1.4. Norm-dissipative Operators.

The Hille-Yosida theorem establishes that norm-dissipativity of a generator H , i.e., the condition

$$\|(I+\alpha H)a\| \ge \|a\|$$
, $a \in D(H)$,

for small $\,\alpha>0$, is an infinitesimal reflection of contractivity of the associated semigroup. Next we discuss a reformulation of dissipativity which corresponds to a more geometric interpretation of contractivity. This reformulation is the Banach space analogue of the condition

$$Re(a, Ha) \ge 0$$
, $a \in D(H)$,

which characterizes dissipative operators H on Hilbert space.

The semigroup S is contractive if, and only if, it maps the unit sphere, $\{a: \|a\|=1\}$, into the unit ball, $\mathcal{B}_1 = \{a: \|a\| \leq 1\} \text{ . Thus the change } S_t a - a \text{ of an element a must be toward the interior of the ball of radius } \|a\| \text{ . To describe this last geometric idea in a quantitative manner it is necessary to introduce the notion of a tangent functional.}$

An element $f_a \in \mathcal{B}^*$ is defined to be a norm-tangent functional at a if

$$||b|| \ge ||a|| + \Re(f_a, b-a)$$

for all $b\in\mathcal{B}$. Geometrically each such functional describes a hyperplane tangent to the graph of $b\in\mathcal{B}\ \longmapsto \|b\|\geq 0$ at the point a . The functional f_a divides the space into two sets

 $E_a = \{b \; ; \; \operatorname{Re}(f_a, \, b) \geq 0 \}$ and $I_a = \{b \; ; \; \operatorname{Re}(f_a, \, b) \leq 0 \}$. The first set can be interpreted as the b which are directed toward the exterior of the ball $\{b \; ; \; \|b\| \leq \|a\| \}$ and the second set the b which are directed toward the interior. Hence the geometric rephrasing of contractivity of S given in the last paragraph can be quantitatively expressed as

$$Re(f_a, S_t^{a-a}) \leq 0$$
,

i.e., the change $S_{t}a$ - a of a is toward the interior of the ball. Indeed this property follows directly from the definition of the tangent functional f_{a} ,

$$Re(f_a, S_t^{a-a}) \le ||S_t^a|| - ||a|| \le 0$$
.

Thus if H is the generator of the ${\rm C}_0$ -contraction semigroup S one concludes that

$$Re(f_a, Ha) = \lim_{t\to 0+} Re(f_a, a-S_t a)/t \ge 0$$

for all a \in D(H) and all norm-tangent functionals f_a at a. This is the alternative reformulation of norm-dissipativity of H; equivalence with the original formulation is provided by the following.

THEOREM 1.4.1. Let $\,^{\,}$ H be an operator on the Banach space $\,^{\,}$ B . The following conditions are equivalent:

1.
$$(1')$$
 $||(I+\alpha H)a|| \ge ||a||$

for all $a\in D(H)$ and all $\alpha>0$ (for all small $\alpha>0)$,

2.
$$\operatorname{Re}(f_a, \operatorname{Ha}) \geq 0$$

for one non-zero norm-tangent functional at each a \in D(H) .

Moreover if H is norm densely defined these conditions are equivalent to the following:

3.
$$\operatorname{Re}(f_a, \operatorname{Ha}) \ge 0$$

for all norm-tangent functionals $\ \mathbf{f}_{a}$ at each a \in D(H) .

The proof uses an alternative characterization of norm-tangent functional which can be used to establish the existence of such functionals.

LEMMA 1.4.2. For $f \in B^*$ the following conditions are equivalent:

- 1. f is a norm-tangent functional at a,
- 2. $|(f, b)| \le ||b||$, $b \in \mathcal{B}$,

and

$$(f, a) = ||a||$$
.

Hence for each $a \in B \setminus \{0\}$ there exists a non-zero norm-tangent functional.

Proof. $1 \Rightarrow 2$. Condition 1 states that

(*)
$$||b|| \ge ||a|| + \text{Re}(f, b-a)$$
.

Thus replacing b by $\lambda e^{i\theta}b$ one finds

$$||b|| \ge \lim_{\lambda \to \infty} \{||a||/_{\lambda} + \text{Re } e^{i\theta}(f, b-a/_{\lambda})\}$$

$$= \text{Re } e^{i\theta}(f, b) .$$

Hence $|(f, b)| \le ||b||$. But setting b = 0 in (*) one also obtains $(f, a) \ge ||a||$ and therefore (f, a) = ||a||.

 $2\Rightarrow 1$. Successively applying the two relations of Condition 2 one has

$$||b|| \ge Re(f, b)$$

= Re(f, a) + Re(f, b-a)
= $||a||$ + Re(f, b-a).

Finally the Hahn-Banach theorem states that $\textit{if} \quad p \quad \textit{is a real-valued function over} \quad \textbf{B} \quad \textit{satisfying}$

$$p(a+b) \le p(a) + p(b)$$
, a, b $\in B$, $p(\lambda a) = \lambda p(a)$, $\lambda \ge 0$, a $\in B$

and f is a linear functional over a subspace $C\subseteq B$ such that $|(f,c)|\leq p(c)$ for $c\in C$ then there exists a linear extension F of f to B such that $|F(a)|\leq p(a)$ for all $a\in B$. Therefore choosing $p({\,}^{\bullet})=\|{\,}^{\bullet}\|$, $C=\left\{\lambda a\ ;\ \lambda\in \mathfrak{C}\right\}$,

and setting $(f, \lambda a) = \lambda \|a\|$, one can find a linear extension F to \mathcal{B} satisfying $|F(b)| \leq \|b\|$ and $F(a) = (f, a) = \|a\|$. Hence F is a non-zero norm-tangent functional at a by Condition 2 of the lemma.

Proof of Theorem 1.4.1. 1' \Rightarrow 2. Set b = Ha and for each sufficiently small α choose a norm-tangent functional g_{α} at the point a + α b. Then from Condition 1

$$\|\mathbf{a}\| \leq \|\mathbf{a} + \alpha \mathbf{b}\|$$

$$= \operatorname{Re}(\mathbf{g}_{\alpha}, \mathbf{a} + \alpha \mathbf{b})$$

$$= \operatorname{Re}(\mathbf{g}_{\alpha}, \mathbf{a}) + \alpha \operatorname{Re}(\mathbf{g}_{\alpha}, \mathbf{b})$$

$$\leq \operatorname{Re}(\mathbf{g}_{\alpha}, \mathbf{a}) + \alpha \|\mathbf{b}\|.$$

Now the unit ball of \mathcal{B}^{*} is weakly* compact by the Alaoglu-Birkhoff theorem, i.e., for every net $f_{\alpha} \in \mathcal{B}^{*}$ with $\|f_{\alpha}\| \leq 1$ there is a subset f_{α} , which converges to an $f \in \mathcal{B}^{*}$ in the sense that $(f_{\alpha}, a) \Rightarrow (f, a)$ for all $a \in \mathcal{B}$. Hence one deduces from the foregoing inequality that

$$\|a\| \le \lim_{\alpha' \to 0} \left\{ \operatorname{Re}\left(g_{\alpha'}, a\right) + \alpha' \|b\| \right\}$$

$$= \operatorname{Re}(g, a)$$

where g is the weak* limit of the subset $g_{Q^{\,\prime}}$. Now since $\|g_{Q}^{\,\,}\| = 1 \quad \text{one has} \quad \|g\| \leq 1 \quad \text{and then}$

$$Re(g, a) \le ||g|| ||a|| \le ||a||$$
.

Hence

$$(g, a) = ||a||$$
.

This proves that $\, g \,$ is a norm-tangent functional at a . But one also has

$$\|\mathbf{a}\| \le \text{Re}(\mathbf{g}_{\alpha}, \mathbf{a}) + \alpha \text{Re}(\mathbf{g}_{\alpha}, \mathbf{b})$$

 $\le \|\mathbf{a}\| + \alpha \text{Re}(\mathbf{g}_{\alpha}, \mathbf{b})$

and hence in the limit $\alpha' \rightarrow 0$ one obtains

$$0 \le \text{Re}(g, b) = \text{Re}(g, Ha)$$
,

i.e., Condition 2 is satisfied.

 $2\Rightarrow 1$. Let f be a norm-tangent functional at a \in D(H) satisfying

$$Re(f, Ha) \ge 0$$
.

Then

$$\|\mathbf{a}\| = \text{Re}(\mathbf{f}, \mathbf{a})$$

 $\leq \text{Re}(\mathbf{f}, \mathbf{a} + \alpha \mathbf{H} \mathbf{a})$
 $\leq \|(\mathbf{I} + \alpha \mathbf{H})\mathbf{a}\|$

for all $\alpha > 0$.

 $1 \Rightarrow 1'$. This is evident.

Finally 3 \Rightarrow 2 and it remains to prove 1 \Rightarrow 3 under the assumption that D(H) is norm dense.

Now if a, b \in D(H) and f is a non-zero norm-tangent functional at a one has

$$\|(I-\alpha H)a\| \ge \|a\|-\alpha \operatorname{Re}(f, Ha)$$
.

Therefore

$$Re(f, Ha) \ge \lim_{\alpha \to 0+} \sup \left(\|a\| - \|(I - \alpha H)a\| \right) / \alpha$$

But

$$\|(I-\alpha H)a\| \le \|a + \alpha b\| + \alpha \|b + Ha\|$$

$$\le \|(I+\alpha H)(a+\alpha b)\| + \alpha \|b + Ha\|$$

$$\le \|a\| + 2\alpha \|b + Ha\| + \alpha^2 \|Hb\|$$

for all sufficiently small $\,\alpha>0\,\,$ by Condition 1. Therefore by combination of these results

Re(f, Ha)
$$\geq -2||b + Ha||$$
.

But since D(H) is norm dense we may choose b arbitrarily close to -Ha and deduce that

$$Re(f, Ha) \ge 0$$
,

i.e., Condition 3 is satisfied.

Example 1.4.3. Let H be a Hilbert space and hence identifiable with its dual. If a, b $\in H$ then

$|(a, b)| \le ||a|| ||b||$

with equality if, and only if, a = λb for some $\lambda \in \mathbb{C}$. Therefore $a/\|a\|$ is the unique norm-tangent functional at a $\in \mathcal{H}$ and Theorem 1.4.1 states that an operator \mathcal{H} is norm-dissipative if, and only if,

 $Re(a, Ha) \ge 0$

for all a \in D(H). This is the characterization used in Section 1.3.

Example 1.4.4. If $\mathcal{B}=L^p(X;\,d\mu)$ with $p\in\langle 1,\,\infty\rangle$ then there is a unique norm-tangent functional at each $f\in\mathcal{B}$ given by $\left(\left|f\right|^{p-1} \text{ arg } f\right) \left\|f\right\|_p^{p-1}$ where $\operatorname{arg} f(x)=f(x)/\left|f(x)\right|$ if $\left|f(x)\right|\neq 0$ and $\operatorname{arg} f(x)=0$ if $\left|f(x)\right|=0$. If p=1 this gives the tangent functional $\operatorname{arg} f$, but this is not unique if f=0 on a set Y of non-zero measure. In this case $g+\operatorname{arg} f$, where g has support in Y and $\left|g\right|\leq 1$, is also a tangent functional.

Theorem 1.4.1 allows an immediate reformulation of the Hille-Yosida theorem which is often more convenient for applications.

THEOREM 1.4.5. (Lumer and Phillips). Let H be an operator on the Banach space B. The following conditions are equivalent:

- 1. H is the generator of a C-contraction semigroup S,
- 2. H is (norm closed), norm densely defined

 $R(I+\alpha H) = B$

for all $\alpha > 0$ (or for an $\alpha > 0$) and

$$Re(f_a, Ha) \ge 0$$

for one norm-tangent functional $f_{\underline{a}}$ at each $a \in D(H)$.

The alternative characterization of norm-dissipativity provided by Theorem 1.4.1 also allows an easy proof of a version of the Hille-Yosida theorem in which the range condition $R(\text{I}+\alpha H) = \mathcal{B} \quad \text{does not occur explicitly.}$

THEOREM 1.4.6. Let H be an operator on the Banach space B and consider the following conditions:

- 1. H is norm densely defined with norm densely defined adjoint H* and both H and H* are norm dissipative,
- 2. H is norm closable and its closure \overline{H} generates a C_0 -contraction semigroup.

Then $1 \Rightarrow 2$ and if B is reflexive $2 \Rightarrow 1$.

Proof. $1\Rightarrow 2$. Suppose R(I+H) is not norm dense in \mathcal{B} . The Hahn-Banach theorem then implies the existence of a non-zero $f\in\mathcal{B}^*$ such that (f,(I+H)a)=0 for all $a\in D(H)$. Therefore

$$|(f, Ha)| = |(f, a)| \le ||f|| ||a||$$

and hence f \in D(H*). Moreover since D(H) is norm dense (I+H*)f = 0 . Thus if b \in B** is a norm-tangent functional at f \in B* one has

$$(b, H*f) = -(b, f) = -\|f\|$$

which contradicts the norm-dissipativity of H^* . Hence R(I+H) is norm dense and the desired implication follows from Theorem 1.3. .

Next assume $\ensuremath{\mathcal{B}}$ is reflexive and consider the converse.

 $2\Rightarrow 1$. If \overline{H} generates the C_0 -contraction semigroup S then \overline{H} * generates the C_0 -contraction semigroup S* (see Exercise 1.3.4). Hence Condition 1 follows from the Hille-Yosida theorem applied to S and S*.

Of course the drawback of this criterion is that one has to specifically identify the adjoint H* before it is applicable.

Finally we illustrate the notion of norm-dissipativity with two examples of matrices acting on finite-dimensional spaces.

Example 1.4.7. (Matrix Semigroups). Let $x = (x_1, x_2, \dots, x_n)$ denote an element of the finite-dimensional space \mathbb{C}^n . Further let $H = (H_{ij})$ be a complex-valued $n \times n$ matrix acting on \mathbb{C}^n and $S_t = \exp\{-tH\}$, $t \ge 0$, the corresponding matrix semigroup.

The space \mathbb{C}^n can be equipped with various norms which are all equivalent in the topological sense. But S can be contractive with respect to one norm without being contractive with respect to an equivalent norm. Nevertheless if a norm is given then S is contractive if, and only if, H is dissipative. Dissipativity with respect to the ℓ^∞ - and ℓ^1 -norms is particularly

easy to describe because of the simple geometry of the corresponding balls. We will not pursue, however, the geometric aspects but proceed analytically.

Define the l^{∞} -norm on \mathbb{C}^{n} by

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \|\mathbf{x}_i\|$$
.

It follows that $S_{+} = \exp\{-tH\}$ is l^{∞} -contractive if, and only if,

(*)
$$\operatorname{ReH}_{ii} - \sum_{j \neq i} |H_{ij}| \ge 0$$

for all i = 1, 2, ..., n . This is established as follows. For i fixed choose x such that $x_i = 1$, $x_j = -\overline{H}_{ij}/|H_{ij}|$ if $j \neq i$ and $H_{ij} \neq 0$, and $x_j = 0$ if $j \neq i$ and $H_{ij} = 0$. Next choose $f = (f_1, \ldots, f_n)$ such that $f_i = 1$ and $f_j = 0$ if $j \neq i$. Then f is a norm-tangent functional at x and

Re(f, Hx) = Re
$$H_{ii} - \sum_{j \neq i} |H_{ij}|$$
.

Thus (*) is necessary for S to be ℓ^∞ -contractive. Conversely let x be a non-zero element of \mathbb{C}^n and choose i such that $|x_i| \ge |x_j|$ for all $j \ne i$. Set $f_i = x_i / |x_i|$ and $f_j = 0$ if $j \ne i$. It follows that f is a norm-tangent functional at x and

$$Re(f, Hx) = |x_i| Re H_{ii} + Re \sum_{j \neq i} H_{ij} \overline{x}_i x_j / |x_i|$$

$$\geq |x_i| \left[Re H_{ii} - \sum_{j \neq i} |H_{ij}| \right].$$

Thus (*) is sufficient for H to be ℓ^{∞} -dissipative and S to be

 l^{∞} -contractive.

Next if

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{n} |\mathbf{x}_{i}|$$

denotes the ℓ^1 -norm it follows by duality that $S_t = \exp\{-tH\}$ is ℓ^1 -contractive if, and only if, the adjoint semigroup $S_t^* = \exp\{-tH^*\}$ is ℓ^∞ -contractive. Thus $S_t = \exp\{-tH\}$ is ℓ^1 -contractive if, and only if,

Re
$$H_{ii} - \sum_{j \neq i} |H_{ji}| \ge 0$$

for all i = 1, 2, ..., n .

Finally one can equip \mathbb{C}^n with the ℓ^p -norms

$$\|\mathbf{x}\|_{\mathbf{p}} = \left(\sum_{\mathbf{i}=1}^{n} |\mathbf{x}_{\mathbf{i}}|^{\mathbf{p}}\right)^{1/\mathbf{p}}$$

for $1 and consider <math>\ell^p$ -contractivity. If S is both ℓ^1 - and ℓ^∞ -contractive it follows by abstract interpolation that S is ℓ^p -contractive for all $p \in [1, \infty]$. This conclusion can, however, be reached by explicit estimate. For example if p = 2 then $x/\|x\|_2$ is the unique tangent functional at x and

$$Re(x, Hx) = \sum_{i=1}^{n} \left(|x_{i}|^{2} Re H_{ii} + \sum_{j \neq i} H_{ij} \overline{x}_{i} x_{j} \right)$$

$$\geq \sum_{i=1}^{n} \left(|x_{i}|^{2} Re H_{ii} - \sum_{j \neq i} |H_{ij}| (|x_{i}|^{2} + |x_{j}|^{2}) / 2 \right)$$

$$= \sum_{i=1}^{n} \left(\left| \mathbf{x}_{i} \right|^{2} \left(\operatorname{Re} \mathbf{H}_{ii} - \sum_{j \neq i} \left(\left| \mathbf{H}_{ij} \right| + \left| \mathbf{H}_{ji} \right| \right) \right) \right)^{2}$$

where we have used the Cauchy-Schwarz inequality. Thus combination of the conditions for ℓ^1 - and ℓ^∞ -contractivity imply that H is ℓ^2 -dissipative. A similar argument using the Minkowski inequality establishes that ℓ^1 - and ℓ^∞ -contractivity imply that H is ℓ^p -dissipative.

If $p \neq 1$ or ∞ the ℓ^p -dissipative conditions cannot be expressed in any particularly practical terms of the matrix element H_{ij} . Nevertheless if H is self-adjoint, i.e., if $H = H^*$, then ℓ^∞ -contractivity of S implies ℓ^1 -contractivity by duality and ℓ^p -contractivity, $p \in \langle 1, \infty \rangle$, by interpolation. Thus a self-adjoint matrix semigroup is ℓ^p -contractive for all $p \in [1, \infty]$ if, and only if, (*) is valid. More generally if H is normal, i.e., if $HH^* = H^*H$, then ℓ^2 -dissipativity is implied by ℓ^1 - or ℓ^∞ -dissipativity. This will be established in the next example.

Example 1.4.8. (Normal matrix semigroups). Let $S_t = \exp\{-tH\}$ denote the matrix semigroup of Exmaple 1.4.7. We first argue that if the conditions

(*) Re
$$H_{ii} - \sum_{j \neq i} |H_{ij}| \ge 0$$
, $i = 1, 2, ..., n$

for ℓ^∞ -contractivity are valid then Re $\lambda \geq 0$ for all eigenvalues λ of H . This follows by noting that if $(H-\lambda I)x=0$ then

$$\begin{aligned} |\mathbf{H}_{\text{ii}} - \lambda| & |\mathbf{x}_{\text{i}}| = \left| \sum_{j \neq i}^{\sum} - \mathbf{H}_{\text{ij}} \mathbf{x}_{\text{j}} \right| \\ & \leq \sum_{j \neq i} |\mathbf{H}_{\text{ij}}| & |\mathbf{x}_{\text{i}}| \end{aligned}$$

where i has been chosen such that $|x_i| \ge |x_j|$ for $j \ne i$. Thus if x is non-zero the conditions (*) imply that

$$|H_{ii} - \lambda| \leq \text{Re } H_{ii}$$

and hence $\text{Re }\lambda \geq 0$. Consequently Example 1.3.6 implies that if S is a normal matrix semigroup then ℓ^∞ -contractivity implies ℓ^2 -contractivity and hence, by interpolation or by explicit estimation, it implies ℓ^p -contractivity for all $p \in [2, \infty]$. Similarly if S is a normal matrix semigroup then ℓ^1 -contractivity implies ℓ^2 -contractivity, and hence ℓ^p -contractivity for all $p \in [1, 2]$.

Exercises.

- 1.4.1. Let H be the generator of a C_0 -semigroup of contractions. Prove that the operators H_α = $H(I+\alpha H)^{-1}$, $\alpha \geq 0$, are norm-dissipative.
- 1.4.2. Prove that if H is an invertible norm-dissipative operator on a Hilbert space then $\mbox{ H}^{-1}$ is norm-dissipative.
- 1.4.3. Prove that the closure of a norm densely defined, norm-dissipative, operator is norm-dissipative.