1.4. Norm-dissipative Operators.

The Hille-Yosida theorem establishes that norm-

dissipativity of a generator H , i.e., the condition-
[(T+amall = flaf , a € D(H) ,

for small o > 0 , is an infinitesimal reflection of contractivity
of the associated semigroup. Next we discuss a reformulation of

dissipativity which corresponds to a more geometric interpretation
of contractivity. This reformulation is the Banach space analogue

of the condition
Re(a, Ha) =2 0 , a € D(H) ,

which characterizes dissipative operators H on Hilbert space.

The semigroup S is contractive if, and only if,
it maps the unit sphere, {a ; Jla]] = 1} , into the unit ball,
Bl ={a; Jlal =1} . Thus the change S,a - a of an element
a must be toward the interior of the ball of radius |lall . To
describe this last geometric idea in a quantitative manner it is

necessary to introduce the notion of a tangent functional.
An element fa € B* is defined to be a norm-tangent

functional at a if

Il = llall + Re(£,, b-a

for all b € B . Geometrically each such functional describes a
hyperplane tangent to the graph of b€éB + |b|| = 0 at the

point a . The functional fa divides the space into two sets
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E_ = {b; Re(f,, b) 20} and I_={b; Re(f_, b) =0} . The
fipst set can be interpreted as the b which are directed toward
the exterior of the ball {b ; [bll = llall} and the second set
the b which are directed toward the interior. Hence the
geometric rephrasing of contractivity of S given in the last

paragraph can be quantitatively expressed as

Re(f,, S,a-a) =0,

a

i.e., the change Sta - a of a is toward the interior of the
ball. Indeed this property follows directly from the definition

of the tangent functional fa R

Re(fa, Sta-a) < HStaH - Jall =0 .

Thus if H is the generator of the Co—contraction semigroup S
one concludes that
. Ha) = Qim Re[fa, a—Sta]/t >0

20+
for all a € D(H) and all norm-tangent functionals fa at a .
This is the alternative reformulation of norm-dissipatdvity of
H ; equivalence with the original formulation is provided by the

following.

THEOREM 1.4.1. Let H be an operator on the Banach space B .

The following conditions are equivalent:

. (") l(1+am)all = |lall
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for all a € D(H) and all o >0 (for all small

o> 0),

2. Re(f_, Ha) = 0

for one non-zero norm-tangent functional at each

a € D(H) .

Moreover if H is norm densely defined these conditions are

equivalent to the following:

3. Re(£_, Ha) 2 0

for all norm-tangent functionals £ at each

a € D(H)

The proof uses an alternative characterization of
norm-tangent functional which can be used to establish the

existence of such functionals.

LEMMA 1.4.2. For f € B* the following conditions are

equivalent:
1. £ <s a norm-tangent functional at a ,
2. [(£, D) = bl , b¢B,
and
(f, a) = |af .

Hence for each a € B\ {0} there exists a non-zero norm-tangent

functional.
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Proof. 1=2. Condition 1 states that

(*) Ibll = llall + Re(£, b-a) .

Thus replacing b by Aeleb one finds

Iol = 2im {lall f, + e (¢, b-afy)}
= Re eie(f, b) .
Hence |(£, b)| = |bll . But setting b = 0 in (%) one also obtains
(£, a) = |lal and therefore (£, a) = llal .
2 = 1. Successively applying the two relations of

Condition 2 one has

\

IIbll = Re(£, b)

Re(f, a) + Re(f, b-a)

llall + Re(f, b-a) .

Finally the Hahn-Banach theorem states that

if p s a real-valued function over B satisfying
p(a+b) = p(a) + p(b) , a, b €B,
p(Aa) = Ap(a) ) A=0, ac¢€B

and £ 1is a linear functional over a subsvace C C B such
that |(£, ¢)| = p(c) for c € C then there exists a linear
extension F of £ to B such that |F(a)| =p(a) for all

a € B . Therefore choosine p(*) = |l*l , C = aj; rech,



and setting (f, Aa) = Allali , one can find a linear extension F
to B satisfying |F(b)| = |b]] and F(a) = (f, a) = |lall . Hence
F is a non-zero norm-tangent functional at a by Condition 2 of

the lemma. []

Proof of Theorem 1.4.1. 1' = 2. Set b = Ha and for each
sufficiently small o choose a norm-tangent functional g, at

the point a + ab . Then from Condition 1

I\

EY

lla + ab]|

)

Re(ga, a+ab]

Re(ga, a) + o Re(ga, b)

IA

Re(gu, a) + allb|l .

Now the unit ball of B* is weakly® compact by the Alaoglu-
Birkhoff theorem, i.e., for every net fd € B* with ”fa” =1
there is a subset f,r which converges to an f € B* in the
sense that (fa" a) + (£, a) for all a € B . Hence one

deduces from the foregoing inequality that

llall = %2im {Re(ga,, a) +a'lb]l}
1]
a'>0
= Re(g, a)
where g 1is the weak® limit of the subset Byt - Now since

”gaH = 1 one has |g|l] =1 and then

Re(g, a) = llgll llall = llall .
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Hence

(g, a) = llall .

This proves that g 1is a norm-tangent functional at a .

one also has

lall = Re(ga, a) +a Re(ga’ b)

IA

lall + o Re(g, b)

and hence in the limit o' = O one obtains
0 = Re(g, b) = Re(g, Ha) ,
i.e., Condition 2 is satisfied.

2= 1. Let f be a norm-tangent functional at

satisfying
Re(f, Ha) = 0 .

Then

llall

Re(f, a)

IA

Re(f, a+oHa)

1A

Il (T+aH)al|

for all o >0 .

1=1". This is evident.

But

a € D(H)



Finally 3 = 2 and it remains to prove 1 = 3 under

the assumption that D(H) is norm dense.

Now if a, b € D(H) and f 1is a non-zero norm-

tangent functional at a one has

Therefore

I (I-aH)al| = |lall-o Re(f, Ha)

\

Re(£, Ha) = %im sup (Ha”—!l(I-OLH)aII}/OL

But

a0+

[(I-aH)all = |la + ob]| + allb + Hall

IA

[[(1+aH) (a+ob)| + oflb + Hall

lall + 2alb + Hall + o2i[Hb]|

I\

for all sufficiently small o > 0 by Condition 1. Therefore by

combination of these results

But since D(H)

Re(f, Ha) = -2||b + Ha| .

is norm dense we may choose b arbitrarily

close to -Ha and deduce that

Re(f, Ha) = 0 ,

i.e., Condition 3 is satisfied. L]

Example 1.4.3.

with its dual.

Let H be a Hilbert space and hence identifiable

If a, b €H then

49,



50.
|(a, B)| = llall Iill

with equality if, and only if, a = A\b for some A € T . Therefore
a/”a“ is the unique norm-tangent functional at a € H and
Theorem 1.4.1 states that an operator H is norm-dissipative if,

and only if,
Re(a, Ha) = 0

for all a € D(H) . This is the characterization used in

Section 1.3. E

Example 1.4.4. 1If B = tP(X; du) with p € (1, ©) then there is

a unique norm-tangent functional at each f € B given by

(Iflp-l arg f) Hfﬂg_l where arg f(x) = f(x)/|f(x)| if [£(x)] # 0
and arg f(x) = 0 if If(x)| =0 . If p=1 this gives the tangent
functional arg f , but this is not unique if £ = 0 on a set Y of
non-zero measure. In this case g + arg £ , where g has support in

Y and |g| =1 , is also a tangent functional. [

Theorem 1.4.1 allows an immediate reformulation of the

Hille-Yosida theorem which is often more convenient for applications.

THEOREM 1.4.5.  (Lumer and Phillips). Let H be an operator on

the Banach space B . The following conditions are equivalent:

1. H <s the generator of a Co—contraction semigroup S ,

2. H 1is (norm closed), norm densely defined
R(I+0H) = B

for all o >0 (or for an o > 0) and



Re(f,, Ha) 2 0

for one norm-tangent functional f, at each

a € D(H)

The alternative characterization of norm-dissipativity
provided by Theorem 1.4.1 also allows an easy proof of a version
of the Hille-Yosida theorem in which the range condition

R(I+oH) = B does not occur explicitly.

THEOREM 1.4.6. Let H be an operator on the Banach space B and

consider the following conditions:

1. H is norm densely defined with norm densely defined

adjoint H* and both H and H% are norm dissipative,

2. H <s norm closable and its closure H generates a
C,-con traction semigroup.

Then 1 = 2 and if B s reflexive 2 = 1.

Proof. 1=2. Suppose R(I+H) is not norm dense in B . The

Hahn-Banach theorem then implies the existence of a non-zero

f € B* such that (f, (I+H)a) = 0 for all a € D(H) . Therefore
|(£, HaY| = [(£, a)| = |IE]| llall

and hence f € D(H®*) . Moreover since D(H) is norm dense
(I+H*)f = 0 . Thus if b € B** is a norm-tangent functional at

f € B* one has

(b, H*) = -(b, £) = -|I£]|
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which contradicts the norm-dissipativity of H¥* . Hence
R(I+H) is norm dense and the desired implication follows from

Theorem 1.3.

Next assume B 1is reflexive and consider the

converse.

2 =1, If H generates the C_ -contraction semigroup S

0
then H* generates the Co—contraction semigroup S¥* (see

Exercise 1.3.4). Hence Condition 1 follows from the Hille-

Yosida theorem applied to S and S* . {:

Of course the drawback of this criterion is that one
has to specifically identify the adjoint H* before it is

applicable.

Finally we illustrate the notion of norm-dissipativity

with two examples of matrices acting on finite-dimensional spaces.

Example 1.4.7.  (Matrix Semigroups). Let x = [xl, Xps oo xn)
denote an element of the finite-dimensional space ¢ . Further
let H = (Hij) be a complex-valued n X n matrix acting on ¢t

and 8, = exp{-tH} , t = 0 , the corresponding matrix semigroup.

The space " can be equipped with various norms
which are all equivalent in the topological sense. But S can be
contractive with respect to one norm without being contractive
with respect to an equivalent norm. Nevertheless if a norm is
given then S 1is contractive if, and only if, H 1is dissipative.

Dissipativity with respect to the 2~ and Ql-norms is particularly



easy to describe because of the simple geometry of the corresponding
balls. We will not pursue, however, the geometric aspects but

proceed analytically.

. 0 n
Define the £ -norm on T by

Il = max |x.|
1<i<n

It follows that St = exp{-tH} <s 2 -contractive if, and only if,

(%) ReH.. - )} |H..| =0
ii 541 13
for all i =1, 2, ..., n . This is established as follows. For

i fixed choose x suth that x, =1, =x. = —ﬁl./|H..| if j#£1
1 J 1] 1]
and H,. # 0 , and x. =0 if j# 1 and H.. = 0 . Next choose
1] J 1]

f= (fl, cees fn) such that fi = 1 and fj =0 If j# i . Then
f 1is a norm-tangent functional at x and

Re(f, Hx)=Re H . - .Z' IHijl

J#1
Thus (#*) is necessary for S to be 2 -contractive. Conversely let
x be a non-zero element of L° and choose i such that ]xil = |le
for all j #1i . Set £, = x./bml and f. =0 if j#1i . It
i i/t j

follows that f 1is a norm-tangent functional at x and

"

Re(f, Hx) lxll Re Hii + Re j;zti Hijgixj /[Xil

v

R Re H,. - H..|}|-
|X1| [e i j;i | 13')

. (o]
Thus (*) is sufficient for H +to be £ -dissipative and S +to be
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[ee]
£ -contractive.

Next if

[Taerl=}

%1

Il = .

i=1

denotes the Ql-norm it follows by duality that St = expl-tH}
is Rl—contractive if, and only if, the adjoint semigroup

o ) . o . o

S; = expl-tH*} is & -contractive. Thus S_t = expi-tH} <is

2L-contractive if, and only if,

Finally one can equip ¢ with the 2P-norms

Il = @1 Ixilp)l/p

for 1< p< ® and consider Qp—contractivity. If S is both

Ql— and % -contractive it follows by abstract interpolation that
S is lp—contractive for all p € [1, ®] . This conclusion can,
however, be reached by explicit estimate. For example if p = 2

then x/”xH2 is the unique tangent functional at x and

"
0~

Re(x, Hx) [lx.|2 Re H,, + N Hi.gix.)
i=1 U F g1 1

v

i J#i

121 [lxi'2 Re Hy; - ) 'Hij|(lxi‘2+lxj|2)/2]



i
[Ilael=]

(g1 (R by = T (g lelg, 1))

i=1 j#i

where we have used the Cauchy-Schwarz inequality. Thus combination
of the conditions for 2%- and Qm—contractivity imply that H is
22-dissipative. A similar argument using the Minkowski inequality
establishes that Rt and Rm—contractivity imply that H is

Rp—dissipative.

If p#1 or <« the Qp-dissipative conditions cannot
be expressed in any particularly practical terms of the matrix
element Hij . Nevertheless if H is self-adjoint, i.e., if
H = H* , then Qw—contractivity of S implies Ql—contractivity by
duality and Kp—contractivity, p € (1, ) , by interpolation.

Thus a self-adjoint matrix semigroup is 2P _contractive for all

p € [1, ®1 if, and only if, (*) s valid. More generally if H
is normal, i.e., if HH¥* = H*H , then QQ—dissipativity is implied
by ll— or Rm—dissipativity. This will be established in the next

example. []

Example 1.4.8. (Normal matrix semigroups). Let 8, = exp{-tH}
denote the matrix semigroup of Exmaple 1.4.7. We first argue that

if the conditions

(%) Re H,, - ) |H

=0, i=1,2, ..., n

for lmlcontractivity are valid then Re A Z 0 for all eigenvalues A

of H . This follows by noting that if (H-AI)x = 0 then
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Hii - A Ixi| = Ijgi - Hijxj‘
= H,. .
1, gl bl

where i has been chosen such that Ixi| = lxj| for j#1.

Thus if x is non-zero the conditions (*) imply that

H.. - A\| < Re H,,
11 il

and hence Re A = 0 . Consequently Example 1.3.6 implies that

if S 4is a normal matrix semigroup then 2 -contractivity implies
22-00ntractivity and hence, by interpolation or by explicit
estimation, it implies Qp—contractivity for all p € [2, «] .
Similarly if S is a normal matrix semigroup then Zl—contractivity
implies Zz—contractivity,,and hence Qp-contractivity for all

p € [1, 2] . ]

Exercises.

1.4.1. Let H be the generator of a Co—semigroup of
contractions. Prove that the operators Ha = H(I+aH)_l .

o = 0 , are norm-dissipative.

1.4.2. Prove that if H is an invertible norm-dissipative

operator on a Hilbert space then H_l is norm-dissipative.

1.4.3. Prove that the closure of a norm densely defined,

norm-dissipative, operator is norm-dissipative.



