1.6. Analytic Vectors.

In the previous sections we examined various methods of constructing a contraction semigroup from the resolvent of its generator. Next we analyze the possibility of a direct construction based on an operator extension of the numerical algorithms

$$\exp\{-tx\} = \sum_{n\geq 0} \frac{(-t)^n}{n!} x^n$$
$$= \lim_{n\to\infty} \left(1 - \frac{t}{n}x\right)^n.$$

The problem with this new construction is that it is not applicable to all C_0 -semigroups, or contraction semigroups, although it is applicable to all C_0 -groups. The basic new concept is that of an analytic element.

If H is an operator on a Banach space $\mathcal B$ an element a $\in \mathcal B$ is defined to be an *(entire)* analytic element for H if

$$a \in \bigcap_{n \ge 1} D(H^n)$$

and the function

$$t \ge 0 \mapsto \sum_{n \ge 0} \frac{t^n}{n!} \|H^n a\|$$

has a non-zero (infinite) radius of convergence. It is not at all evident that an operator possesses analytic elements but this is indeed the case

if H is the generator of a strongly continuous group (a ${\rm C_0}$ -group). In fact one can explicitly construct a norm dense set of entire analytic elements by the following regularization procedure.

Let S = $\{S_t^i\}_{t\in\mathbb{R}}$ be a C_0^i -group with generator H and to each a $\in\mathcal{B}$ associate the sequence a_n^i defined by

$$a_n = \pi^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt e^{-t^2} S_{t/n}^a$$
.

Since $\|S_t\| \le M \exp\{\omega|t|\}$ for some $M \ge 1$ and $\omega \ge 0$ the integral is well defined. Moreover

$$a_n - a = \pi^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt \ e^{-t^2} (S_{t/n} a - a)$$

and it follows from strong continuity and the Lebesgue dominated convergence theorem that a_n converges uniformly to a. But since H is norm closed one may argue recursively that $a_n \in D(H^m)$ for all $m=1, 2, \ldots$ and

$$H^{m}a_{n} = \pi^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt \left\{ (-n)^{m} \frac{d^{m}}{dt^{m}} e^{-t^{2}} \right\} S_{t/n}a$$

$$= (-n)^{m} \pi^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt H_{m}(t) e^{-t^{2}} S_{t/n}a$$

where $\mathbf{H}_{\mathbf{m}}$ is the usual Hermite function. Thus

$$\begin{split} \|H^{m}a_{n}\|^{2} &\leq n^{2m}\pi^{-1}M^{2}\left(\int_{-\infty}^{\infty} dt \ H_{m}(t)e^{-t^{2}}e^{\omega |t|}\right)^{2}\|a\|^{2} \\ &\leq n^{2m}\pi^{-1}M^{2}\int_{-\infty}^{\infty} dt \ e^{2\omega |t|}e^{-t^{2}}\int_{-\infty}^{\infty} dt |H_{m}(t)|^{2}e^{-t^{2}}\|a\|^{2} \end{split}$$

where we have used the Cauchy-Schwarz inequality. Using the normalization properties of the Hermite functions,

$$\int_{-\infty}^{\infty} dt \, |H_{m}(t)|^{2} e^{-t^{2}} = 2^{m} m! \pi^{\frac{1}{2}},$$

one finally deduces that

$$\|H^{m}a_{n}\|^{2} \leq M^{2}e^{\omega^{2}2^{m+1}n^{2m}m!}$$
.

Hence a is an entire analytic element for H and the set of such elements is norm dense.

Despite this positive result the generator of the semigroup of left translations on $C_0[0,\infty)$ has no non-zero analytic elements. The action of this semigroup is given by $(S_tf)(x) = f(x-t)$ if $x \ge t$, and 0 if x < t. It follows that for f to be an analytic element it must vanish with all its (right) derivatives at the origin but it must also be analytic in a strip about the right half axis. Thus f = 0. Nevertheless the translation group acting on $C_0(\mathbb{R})$ does have dense sets of analytic elements and a function is analytic for this group if, and only if, it is an analytic function in the usual sense.

Now we consider the construction of a semigroup through analytic elements and for simplicity we again restrict the discussion to contraction semigroups.

PROPOSITION 1.6.1. Let $\,\,$ H be a norm closed operator on a Banach space $\,$ B . Suppose that

1. H possesses a norm dense set of analytic elements,

2. H is norm-dissipative.

It follows that $\,\,{\rm H}\,\,$ is the generator of a ${\rm C_0}\text{-semigroup}$ of contractions.

Proof. Let a be an analytic element for H . Thus there is $a \quad t_a > 0 \quad \text{such that}$

$$S_t a = \sum_{n \ge 0} \frac{(-t)^n}{n!} H^n a$$

converges uniformly for $|t| < t_a$. Moreover for t fixed in this range $\textbf{S}_t \textbf{a}$ is again an analytic element for H and one can define $\textbf{S}_s \big(\textbf{S}_t \textbf{a} \big)$ for suitably small s . Calculation with norm convergent power series then establishes that

$$S_t(S_ta) = S_{s+t}a$$

for all s, t satisfying $|s|+|t|< t_a$. Next we examine properties of the function $t\in \langle -t_a,\, t_a\rangle \mapsto \|S_+a\|$.

First one has

$$|\|S_{t}a\| - \|S_{s}a\|| \le \|S_{t}a - S_{s}a\|$$

by the triangle inequality. But another power series estimation of the right hand side then establishes that $t \mapsto \|S_t a\|$ is continuous. Second for $0 < h < t < t_a$ one has

$$\begin{aligned} \|\mathbf{S}_{\mathsf{t}-\mathbf{h}}\mathbf{a}\| &= \left\| \mathbf{S}_{-\mathbf{h}} \left(\mathbf{S}_{\mathsf{t}} \mathbf{a} \right) \right\|_{1} \\ &= \lim_{n \to \infty} \left\| \left(\mathbf{I} + \frac{\mathbf{h}}{n} \mathbf{H} \right)^{n} \left(\mathbf{S}_{\mathsf{t}} \mathbf{a} \right) \right\|_{2} \\ &\geq \left\| \mathbf{S}_{\mathsf{t}} \mathbf{a} \right\| \end{aligned}$$

where we have used the assumed norm-dissipativity of H . But this estimate implies that t \in $\langle 0, t_a \rangle \mapsto \|S_t a\|$ is decreasing and hence

for $0 \le t < t_a$. This contractive estimate now allows one to extend the definition of $S_+ a$ to all $t \ge 0$.

Since H is closed $S_{+}a \in D(H)$ and

$$HS_t^a = S_t(Ha)$$
.

Therefore

$$\|HS_{t}a\| = \|S_{t}(Ha)\| \le \|Ha\|$$

for $0 < t < t_a$. Iteration of this argument establishes that if $0 < t < t_a$ then S_t a is an analytic element for S_t with associated radius of convergence equal to t_a . Thus it is possible to iterate the definition of S_t

$$S_{t+s}a = S_t(S_sa) = \sum_{n\geq 0} \frac{(-t)^n}{n!} H^n(S_sa)$$

for 0 < s , t < t_a and consequently deduce that $\|S_ta\| \le \|a\|$ for all 0 < t < 2t_a . Repeating this argument one defines S_ta for all t \ge 0 by

$$S_{t}a = \left(S_{t/n}\right)^{n}a$$

where n is chosen so that $n>t/t_a$. It is then easy to establish that this definition is independent of the choice of n ,

$$S_s(S_t^a) = S_{s+t}^a$$
,

for all s, t > 0,

$$\|S_{+}a\| \leq \|a\|$$

for all t > 0, and

$$\lim_{t\to 0} \|S_t^a - a\| = 0$$
.

Therefore, since the analytic elements are assumed to be norm dense, S extends by continuity to a C_0 -semigroup of contractions on $\mathcal B$. \square

The foregoing result readily extends to C_0 -groups of contractions. But if $S = \{S_t^{}\}_{t \in \mathbb{R}}$ is a group of contractions with $S_0 = I$ then S is automatically isometric because

$$\|a\| = \|S_{-t}S_ta\| \le \|S_ta\| \le \|a\|$$
.

Second if S is also strongly continuous then $S_{\pm} = \{S_{\pm t}\}_{t \ge 0}$ are both C_0 -semigroups of isometries. But

$$\left\| \frac{\left(I - S_{t}\right)}{t} a - b \right\| = \left\| S_{t} \frac{\left(I - S_{-t}\right)}{t} a + b \right\|$$

and hence the generator of S_+ is minus the generator of S_- . Combining these observations with Proposition 1.4.1 and the construction of analytic elements described prior to the propositon one obtains the following.

THEOREM 1.6.2. Let $\, H \,$ be an operator on the Banach space $\, \, B \,$. The following conditions are equivalent:

- 1. H is the infinitesimal generator of a ${\rm C_0}\text{-group}$ of isometries of B .
- 2. H is norm closed; H possesses a norm dense set of analytic elements $\pm H$ are both norm-dissipative.
- **Proof.** $1\Rightarrow 2$. The entire analytic elements for H are dense by the construction preceding Proposition 1.6.1. The rest of the properties of H follow from the Hille-Yosida theorem.
- $2\Rightarrow 1$. This follows by successively applying Proposition 1.6.1 to $\pm H$ and then using the above observation that a group $S_+=\exp\{-tH\}$ of contractions is automatically isometric.

One can also give a C_0^* -version of Proposition 1.6.1 and then deduce a weak*-version of Theorem 1.6.2. Since the second result is deduced by the same argument given above we will merely prove the analogue of Proposition 1.6.2.

PROPOSITION 1.6.3. Let B be a Banach space with a predual B and H a weak*-weak*-closed operator on B . Suppose

- 1. the unit ball of the set of analytic elements for \mbox{H} is weak*-dense in the unit ball of \mbox{B} ,
- 2. H is norm-dissipative.

It follows that H is the generator of a $\textbf{C}_0^{\textcolor{red}{\star}\text{-semigroup}}$ of contractions.

Proof. Let $\mathcal{B}_a\subseteq\mathcal{B}$ denote the norm closure of the subspace of all analytic elements for H and let H_a denote the restriction of H to \mathcal{B}_a . It follows immediately that H_a is norm closed and hence by Proposition 1.6.1 it generates a C₀-semigroup S of contractions on \mathcal{B}_a . In particular H_a is norm-dissipative and $\mathbb{R}\left(\mathbb{I}+\alpha\mathbb{H}_a\right)=\mathcal{B}_a$ for all $\alpha>0$.

Now by Condition 1 we may choose for each $f \in \mathcal{B}$ a family $f_{\beta} \in \mathcal{B}_a$ such that f_{β} converges to f in the weak*-sense and $\|f_{\beta}\| \leq \|f\|$. But it follows from the foregoing argument that there exist $g_{\beta} \in D(H_a) \subseteq D(H)$ such that $f_{\beta} = (I + \alpha H)g_{\beta}$ and

$$\|\mathbf{g}_{\beta}\| \leq \|\left(\mathbf{I} + \alpha\mathbf{H}_{\mathbf{a}}\right)\mathbf{g}_{\beta}\| = \|\mathbf{f}_{\beta}\| \leq \|\mathbf{f}\| \ .$$

Thus $\{\|g_{\beta}\|\}$ is uniformly bounded. But the unit ball in $\mathcal B$ is weak*-compact, by the Alaoglu-Birkhoff theorem, and hence one may choose a weak*-convergent subfamily g_{β} , of g_{β} . Let g denote its limit. Then g_{β} , $\rightarrow g$ and f_{β} , = $(I+\alpha H_a)g_{\beta}$, $\rightarrow f$ where both limits are in the weak*-sense.

But H is weak*-weak*-closed and so H_a is weak*-weak*-closable and its closure \overline{H}_a is both norm-dissipative and satisfies the range condition $R(I+\alpha\overline{H}_a)=B$ for $\alpha>0$. Therefore \overline{H}_a generates a C_0^* -semigroup S by Theorem 1.5.2. But H is a norm dissipative extension of \overline{H}_a and since the latter is a generator one must have $H=\overline{H}_a$.

We conclude this section with a Hilbert space example.

Example 1.6.4. Consider the criteria of Theorems 1.3.1 and 1.6.2 for a C_0 -group of isometries on a Hilbert space ${\cal H}$. Normdissipativity of ${}^\pm{\cal H}$ is equivalent to

$$Re(a, Ha) = 0$$

for all $a \in D(H)$. Setting H = iK this becomes

$$(a, Ka) = (Ka, a)$$

for all a \in D(K), i.e., K must be a symmetric operator. Thus Theorems 1.3.1 and 1.6.2 state that H is the generator of a C_0 -group of isometries if, and only if, H = iK where K is a densely defined, closed, symmetric operator satisfying

either $R(I+i\alpha K) = H$, $\alpha \in \mathbb{R} \setminus \{0\}$

or K possesses a dense set of analytic elements.

The first of these conditions is the usual criterion for self-adjointness of $\, K \,$. Hence one can conclude from this

argument that a densely defined, closed, symmetric opperator is self-adjoint if, and only if, it possesses a dense set of analytic elements.

If these conditions are satisfied then the associated operators $S_t = \exp\{-iKt\}$ form a unitary group, e.g., $S_t^* = S_{-t}$. Both the unitary group and the generator can be represented by spectral theory as direct integrals of multiplication operators. In particular there exists a family of projection valued probability measures E over R such that

$$(a, S_tb) = \int_{-\infty}^{\infty} d(a, E(\lambda)b)e^{-i\lambda t}$$

for all $a, b \in H$ and

(a, Kb) =
$$\int_{-\infty}^{\infty} d(a, E(\lambda)b)\lambda$$

for all a $\in \mathcal{H}$, and b \in D(K) , where the domain of K is defined by

$$D(K) = \left\{ b ; \int_{-\infty}^{\infty} d(b, E(\lambda)b) \lambda^{2} < +\infty \right\}.$$

In the Hilbert space context one can further elaborate the extension theory mentioned at the end of Section 1.3. Thus given a symmetric operator K one tries to construct self-adjoint extensions. This construction is a repetition of the procedure outlined in Section 1.3. Both ±iK must be extended to generators iK_1 , $-iK_2$, of contraction semigroup, S^{\pm} . But these semigroups determine a C_0 -group of isometries, by $S_{\pm} = S_{\pm}^{\dagger}$ if $t \geq 0$ and

 $S_t = S_t^-$ if $t \le 0$, if, and only if, $K_1 + K_2 = 0$. To obtain this latter relation it is imperative that the deficiency indices of $\pm K$ are identical.

Exercises.

1.6.1. An element $a \in \mathcal{B}$ is defined to be bounded for H if $a \in D(H^n)$ for all $n \ge 1$ and

$$\|H^na\| \leq r^n\|a\|$$

for some $\,r\,\geq\,0$. Prove that if H is the generator of the C $_0$ -semigroup S and a is bounded for H then

Ha =
$$t^{-1} \sum_{n \ge 1} (I - S_t)^n a / n$$

for $rt \leq 1$.

Hint: Use $(I-S_t)a = \int_0^t ds S_s^{Ha}$.