-AL} ( » .
In that case, the order of the pole at A is a(T-AI) = &6(T-AL) .

Proof Let A be a pole of R(z) of order 2, 1 <& <<®, and let

PA be the corresponding spectral projection. Then by (7.9) and (7.10),
z((T-aD)%) c z(r-Aan®Y) R(P,) .
R((T-AD)%) 3 R((TAD™) 2 2(2))

By Lemma 7.1(b) , R(P,) = z((T-An%y . Z(p,) = R((T-AD)®) . so that

z((T-AD)%) = z((TAa)®*hy

R((T-AD)Y) = r((T2AD)®*Y)

and £ 1is the smallest such positive integer, i.e., a{T-AI) = &6(T-AI)

= £ ™
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Conversely, assume that (6) holds. By Lemma 1,
a(T-AI) = 6(T-AI) =a < » .
Since A € o(T) , we see that a > 0 . If we let
Y = R((T-AI)%) ., Z = Zz((T-A)Y)
then Z # {0} , and

X=Y®Z,

T - AL = (Ty-ALy) @ (T,-AL,) .

Also, A € p(TY) . since TY—7\IY is invertible. Since p(TY) is
an open subset of € (Theorem 5.1), there is a neighbourhood U of A
contained in p(TY) .

Again by Lemma 1, (TZ—AIZ)a = 0 . Hence U(TZ) = {A} . (Note
that Z # {0}.) Thus, every z # A in U belongs to
p(TY) n p(TZ) = p(T) . showing that A 1is an isolated point of o(T) .

Let T be a simple closed rectifiable curve in U which encloses
N . For every z € I' , the operator R(T,z) is decomposed by (Y,Z) .

Consider y € Y . Since

R(T.,z)y = R(TY,z)y , z€T ,
we have

ny

{— 5%;-]; R(T,z)dz)]y

-1
§;;-J} R(T,z)y dz

-1
5T J\r R(TY,Z)y dz

[— i%f J} R(TY,z)dz]y .

But since I' CUC p(TY) , We see that

R(T,.z)dz = 0 ,
J; ( Y z)dz
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by Cauchy’s theorem (Theorem 4.5(b})). Thus, ny =0 for every

¥y €Y = R((T-A1)*) . This shows that

D; = PA(T—)\I)a =0 .

Hence A 1is a pole of R(T.z) of order < a . But by the first part,

we see that the order of the pole must be o . Va4

Let us remark that in the course of the above proof we have shown
that if AN € o(T) ., aT-AI) < ® and &(T-AI) < ® , then A is an
isolated point of o(T) . Conversely, it can be proved that if A is
an isolated point of o(T) and &(T-AI) < ® , then a(T-AI) < @ .
(See [T]., Theorem 10.4) However, for an isolated point A of o(T)
the condition a(T-AI) < ® does not imply &(T-AI) < ® . For example,
let A be an isolated spectral value of T which is not an eigenvalue
of T . Then by the remark made after Lemma 1, we must have

6(T-AI) = © while oa(T-AI) =0 .
COROLLARY 3 Let A€ o(T) , T€BL(X) . Then A€ ad(T) if and only
if
a{(T-AI) <o, B(T-AI) < ® and dim Z(T-AI) < = .
Proof The result follows from Theorem 7.5 and Theorem 2 above. V4
The above Corollary says that a spectral value A 1is an isolated
point of o(T) and is an eigenvalue of finite algebraic multiplicity if

and only if the ascent and the descent of (T-AI) as well as the

geometric multiplicity of A are finite.

Finally, we give another interesting characterization of a discrete

spectral value.
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THEOREM 4 ILet T € BL(X) and A € o(T) . Then A € ad(T) if and
only if there exists a compact operator K on X such that TK = KT

and A € p(T+K) . Thus,
(7) o(T) \ ad(T) =N {o(T+K) : K € BL(X) compact, TK = KT} .

Proof Let A € ad(T) , and PA be the corresponding spectral

projection. Consider some zy € p(T) ., and let

K = (A-z,)P, .

Then K 1is compact since PA is of finite rank, and K commutes with

T since every spectral projection associated with T commutes with T

(Proposition 6.2(a)). Let

T=T+K-nalI,

Y =R(P) . and Z=Z(P)) .

Since Pk commutes with T , it follows by Proposition 2.1 that T is

decomposed by (Y.Z) . Also,

TY = TY - ZOIY s

which is invertible in BL(Y) since zy € p(TY) , and

which is invertible in BL(Z) by (6.11). Hence T is invertible,
i.e., A € p(T+K) .
Conversely, let K be a compact operator on X with TK = KT and

A € p(T+K) . Then

(T+K-AT) " (T+K-AI) = T .
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If we let
® = (Tek-A1) Ik,
then we see that
T - AI = (T+K-AI) (1K) .

Now, K and K commute with T , and (T+K-AI) 1is bijective. Hence

it follows that for each n = 1,2,...,

R((T-AD)™) = R((I-K)™) .

Z((T-AD)™) = z((1-KH™) .

~

But since K is compact, either -1 € p(ﬁ) or -1E¢€ od(ﬁ) . Hence by

Theorem 2,
a(I-K) <o, (1K) <®, and dim Z(I-K) < =,
so that
aT-AI) <o, J(T-AI) < ® , and dim Z(T-AI) < @ .
By Theorem 2, A\ € ad(f) and the relation (7) follows easily. /7

In view of the relation (7) in the above theorem, the complement of

Ud(T) in o(T) is sometimes called the essential spectrum of T ,

being the part of o(T) which is 'stable' under all compact

perturbations of T which commute with T .



