68.

1.6. Analytic Vectors.

In the previous sections we examined various methods
of constructing a contraction semigroup from the resolvent of
its generator. Next we analyze the possibility of a direct
construction based on an operator extension of the numerical

algorithms

y (-t)" o0
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n-e n

The problem with this new construction is that it is not applicable
to all Co—semigroups, or contraction semigroups, although it is
applicable to all Cofgroups. The basic new concept is that of an

analytic element.

If H is an operator on a Banach space B an element

a € B is defined to be an (entire) analytic element for H if

a € n oY)
n=l

and the function

t? n
n=0 ~°
has a non-zero (infinite) radius of convergence. It is not at
all evident that an operator possesses analytic elements but

this is indeed the case



if H 1is the generator of a strongly continuous group (a Co—group).
In fact one can explicitly construct a norm dense set of entire

analytic elements by the following regularization procedure.

Let S = {St}tER be a Co—group with generator H

and to each a € B associate the sequence a, defined by

Since HStH:SM exp{w|t|} for some M =1 and w =0 the integral

is well defined. Moreover

a -a=m ff; dt e (St/na—a)

and it follows from strong continuity and the Lebesgue dominated
convergence theorem that a ~ converges uniformly to a . But since
H 1is norm closed one may argue recursively that a € D(Hm) for

all m=1, 2, ... and
2
m_ -k m d" -t
Ha = ff; dt{(—n) ;;a-e St/na

2
St/n

(-n)mﬂ-% ff; dt Hm(t)e_t a

where Hm is the usual Hermite function. Thus

2 2
llean112 < anN"lMQ[I‘fm dt H_(t)e™" e“’ltlJ llaf®

2 2
< %My y? ff; dt e2w|t[e-t ffw dtle(t)l e Ha”2
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where we have used the Cauchy-Schwarz inequality. Using the

normalization properties of the Hermite functions,

2
00 2 -t _ .m_ %
[, at le(t)] e = 2'mim®
one finally deduces that
m 2 2 w2 m+1l 2m
|1 anH <= Me 2 n m!

Hence a, is an entire analytic element for H and the set of

such elements is norm dense.

Despite this positive result the generator of the
semigroup of left translations on CO[O, ©)) has no non-zero
analytic elements. The action of this semigroup is given by
(Stf}(x) = f(x-t) if =2t ,and 0 if x <t . It follows that
for f to be an analytic element it must vanish with all its
(right) derivatives at the origin but it must also be analytic in
a strip about the right half axis. Thus f = 0 . Nevertheless
the translation group acting on COGR) does have dense sets of
analytic elements and a function is analytic for this group if,

and only if, it is an analytic function in the usual sense.

Now we consider the construction of a semigroup
through analytic elements and for simplicity we again restrict the

discussion to contraction semigroups.

PROPOSITION 1.6.1. Let H be a norm closed operator on a

Banach space B . Suppose that

1. H possesses a norm dense set of analytic elements,



2. H <s norm-dissipative.

It follows that H is the generator of a Co—semigroup

of contractions.

Proof. Let a be an analytic element for H . Thus there is

a ta > 0 such that

n
Sta = Z (zﬁ) H'a
n=0 :
converges uniformly for |tf <t . Moreover for +t fixed in

this range Sta is again an analytic element for H and one can
define SS(Sta) for suitably small s . Calculation with norm

convergent power series then establishes that
sp(82) = 5,2

for all s, t satisfying |s]| + lt] < t, - Next we examine

properties of the function t € (-ta, ta)r—+ ”StaH .

First one has

llis,al - lisall| = lls,a - s_al

by the triangle inequality. But another power series estimation
of the right hand side then establishes that t Pﬁ-HStaH is

continuous. Second for 0 < h < t < ta one has
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IS, _pall = “S—h(s’ca) ”
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where we have used the assumed norm-dissipativity of H . But
this estimate implies that t € {0, ta) — HSta” is decreasing

and hence
<
Is.all = llall

for 0 = t< ta . This contractive estimate now allows one to

extend the definition of Sta toall t=0 .
Since H is closed Sta € D(H) and
HSta = St(Ha)
Therefore

s all = lIs (Ha)]l = |lHall

for 0< t< ta . Iteration of this argument establishes that
if 0< t< ta then Sta is an analytic element for S with
associated radius of convergence equal to t, - Thus it is possible

to iterate the definition of S_t
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for 0<s , t<t  and consequently deduce that HStaH < Jall
for all 0 < t < 2ta . Repeating this argument one defines

Sta for all t = 0 by

Sta = {St/ana

where n 1is chosen so that n > t/ta . It is then easy to

establish that this definition is independent of the choice of n ,
Ss(sta} - Ss+ta ’
for all s, t >0,
s all = llal
for all t > 0 , and

2im HSta -all =o0.
>0

Therefore, since the analytic elements are assumed to be norm dense,

S extends by continuity to a Co—semigroup of contractions on B . []

The foregoing result readily extends to Co—groups of

contractions. But if S = {St R is a group of contractions with
80 = I then S 1is automatically isometric because
= < <
lall = lIs_8.all = lIs.all = llall .

Second if S 1is also strongly continuous then are

Sy F {S:t}tzo

both CO—Semigroups of isometries. But
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and hence the generator of S+ is minus the generator of S_ .
Combining these observations with Proposition 1.4.1 and the
construction of analytic elements described prior to the propositon

one obtains the following.

THEOREM 1.6.2. Let H be an operator on the Banach space B .

The following conditions are equivalent:

1. H is the infinitesimal generator of a C,-group of

isometries of B .

2. H <s norm closed; H possesses a norm dense
set of analytic elements =*H are both norm-

dissipative.

Proof. 1 = 2. The entire analytic elements for H are dense by
the construction preceding Proposition 1.6.1. The rest of the

properties of H follow from the Hille-Yosida theorem.

2 =1, This follows by successively applying Proposition 1.6.1
to #H and then using the above observation that a group

St = exp{-tH} of contractions is automatically isometric. f]

One can also give a Cg—version of Proposition 1.6.1
and then deduce a weak®-version of Theorem 1.6.2. Since the second

result is deduced by the same argument given above we will merely

prove the analogue of Proposition 1.6.2.
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PROPOSITION 1.6.3. Let B be a Banach space with a predual B,

«w

and H a weak*-weak*-closed operator on B, . Suppose

1. the unit ball of the set of analytic elements for

H is weak*-dense in the unit ball of B ,
2. H s norm-dissipative.

It follows that H <s the generator of a Cg—semigroup

of contractions.

Proof.  Let Ba C B denote the norm closure of the subspace of
all analytic elements for H and let Ha denote the restriction
of H to Ba . It follows immediately that Ha is norm closed
and hence by Proposition 1.6.1 it generates a Co-semigroup S of
contractions on Ba . In particular Ha is norm-dissipative and

R(I+oH_ ) = B_ for all o >0 .
a a

Now by Condition 1 we may choose for each f € B a
family fB € Ba such that fB converges to f in the weak®-sense
and ”fS“ < |Ifll . But it follows from the foregoing argument that

there exist gg € D(Ha] C€ D(H) such that fB = (I+0LH)gB and
leglh = Il (zran )egll = Niegh < lell .

Thus {”88”} is uniformly bounded. But the unit ball in B is
weak®*-compact, by the Alaoglu-Birkhoff theorem, and hence one may
choose a weak*-convergent subfamily gB' of gg - Let g denote
its limit. Then gg1 -+ g and fB' = (I+aHa)gB, > f where

both limits are in the weak®*-sense.
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But H is weak®-weak®-closed and so H is weak®*-weak®-closable
and its closure Eg is both norm-dissipative and satisfies the
range condition R(I+a§é) =B for o >0 . Therefore ﬁ;
generates a Cg-semigroup S by Theorem 1.5.2. But H is a norm

dissipative extension of Ha and since the latter is a generator

one must have H = ﬁ; . [:

We conclude this section with a Hilbert space example.

Example 1.6.4. Consider the criteria of Theorems 1.3.1 and 1.6.2
for a Co-group of isometries on a Hilbert space H . Norm-

dissipativity of #*H is equivalent to
Re(a, Ha) = 0
for all a € D(H) . Setting H = iK this becomes
(a, Ka) = (Ka, a)

for all a € D(K) , i.e., K must be a symmetric operator. Thus
Theorems 1.3.1 and 1.6.2 state that H 1is the generator of a
Co—group of isometries if, and only if, H = iK where K is a

densely defined, closed, symmetric operator satisfying
either R(I+iok) = H , o €R {0}

or K possesses a dense set of

analytic elements.

The first of these conditions is the usual criterion

for self-adjointness of K . Hence one can conclude from this



argument that a densely defined, closed, symmetric opperator is
self-adjoint if, and only if, it possesses a dense set of analytic

elements.

If these conditions are satisfied then the associated
operators St = exp{—iKt} form a unitary group, e.g., Si = S—t «
Both the unitary group and the generator can be represented by
spectral theory as direct integrals of multiplication operators.

In particular there exists a family of projection valued

probability measures E over R such that

(as 5.5) = [T, a(a, EQIB)

for all a, b € H and

(a, kb) = [°_d(a, E(O)bIA

for all a € H , and b € D(K) , where the domain of K is defined

by

D(K) = {b ; f°_°°° d(b, E()\)b))\z < +oo} . ]

In the Hilbert space context one can further elaborate
the extension theory mentioned at the end of Section 1.3. Thus
given a symmetric operator K one tries to construct self-adjoint
extensions. This construction is a repetition of the procedure
outlined in Section 1.3. Both #iK must be extended to generators
iKl , -iK, , of contraction semigroup, St . But these semigroups

2

determine a Co—group of isometries, by St = S: if t =0 and
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St = S; if t <0, if, and only if, Kl + K2 = 0 . To obtain

this latter relation it is imperative that the deficiency indices

of *K are identical.

Exercises.

1.6.1. An element a € B is defined to be bounded for H

if a € D(Hn) for all n =1 and

%l = ="all

for some r = 0 . Prove that if H 1is the generator of the

Co—semigroup S and a is bounded for H then

Ha = 5 ] (I—St)na/n
n=l

for r»t =1.

Hint: Use (I-S)a = [{ ds S.Ha -



