CHAPTER 4
REGULARITY OF WEAKLY HARMONIC MAPS
Regularity, existence, and uniqueness of solutions of the

Dirichlet problem, if the image is contained in a convex ball

4.1 THE CONCEPT OF WEAK SOLUTIONS

We first want to discuss the concept of stationary points of the energy
integral or of weak solutions of the corresponding Euler-Lagrange equations.
In the present chapter, the image Y will always be covered by a single
coordinate chart so that we can define the Sobolev space W;(Q,Y)
unambiguously with the help of this chart, without having to use the Nash

embedding theorem as in 1.3.

2 will be an open bounded set in some Riemannian manifold with boundary

.

In the sequel, we shall use some of the notations of [EL4].

If u e Wé(Q,Y) , then du is an almost everywhere on § defined l-form
with values in u—l TY . The energy of u is

E(u) = % J <du,dv> a ,
Q

where the scalar product is taken in T*Q(:)u_l TY .

We let ¢ € Co(f-l,u"l TY) be a section along u which vanishes on 9% .
This means ©¢(x) € Tu(x)Y . We want to construct a variation of u with
tangent field ¢ .

Since we assume that Y is covered by a single coordinate chart, we can
simply represent everything in those coordinates and denote the

representations in these coordinates by ~  and define
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500 = G + £ (x) .

These coordinates also identify each tangent space TuY with R
(n = dim Y) . Hence $ is a map from { into Dfl. This allows us to
define d$ and hence via this identification also d¢ . (Note that it is

not obvious how to define d¢ intrinsically, since ¢(x) ¢ T Y , and as

u(x)

u is not necessarily continuous, the base point of ¢ may vary in a

noncontinuocus way.) We then suppose that
(4.1.1) J <d$,ap> < =
Q

and show that the Euler-Lagrange equations, if u is a critical point of E ,

i Coad oAk -
(4.1.2) HYC*B anyg e i é%é—‘igwl} /Y dx =0  for ¥ e w;‘ 0 L@, =
: 9% Ox I 9x™ 9x
(]90=0)
are equivalent to
(4.1.3) f <du,dd> = 0 for all bounded ¢ satisfying (4.1.1) and ¢IBQ= 0.
i ]
Proof ret ¢ = (k) — .
dut
. i . 3
Then a¢ =V 3 {¢l ~EL} ax® = EQ“'”éT‘+ ¢l Fk. gE*-"é—.
i (o4 i ij a5 k
—5 ou dx~ du ox  ou
dx
Hence
dut 99 % ud dut
(4.1.4) <awap> = g, PRy (8 ghpk Du f
J ox 0x I x” ox
On the other hand, we choose wi = gij ¢j as a test vector in (4.1.2). Then
the integrand of (4.1.2) becomes
of  2ubaed | NI e’ 3 R B du” .
i3 x> Bxs k3. BXB ax” gij k& ax™ BXB
i j L .k
_oB du” @Qi af | du_ du 3
TGy G, BT PO s T %) E e

which after changing some indices, is the same as (4.1.4).

g.e.d.
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Remark  If one wants to define d¢ also if the image is not necessarily
contained in a single coordinate chart, one can use the Nash embedding

theorem as in section 1.3.

In the following sections, we want to provide conditions which ensure

that a weak solution u € H; n Loo of {(4.1.2) or (4.1.3) is continuous (which

then in turn will also imply higher regularity of u ).

We have already seen in 1.4 that . Snnl for nz 3 is a

x|

discontinuous weak solution. One might think that the discontinuity in this

case is caused by the global topology of the image. We can however take the

n-1 n n-1

totally geodesic embedding i : S + 8 which maps S onto the equator
of Sn. By Lemma 1.7.2, i -TET‘ then is harmonic for x # 0 and hence
weakly harmonic by the argument of 1.4. The image of 1 ’T§T ., however, is

contained in a closed hemisphere, so that there is no longer a topological
obstruction to regularity, and the discontinuity has to be caused by the

geometry of the image.

As pointed out, in this case the image is contained in a geodesic ball of
radius g in s . 1In the following sections, we shall see that the radius
g~ is precisely the limiting case for regularity, i.e. that any weakly
harmonic map witﬁ image contained in a geodesic ball of radius < g actually

is regular. (We shall of course consider more general image manifolds than

only spheres.)

. : . b4 s s
Finally, we remark that in many cases i ’TET' even minimizes energy

w.r.t. its boundary values, as was demonstrated by Jager-~Kaul [JaK3] and

Baldes [Bal.

In the following sections, we assume w.l.o.g. that the dimension n of

the domain 2 1is at least 3, because otherwise we can simply look at the map
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a: 0 xsl > Y , U(x,t) = u(x) which satisfies the same assumptions as u .

4.2 A LEMMA OF GIAQUINTA-GIUSTI-HILDEBRANDT

The following lemma is due to Giaquinta-Hildebrandt [GH].

LEMMA 4.2.1 Suppose u : Q ~+ Y <is weakly harmonic, £ : Y > IR is strictly

convex on u() . Then for every ball B(xO,ZRO) cQ

(4.2.1) d(x,xo)z"n lau|? < o <.
B(xO,RO)

Furthermovre, for any € > 0 and R, >0 we can calculate R >0,

independent of x_ and u with the property that for some R , R, < R< R

0

(4.2.2) g¥0 f lau|? < € .
B(xO,R)

c; and R depend on the supremum of £ and on a lower bound X > 0 for

the eigenvalues of its Hesstan and on the geometry of Q (curvature bounds,

injectivity radius, dimension).

Proof One idea is taken from [JK1], p.11, the other from [GGl], p.
We put h = fou. By (1.7.2)

(4.2.3) A > Aldu]? .

2-n
Let x(x) = dlx,xy) and gp(x) = mi“{r(x)z—n - ¥, Fﬂ - Dz_n} on

2

B(xo,p) . Then
(4.2.4) A [ g, (%) |du12 < J 9, (%) bh(x) by (4.2.3)

B(xo,p) B(xo,p)

= _f <grad 9y grad h>
B(XO,Q)\B(XO,O/Z)
= [ h Agp —J h <grad EPY d6§
YB(XO,D)\B(XOID/Z) : a(B(XOID)\B(XO,D/Z))
< c2p2 + ?;f; [ h - ___E:%;If J h
0 9B(x,P) (p/2) 9B (x4, P/2)
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by Lemma 2.7.1, if p satisfies the assumptions of this lemma.

-i —i=-1 2-n =i=1 2=-n
® ° < °
Now on B(xO,RO 2 )\B(xO,RO 2 ), r(x) < (RO 2 ) and thus
2 2 _ 2 P2 2
(4.2.5) { £ Jau]® s T 27 TR 27 n[ oy laul®
B(xO,RO) i=0 B(xO,RO-Z )
. - - 2- - - .
Since 22 n((%)2 nol 1) r no rz . (2r)2 o , from (4.2.5), defining
g. =g .
i =i+l
RO-2
2-n 2 - 2
f r(x) | du] < % z f —ie1 9y | du|
B(XO’RO) i=0 B(xO,RO-Z )
where c, depends only on n .
(4.2.4) then implies
2c c L
(4.2.6) J r? ™ Jau|® s —2e B+ L T
B(xo,RO) i=0
{(R002—1+l)1—n [ _i+1}1_ (RO.2~1)l—n J N h}
9B (x R 2 ) aB(xO,RO-z )
2 o
=t ey Ry+c, 2 gy = W) -
i=0
Hence
(4.2.7) v ™ jau)? < o, B2 4o, p -
B(x_,R.) 3°0 4 "0
0o'"o
This implies (4.2.1), noting that o < sup £ e vol BB(XO,ZRO)Ré—n. From (4.2.4)
u(Q)
(R_.27 12" o faul® < ectmoe2HZ e, - u .
0 B(x_,R 21 570 i-1 i
0’7o
“ig)? e
We first choose iO so large that cs[Ro'z ] f&z. For every m e N , we

can find j , i0 <j <m+ i0 , with

1
uj~uj+lsau

(for the last inequality, note that h is subharmonic and see the proof of

(2.7.5)).
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26, (1, + ©R)
Hence choosing m 2 e and Rl==RO'2
(4.2.2) follows.
4.3 CHOICE OF A TEST FUNCTION
Suppose B(x0,2R) c ) for some R >0 . Let

IA

standard localizer, i.e. 1 =1 on B(xO,R) . |Vn|
Suppose there exists a strictly convex function on

assumptions of Lemma 4.2.1 are satisfied.

N e Lip(B(x,,2R))

=i ~-m

, R RO°2_J ,

g.e.d.

be the

% , Supp N << B(xO,ZR).

u(B(x,,2R)) , i.e. the

Suppose £ is a Cz—function on u(B(xo,2R)) , and g is a Lipschitz
function on B(xO,ZR) , 80 we can choose Vfe°neg as a test vector ¢ in
(4.1.3).

If ea is an orthonormal frame on Q , wa the dual coframe, then
du = ue wa , and (4.1.3) yields

o
(4.3.1) 0 = J ng<amve), u w> + f gn, £,
B(x,,2R) o B(x_,2R) o o
0 0
+ [ ng_  £(u) .
B (xs2R) o o
Now
QawWe), u o> =<d@¥fle , u > -1
- Y
o T%QMu lTY o ey wor
-1
u  TY s
= <Ve VE, u >u—1TY by definition of d
Cl Ch
=<7 VE, u, (e )>
u (e ) R R
* (¢4
2
= D f(du,du)
where sz is the Hessian of f .

Hence from (4.3.1)
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ng sz(du,du)-J gn f(u)e

(4.3.2) J g (M) =
€ € B(x,,2R) O o

B(xO,ZR) o o JB(XO,ZR)

+ I £(u) 9 ﬂe .
B(xo'2R) ) a

Remark If one is not familiar with the notation employed in the derivation of
(4.3.2), one can alternatively insert the test vector ¥ given by

d
wl =T°g ——%— in (4.1.2) and carry out the calculations in local coordinates.
du

For vy € B(xO,R/Z) , X € B(xO,ZR) , we now put

i

v . -
g(x) g (x,y) = mln(d(x,y)2 n' V) for VvV € N .

Writing D(x,V,R) = {x ¢ Blx ,R) : a2 <V}, (4.3.2) yields

v -
(4.3.3) g ( ,y)e m f(U))e =

J -f ng’(*,y) D2£(du,du)
D(xo,v,R) o o B(XO,ZR)

v, \Y
g (oydn, £lw  + flw g ), N, -

J13(xo,2R) o o j‘D(xo,\),R) a o
We write (4.3.3) as

= + + .
I, = II, + III + IV,

Then with D'(x,,V,R) = {x € B(x;,2R) : ax, 2 2 v}

(4.3.4) I, = A(d(’,y)z—n)nf(u) -{ nf(u) <grad g(°,y), d3>u

D(.}iol\)lR) oD* (XO,\),R)

since 1 has compact support in B(xo,zR) .

By (2.1.4), for sufficiently small R (depending on the injectivity

radius and an upper curvature bound on § )

(4.3.5) J Ad(, )2 ne) < c732 <e, if RER(),
D(x,,V,R)

where <, depends on n = dim § , a curvature bound on  , and on 'sup f .

If we choose for fou its Lebesgue representative, then we can find a
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subsequence of the Vv's for which

(4.3.6) lim f nt(u) <grad g{e,y), d3> = —(n—Z)wrl f(u(y))
Voo
oD’ (XO,\),R)

(note that n(y) =1 , since vy ¢ B(xO,R/Z)) .

Furthermore

4

(4.3.7) I, = —f - J
B(xO,R) T(xO,R)

where T(xO,R) i= B(x0,2R) \ B(XO,R) .
Since vy ¢ B(xD,R/Z) , we infer from Lemma 4.2.1

(4.3.8) ng” (+,y) D2£(du,du) < € (n-2)u_

fT(xO,R)

for prescribed € > 0 and some R , RZ(E) < R KL Rl(e) , where

R2 = RZ(E) > 0 can be calculated explicitly in terms of ¢ . It depends on

the Hessian of f , but is independent of v and y and u .

Since
ne
o

0 outside T(XO,R)

(4.3.9) 1I1III_ <

C C 1
v —jo g"(+,y) |dul 5?9 (I g’y ?
T(xO,R)

T(xO,R)

1
(J gV (=.y) [dulz)2 < (n-2)w e,
T(xO,R)

again for some suitable R which we can choose to be the same one as in

(4.3.8). Here, the quantities depend on |[VE]| .

In order to estimate IVv, let uR be the mean value of u on T(xo,R) .

u, can be defined with the help of our coordinates. We write

u =

u .
R

fT(xO,R)

We now write f£(u) = f(uR) + (£(u) - f(uR)) . Similar as in (4.3.5) and
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(4.3.6), we obtain

2

(4.3.10) lim IV, £ (n-2)w  f£f(u.) + c R
Yoo \Y n R 10
2=-n
+ J (£(u) - f(uR))(d(‘rY) ) ”e .
T (%, R) o o
Furthermore
2-n ‘11
J ((u) - £(u)) dC,»)T N ——n—J le@ - £yl
T(xO,R) (¢ o~ R T(x, ,R)
0
c 1
< -%% Rn/2 sup[VfI (J d(u,uR)z)2
R T(x_ ,R)
0
S e, an/2 (c14 R2 f !dulz)%
T(x_ ,R)
o}
by the Poincaré inequality, where i3 and Gy, Bare independent of R .

Combined with (4.3.10), the preceding inequality vields

[

(4.3.11) Lim Iv, € (@-2)w_ £(u) + o, B + o (R " laul? )
n R 15 7

10
Vo (XOIR)

< (n—2)wn f(uR) + €(n—2)wn

(w.l.0.g. we can assume that (4.3.11) again is satisfied for the same R as

in (4.3.8) and (4.3.9)).

From (4.3.3)-(4.3.11), we obtain for vy ¢ B(xO,R/Z) , using Lebesgue's

Theorem on dominated convergence

n

(4.3.12) £(uly)) < f(uy) + 4¢ - {(n—z)wn}"l J a(-,y)2° D2f(du,du)

B(xO,R)

for some R 2 R3(€) where R3(€) > 0 is independent of u and x

0

4.4 AN ITERATION ARGUMENT. CONTINUITY OF WEAK SOLUTIONS

In this section, we want to use an iteration argument based on (4.3.12)
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to prove continuity of a weakly harmonic map with image in a convex ball.

This result appeared explicitly for the first time in [HIJW], but the method of
proof in a somewhat different setting was already developed in [HW2]. The
present proof (4.2-4.4) uses ideas of Wiegner, Hildebrandt, Widman, Kaul,

Jost, Giaquinta,and Karcher, cf. [wWi], [HW2], [HRKW3], [HJW], [GH], and [JK].

THEOREM 4.4.71 Suppose u : Q - B(p,M) <s weakly harmonic, that

2 . .
wstSK are curvature bounds on B@M)CY,M<mmE% um],wMM

i(p) <8 the injectivity radius of p , and x € Q.
Then for each T > 0 one can calculate p > 0 with
osc u<-T.
B(xo,p)

p depends only on Tod(xys ) , curvature bounds and the injectivity radius

of §, dinQ , dimy, M, W, K.
In particular, u is continuous in .

Proof Let
. 1
= — - 1l .
ho mln(2M|< 1, ]
Then there exists €' , 0 < g' < 1 , with

1
h' = g&-- {(l—ho)2 M2+ €'} >0 .

Let

and

Let € in (4.3.12) be taken as

£ =

Wi
=
IS

1
=3
8
[e
=]
TN
m
|
_—
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and s be the smallest positive integer with
2 ! gn

(1-h)“F < = .
8M

The assumptionsof Lemma 4.2.1 are satisfied, because rz(q) = dz(q,p) is

strictly convex on B(p,M) by Lemma 2.3.2.

We start with RO = %d(xo, o) , Py =P - On B(p,M) , we initially take

normal coordinates centred at p = p They cover B(p,M) , since B(p,M)

o *

by assumption is disjoint to the cut locus of p .

- _ _ R
Let uRO be the mean value of u on T(xO,RO) B(xO,ZRO) B(xo, 0)
taken with respect to these coordinates:

u = { u(x) dx .
0 T(XO,RO)

Let ¢ be the unique geodesic arc from Py to u

o , and let Pl be the

Fo

point on CO with
d(p,/py) = hy d(uRO,pO) .

Now for q € B(p,M)

d(q.pl) < d(q,po) + d(pl,po)

IA

M
M + hO

m

ET3 by choice of h

IA

0
Hence, by Lemma 2.3.2, dz(',pl) is convex on B(p,M) . Thus, for

v € B(xO,Rl) , where 2Rl is the radius R < RO of (4.3.12), (4.3.12)

implies for £ = d2(-,pl)

2 2 -
(4.4.1) 4 (u(y),pl) < d7(ug ,pl) + 4e

0

IA

(1-h )2 sup dz(u(X),p ) + 4de
0 0
xeB(xo,ZRO)

by choice of Py -
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Let j e W .

Suppose now that we have found points p, ¢ B(p,M) and radii Ri for

i <j-1 with the property that for vy ¢ B(xO,Ri)

(4.4.2) dz(u(y),pi) < (1—h0)2 M2 4 e
and
2 2 2
(4.4.3) d (uly),p;) = (1~h) sup d (ulx),p, ;) +4€ .
B(x, 2R, ) *

We then want to prove (4.4.2) and (4.4.3) for i = j and suitably chosen pj

and R, .
J

First of all, by (4.4.2)

m
< e~ }t
d{u(y), pj_l) TS h for vy € B(XO'Rj~l) .

If we choose normal coordinates on B(p,M) centred at pj-l which is

possible by Prop. 2.4.1, and take GR as being the mean value of u over
F=-1
T(XO'Rj~l) with respect to these coordinates, then again by Prop. 2.4.1,
there is a unique geodesic arc c, in B(p,M) from p, to u .
j-1 -1 Rj—l

We choose pj as that point on cj__l with

d(Pj:Pj__l) = h d(uRj_l'pj—l) .

Then for vy € B(xO,Rj_l)

d(u(y>,pj) < d(uly), Pj—l) + d(pj,pj_l)

1

< ((1—ho)2 M2 + )% + hy by (4.4.2)
LI

SZK h' + hM
m™

< - .
2K

Hence, d2(‘,pj) is convex on u(B(xo,Rj_l)) , and from (4.3.12) for

i = i .3.12
y € B(XO'Rj) , taking 2Rj R < Rj—l in (4.3.12)
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1A

y + 4€

2
a” (uly),p.)
3 Rj_l

2 -
a (pj,u

IA

2 2 -
(1=m% a"(ap ey )+ 4e

j=1
2 2
< (1-h) sup d (u(x),pj_l) + 4e .
xeB(xO,ZRj_l)
Thus (4.4.3) is also satisfied for i = 3 .
Iterating (4.4.3), we obtain
5 , .
(“.4.4)  swp  &uw),py) < 1m0 sup a¥(uiy),py) + 4 e
yEB(xO,R.) 1 - (1-h)
J
For 3 > 0, ‘“‘_'_‘1'““’—2+(l“h)23£m‘é%°ﬂ‘)‘,
1 = {i~h)
. 2 2
and thus from {4.4.4) and (4.4.1), since d (u(x),po) < M,
s ki
(4.4.5) sup  d°(uly) By < -m? a-n? u? min[e’, %—} .

R
VeEB (XOI ])
In particular, (4.4.2) holds for i = j . Moreover, (4.4.5) implies

- 9
( osc w?s<4  sup dz(u(y),pj) < a(-n)23 u® 4 =

B(x R, YGB X R,
OI J) ( CI ])
and hence

osc u < ye" <71 .
B(x_,R
( o s)

RS can be computed explicitly, since the radius R3(€) in (4.3.12) can be
computed from the geometric quantities of the statement of the theorem by
Lemma 4.2.1. Note in particular, that the strictly convex function required
in Lemma 4.2.1 is d2(°,p) and that all choices of f in (4.3.12) are
likewise given by squared distance functions. Hence their gradients and
Hessians are controlled by the geometry of the image through Lemma 2.3.2.

g.e.d.
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4.5 HOLDER CONTINUITY OF WEAK SOLUTIONS

We now want to prove Holder continuity of u .

THEOREM 4.5.1 Suppose that the assumptions of Thm. 4.4.1 hold. Let
B(x,,2d) < Q be a ball which is disjoint from the cut locus of its centre.

Furthermore, suppose that 0% < k<1l for the curvature on B(x,,2d) and

T
d < e Then for all x,v € B(xl,d)

d{u(x),u(y)) < c d(x,y)B

where B e (0,1) and ¢ depend only on dimQ , dim Y , 0 , T , W , K , d ,
and M .
Proof By Thm. 4.4.1, we can find p , 0 < p < d , with
(4.5.1) osc u< M for all x € B(xl,d) .
B(x,p)
We choose an arbitrary =x. e B(xl,d) and R with O < R £ g-, and define

0

again T(x0,2r) = B(xO,Zr) \ B(xo,r) and moreover

R 7R 5R
* = 1= 22
T (xo,2r) B[XO’ 4] \ B{xo, 4} .
We let g be the point, where

H(g) = a®(u(x),q) dx

JT(xo,ZR)
achieves its minimum. (That we can find a unique such q , follows from

(4.5.1) and (2.3.4)). Then

f v a%(u(x),p) = 0
T (x,:2R) B

= J exp—l u(x) = 0 .
T(x0,2R)

That means that if we choose normal coordinates centred at g and denote the

corresponding coordinate representation by v , then

(4.5.2) vix) =0

JT(XO,ZR)
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and hence by the Poincaré inequality

(4.5.3) v < o\ R? J |vv]?

fT (xO,ZR)

where ¢ like the following constants c¢

15 is independent of R .

2

n from 4.3 will now be required to satisfy N =1 on B[xo,

4)
- 7R
N0 on Q\B[xo, 4] .
In (4.3.3) we now take <£(u) = dz(u,q) and y = XO . Then from
(4.3.4)-(4.3.6)
} 2 2
(4.5.4) lim Iv = (n—2)wn <} (u(xo),p) - c16 R” .
oo
Furthermore

D2 (du,du) 2 2KM ctg KM |du|?

by Lemma 2.3.2 and (4.5.1) and hence

v 2
(4.5.5) C17 J ng ( ,xo) D f(du,du) =

f ng (%) lau]? .
B(XO,ZR) B(xO,ZR)

By choice of n , the integral IIIV extends only over T(xo,2R) , and

2—1’1‘2

taking V > RZ® , moting f(uw)_ = 2vv_  (F(u(x)) = vi(x)) ,
e(x e(l
@56 Jar| s o @ J 99]? + &P j Iv]2)
) T(x.,2R) T(x_ ,2R)
0 0
S ey BT j vv|? by (4.5.3) .
T(x_ ,2R)
0
Now
4.5.7) [1v | < czo(R_2 st [ lv|?+6 [ lv|? \Vd(°,x0)
T(xO,ZR) T*(XO,ZR)

for each § > 0

I d)zvz d(',XO)z_n Ad(.'xo)z-n - J ¢2v2 |Vd(':XO)2_n|2
T{x . ,2R)
0

+ J 20V 2 d(-,xo)z‘“ Vd(-,xo)z’n + J 20l a(e,x) " Vd(-,xo)z‘“
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if supp ¢ ¢ T(xo,ZR) , =1 on T*(xO,ZR) ’ ld¢l <

<
R
Using Lemma 2.7.1 and Holder's inequality, this implies

2"1‘1[2 <

v

2
(4.5.8) J v Va(s %) c
0 2 T(x, s 2R)

z2(2-n) J 2
T* (%, 2R)

‘Vlz Id("XO)Z—an +{ a (OIXO)2(2—1’1) IV'V|2) .

* sz(R_Z f
T(xo,2R)

T(xO,ZR)

Choosing & = R% 2 in (4.5.7) and using (4.5.8) and (4.5.3),

2- 2
(4.5.9) . || < ey R n f lav|® .

From (4.5.3), (4.5.4), (4.5.5), (4.5.6), and (4.5.9) and letting VvV -

2

A

2-n 2 2-n 2
(4.5.10) SICEN |au] ¢,y R f lav]® + c,_ R

J 2
B(XO,R) T(xO,ZR)

2=
S J d(',xo) n Idu|2 + Ce R2 .
T(XO,2R)

(Note that j |dv|2 = f Idul2 , since the energy is invariant under

coordinate transformations.)

If we now add d(-,xo)Z"n |au|? to both sides of (4.5.10),

c
25 |
i.e. we fill the hole (that explains why this device introduced by Widman is

c
called the hole filling technique), we obtain with 0 = i—:zg—— <1
25

2

(4.5.11) a(ex)*™ Jaul? < 0 [ a(ex) ™ laul® + ¢, ®

| -
B(xO,R) B(xO,ZR)

or, using the notation @(R) := J' cil(*,xo)zun |du

B (Xo,R)

2 2
l + €y R

(4.5.12) ®(R) < eO ®(2R) with eo = max(6,3) .

LEMMA 4.5.1 (de Giorgi} For a-= 1og2(egl> and all r <R

(o7
(4.5.13) o(r) < 20‘(%] o(R) .
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Proof of the lemma 1¢ 2 " 'RrR<r<2 ¥R,

o(r) < 02 % r) < eﬁ 6 (R) by (4.5.12) .

P k -k -1 . -k r
= < =
Writing 90 (2 ™) 1og2(60 ) and using 2 <2 R

(o7
d(r) < 2“%% ®(R)
R
which proves the lemma.

Since 0 < 60 <1, a >0, and hence Thm. 4.5.1 will follow from (4.5.13)
in conjunction with the following well-known Dirichlet growth theorem of
Morrey, noting that the right hand side of (4.5.13) is finite by (4.2.1) or

by (4.5.11)

THEOREM 4.5.2 (Morrey) If £ < le(B(xl,d) satisfies

lVflz < w2 pn—2+2B

B(xl,d)nB(xo,p)

for all =x_ € B(xl,d) and all p > 0 for some positive constants B and

0
M, then f ¢ CO'B(B(xl,d)) , and

lf(x) - f(y)l < e M Ix - yls
for all =,y E'B(xl,d) , where c, depends only on n .
For a proof, cf. e.g. [M3] .

The preceding proof of Thm. 4.5.1 was taken from [HJW]. It uses the
method of [HWl1l]. Different proofs of Thm. 4.5.1 were obtained by Eliasson

[Es], Sperner [Sp]l, and Tolksdorf [To].

4.6 APPLICATIONS TO THE BERNSTEIN PROBLEM

Actually, the dependence on the geometry of the domain in Thm. 4.5.1 can
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be considerably weakened. In [HIW], the following result is shown.

THEOREM 4.6.1 Let again B(p.M) ©¢ Y be a geodesic ball, disjoint to the cut

. 2 2
locus of p , with M < , where -w" < K £ k% are curvature bounds on

.
2K
B(p,M) .

Let D(0,2d) = {x ¢ R": |x| < 2a} be a coordinate chart on the domain

with metric tensor YQB(X) satisfying
(4.6.1) Ml 5 v g00 2P < g2, o<asu
for all x e D(0,2d) and all £ ¢ R .
If u : D(0,2d) > B(p,M) <8 harmonic, then for all x,y € D(0,d)
c B
d(u(x), uly)) < B d(x,y)
s}

for some B e (0,1 and ¢ > 0, depending only on n , dim¥ , w , K , M,

A, and W, but not on 4.

In the proof of Thm. 4.6.1, one has to use the Green function of the
Laplace~Beltrami operator of the domain instead of the approximate
fundamental solutions we use in the proof of Thms. 4.4.1 and 4.5.1. The
truncated functions gv(x,y) of section 4.3 have to be replaced by
mollifications of the Green function. The proof then yields the desired
result because one can control the Green function only in terms of the
ellipticity constants of the differential operator, i.e. by (4.6.1). The
required estimates for the Green function depend on Moser's Harnack inequality
and are carried out in [GW]. Also, Lemma 4.2.1 has to be proved in a
different way to get the stronger estimate, again using Moser's Harnack

inequality, cf. e.g. [GH].

Thm. 4.6.1 has the following
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COROLLARY 4.6.1 Let the manifold X be diffeomorphic to IR° , with a metric

tensor Yyg(x) (x ¢ RY) satisfying
Atglz < YG.B(X) EO{.EB < UIEIZ ; 0< A<y
for all £ e ® and x ¢ R,

Suppose u : X > Y 18 harmonic and u(X) < B(p,M) where B(p,M) again

satisfies the assumptions of Thm. 4.6.1.
Then u 18 constant.

Cor. 4.6.1 in turn can be used to prove Bernstein type theorems for
minimal submanifolds of Euclidean space, when combined with the following

result of Ruh and Vilms [RV].

THEOREM 4.6.2 Suppose F : M+ P is of class C° and immerses the
n~dimenstional manifold M into EBuclidean (n+p)-space. Then its Gauss map

G : F(M) ~ G(n,p) into the Grassmannian manifold of n-planes in (n+p)-space
endowed with its standard Riemannian metric is harmonic 1f and only if M is
immersed with parallel mean curvature field. This in particular is the case,

if FM) is a minimal submanifold of ®P

Cor. 4.6.1 and Thm. 4.6.2 yield the following Bernstein type theorem of

[HIW].

THEOREM 4.6.3 Suppose F : R >®’YP is g Ceimmersion and x = F(RY)
s minimal or has parallel mean curvature field. Suppose there exists a

fized oriented n-plane Py s and a number oy

i
[

1 if m
} m = min(n,p) , K™ =

(4.6.2) o > cosm[ ’
2K/m 2 if m =z 2

0
and

(4.6.3) <P,PO> p= Oto
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holds for all oriented tangent planes P of X .

Suppose also that the metric

(x) =F () F 5(x) (x e ®Y)

X X

Ya8 B

of ® is uniformly equivalent to the Euclidean metric in the sense of (4.6.1).

. . , +
Then, x is an affine linear subspace of wrP

The conditions (4.6.2) and (4.6.3) guarantee that the image of the Gauss
map of X 1is contained in a ball in G(n,p) which satisfies the assumptions

of Thm. 4.6.1, cf. [HIW].

If p=1, then m=kKk =1 in (4.6.2), and hence Thm. 4.6.3 implies

Moser's weak Bernstein theorem:

An entire solution of the minimal surface eguation

div{—~——z£————- =0

/1 o+ |ve|?

with sup|VE| < o is linear.

- Note that in the strong Bernstein theorem the assumption sup |Vf| < @
is not necessary. On the other hand, this stronger version is only true for

n £ 7 , whereas Thm. 4.6.3 requires no restriction on the dimension.

The results of Thm. 4.6.3 seem to be also interesting, although probably

not optimal, in codimension p 2z 2 .

4.7 ESTIMATES AT THE BOUNDARY

In this section, we want to prove a-priori estimates at the boundary for

weak solutions whose image is contained in a convex ball.
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The following result can be found, e.g., in [GH].

THEOREM 4.7.1 Suppose wu : Q > B(p,M) <s harmonic, where B(p,M) again is a
ball with M < g% and disjoint to the cut locus of p . Suppose 9 is of
class c2 ., and k| = 2 for the sectional curvature of . If g = u|dn
18 continuous, then for every € > 0 we can find some & > 0 , depending on

W, K, M, A, i), dim Q , 3Q , the modulus of continuity of g , and on

€ , for which
(4.7.1) d(uly), u(xo)) <€ for v e 2 n B(xo,3) .
If g 4s Holder continuous with some exponent B , then

(4.7.2) ataly), ulxy)) < cdly - x for y e @ n B(x,,98)

o
ol
where o and Cy depend on w , K , M, B, A, i(Q) , 9Q , dim Q, and

lal 4 -
CB
Proof wW.l.o.g. n 2 3 . We need some definitions:
D(XO,R) = 000 B(x/R) .

If X, € of) , let ¢ : [0,1] * B(p,M) be the geodesic with ¢c(0) =p ,

c(l) = g(xo) , parametrized proportionally to arc length, and

pt := c(t) ,
v, = & (u(x),p,)
£ P -
Furthermore, let wt R be the solution of
7
A =
wt,R 0 on D(xO,R)

wt,RiaD(xO,R) = vt|3D(xO,R) .

As in the proof of Lemma 2.1.3 we derive for vy € D(xo,§3 ’
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. |R ki .
p < mln[;, BV :L(Q)]
(4.7.3) 7’"%7—— f Avt[ 1 5 - 12}dz < W, R(y) - vt(y)
-2)W n- n-
o n ‘D(y,p) d(y,z) o) !
A2 lwt,R - vi
* 2w n-2 dz
n ‘D(y,p) dl(y.,z)
using the fact that the boundary term on 3 vanishes by definition of LA
1
From the definition of vt and wt R’ we have
2 2 2
(4.7.4) vt(y) = d (u(y),pt) < (1+t) M
and
(4.7.5) (x) = v _(x) = d°(g(x),p,) < (1-t)2u?
-l Ye,R %0 e %o’ T @ 9B = :
We now want to exploit that the boundary values of W, p On R N D(XO,R)
’
are given by dz(g(x)ypt) , i.e. controlled by assumption. Namely, given

€' >0 and R > 0, R < Ro , there exists some number ¥ = r(e',R) (depending
. . 2
oneg' , R, M, 3 , and the modulus of continuity of d (g(x),pt) and

N D(xO,RO) with the property that

(4.7.6) wt,R(y) < wt'R(xO) + 5

for all vy e D(xo,r) . This is a result from potential theory (and can be
found, e.g., in [GT], Thm. 8.27).
If dz(g(x),pt) is Holder continuous, we even have

- 20
(4.7.7) wt,R(y) < wt,R(XO) + c|y - xol for y € D(Ao,r) B

where o , ¢ depend w , K , M, B, 30, and |g| g -
c

We now want to apply an iteration procedure, and put

- T
® S T Lo

e = min(M(1- (1-D)%),¢e)
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and tu := 1 , where U 1is the smallest integer with 1.11-: > 1 . Furthermore,

we start with some radius RO < 1 and define

. i-1 . .
Ri = min|—5=, r{€ 'Ri-l)} (1= 1,...,4) ,

where r is the same ¥ as in (4.7.6).

Then, with

1
m, := max v, ) )z,
xeD(xg R, _,) i

by Lemma 2.1.1, (1.7.2), (4.7.3), (4.7.6) for vy e D(xO,Ri) ;DL

. 2 1 1
(4.7.8)  2Kkm, ctg(km,) ( ) | dul [ prRT= ”EZEJ v, ()
D (eri_l

(v) + c._ R: < (1—ti)2M2 + e <M

Ve, R, 26 "0
1 1

. 4 <
choosing R0 so small that 026 Ro =5

and if mi < w/2k , then by (4.7.8)

- m
(v )%S(vt)%“‘tMSz—Kr
i+l i
i.e. . < mM/2K .
ice. mg o /
Therefore, by induction,

o o< -
w2k’

and again from (4.7.8) and (4.7.6)

2
<
vl(y) < Wl'RU(Y) + Cye Ry S Wy

for all vy € D(XO'RU) .
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This gives the desired estimate of the modulus of continuity at the

boundary, putting § = R]J .

In case the boundary data are Holder continuous, we use (4.7.7) to get

dluly) yulxy)) < (Vl(y))%icly - x0|°‘ .

qg.e.d.

1

4.8 C -ESTIMATES

Having established H3lder continuity of weakly harmonic maps in Thms.
4.5.1 and 4.7.1, it is well known that these maps are actually of class Cl
(and hence of class Cz'u). Proofs of this assertion can be found in [LU] and
[G], and more specifically for harmonic maps in [GH] and [Sp]. Instead of
repeating those proofs, we contend ourselves to derive a-priori estimates for
the éradient of harmonic maps (i.e. already assuming that the map is regular)

which can be obtained in a very easy way following [JK1].

THECREM 4.8.1 Let % and Y be Riemannian manifolds, B(xO,RO) c X,

< minls ™ 2 2
R, mln(l(xo), 2Kx , where w, = KX S K, are curvature bounds on

A il 2 2
B(xO,RO) , and B(p/M) ¢ ¥ , M < min (1(p), %;] , where —wY < KY < KY are
curvature bounds on B(p,M) . If u : X > B(p,M) <s harmonie, then for all

<
R = RO
d(u(x), u(xo))
(4.8.1) |[Vu(z )| € ¢ o+ max ~————2—
0 6] R
2eB{x_,R}
6]

where c = cO(RO,wx,KX,dim X, M, W sy dim Y). .

Proof The proof is based on an idea of E. Heinz [Hzl] and similar to the one

of Lemma 2.8.3. Let dim X =n, dim ¥ = N . We define

U= max (RO - d(x,xo)) Idu(x)| .
xeB(xO,RO)



) s e B (g R
Then there exists xl € (xo, O)

M (R

8]
and
(4.8.2)
Werput

da
We shall prove

6(60)

(4.8.3) u < ——2"—6'-'
where 60
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Swith

- Alx, %)) [dulx)) |

il
Idu(x )] < =
= RO - d(xl,xo) .
+ b 2 for all ©6 < ©

0

can be chosen sgo small (with the help of Thm. 4.5.1) that

§(8,)*b < 1 .

Then (4.8.1) follows as in the proof of Lemma 2.8. 3.

_We now use the functions Xk of Lemma 2.8.4 for g = u(xl) . Then
(4.8.4) BoJaue) | = Jakow (x)] .
d 1 ) 1
Moreover
(4.8.5) )Dzk],? c, ot where ¢, = c (W_,M,N) (cf. (2.8.33)
.8. < ey to‘r 1 1 (@gaM, . (2.8.3

and hence
(4.8.6) [A(koun) | < — | au| (cf. (1.7.2) .

0
Furthermore, dk is an 'isometry at u(xl) , and hence from (4.8.5)
(4.8.7) |ax(y)| = c, c, = Cy (W MIN, K ) (cf. Lemma 2.8.4) .
We put

§i= 8(0) := vt max - d(u(x), ulxy) ).
1
xeB(xl,dG)

By Thm. 4.5.1, &

small.

can be made arbitrarily small by choosing ©

sufficiently

At the moment, we need only
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8

IN

M.
By Lemma 2.7.5, putting Ax = max(wX,KX)
C3 J

ae” d(x,x,)=a0

t e, j _laken] o

d(x,xl)sdﬁ d(x,xl)n_l

(4.8.8) §~= [dkpu(xl)l < |k (u(x)) - k(u(xl))l

k() = k(uex)) |

A2 {
5 X d(x,xl)sde d(x,xl)n"l

By (4.8.7), [k(u(x)) - k(u(x))| £c,6 , and by (4.8.6),

c c 2
lA(kOU)] St—l"ldulz SE'];—Z—-‘E—'-—-E
0 0 d (1-0)

°

Estimating the integrals, we also get volume factors

sinh(AXdG) n-1
Axde

which will be included in the constants (ci - ci, i = 3,4,5) . Hence

2
clc.§ crc oo
4. -
% < %ig + L 3 0 + céAiczﬁ'de vol (s" l) ’
. tod(l-e)

or, assuming 0 <% w.l.o.g.,

§(8,)
0
T

b 2
—_ <
+ 5 M for all 0 < 60 ’

i.e. (4.8.3). By definition of §(6) and Thm. 4.5.1, 6(60) can be made
arbitrarily small by choocsing eO sufficiently small, and the result follows
as in the procof of Lemma 2.8.3.

g.e.d.
At the boundary, we have

THEOREM 4.8.2 Let Q be a bounded domain in some Riemannian manifold, 39
of class c2 » and let u : Q> B(p,M) be harmonic, where B(p,m) satisfies
the same assumptions as in Thm. 4.8.1. Suppose uldQ = ¢ e 2. Then

lul . _  can be bounded in terms of the geometric quantities of Thm. 4.8.1,
i) !
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bounds for the principal curvatures of 990 , |d| 52 and a lower bound for a
C
number T satisfying 0 < T < -2—2—-— - 8, Blp,M+1) disjoint to the cut locus
Y

of p.

Proof The proof is again taken from [JK1] and refines an argument of [HKW1].

Let d(xO,BQ) =R . By Thm. 4.8.1, it suffices to show

0
max du(x), u{x)) < crR_ .
xe€B(x ,R ) 0 0
0’70

This in turn follows, if

<
(4.8.9) d(u(xz), u(xl)) < cRO
. N = <
in case x € o, d(xo,xl) RO , d(xo,xz) < RO .

We choose some number T > 0 as described in the statement of the

theorem; w.l.0.9g.

(4.8.10) T <

By Lemma 2.4.1, any two points in B{p,M+T) can be joined by a unique

geodesic arc inside B(p,M+T) .

By Thm. 4.7.1, we can calculate Rl > 0 with the property that for all

< R x €
RG 1 and x € n B(xo,zRO) ’ Xl as above

(4.8.11) dlu(x), ulx)) < -;— )

If u(x) # u(xl) , we connect u(x) to u(xl) by a geodesic arc and continue
this arc beyond u(xl) until a distance T . We thus reach some point

g{x) € B(p,M+T) .
By Thm. 4.7.1 again, we can find some subdomain QO < 0 satisfying

(4.8.12) 7 B(xO,RO) c QO
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(4.8.13) Qn B(xl,5) c QO for some § > 0

(4.8.14) u(@) < B[q(x), EZ—J for all x € B(x,,R)) (cf. (4.8.10))
2

(4.8.15) M et .

We then fix =x. € B(xo,RO) , assume u(xl)# u(xz) w.l.0.9., and put

2
q = q(xz) .

By (4.8.14)

2
vix) = d (u{x),q)
is subharmonic in QO .

Let h be the harmonic function on QO with the same boundary values,

i.e.
Ah = 0 in QO
(4.8.16)
hix) = dz(u(x),q) for x € BQO .

By the maximum principle
(4.8.17) v < h in QO .
Now

dluley), ulx,)) = dlulx,),@ - dlalx),q) by choice of q

1 2 2
5T (d (u(xz),q) - d (U(xl},q))

A

N

1
o7 (h(xz) - h(xl)) by (4.8.16) and (4.8.17) .

Thus, (4.8.9) follows from a Lipschitz bound for the harmonic function h at

the boundary, which in turn follows from standard barrier arguments, taking

(4.8.12), (4.8.13), and (4.8.15) into account, cf. [GT], chapter 13.

g.e.d.

Different gradient estimates were provided by Giaquinta-Hildebrandt [GH],
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Sperner [Spl, and Choi [Ci] (only interior estimates). The latter two papers

employ an auxiliafy function introduced by Jiger-Kaul [J&K2], cf. 4.11.

4,9 HIGHER ESTIMATES

If we write the equations

. 3.
_§_/~ sasu1]+ocsr 3u‘6
ox

1
vy Ox J 3k 9% BXB

in terms of harmonic coordinates on domain and image, then the regularity
properties of harmonic coordinates (cf. section 2.8) immediately imply Cz'a-
estimates for harmonic maps, again depending only on curvature bounds,
injectivity radii, and dimensions, using standard results from potential

theory. We have the following result of [JK1].

THEOREM 4.9.1 Suppose that the assumptions of Thm. 4.8.1 hold and T is
R

«Eq ig bounded

X o+
chosen as in Thm. 4.8.2. Then the c* ®_norm of u on B[xo, >

in terms only of the quantities appearing in.Thm. 4.8.1 and T . A
corresponding result holds at the boundary, provided 0 and ul3Q are of

class c2+a (for all o e (0,1) ). Similarly if u|dQ <e only of class

140 140

¢, then wec () with appropriate estimates.

Finally, Thm. 2.8.3 implies

THEOREM 4.9.2 If under the assumptions of Thm. 4.9.1 the Riemann curvature

. . +
tensors of domain and image are of class ck or Ck 8 (ke ™M, Be (0,1) J,

, + 3+ .
then u is of class 2o K3 B s resp., and the corrvesponding

estimates depend in addition on the & or Ck+8-n0rm, resp., of the
eurvature tensors., A similar statement holds at the boundary, provided 3%

and u|3Q are sufficiently regular.
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4.10 THE EXISTENCE THEOREM OF HILDEBRANDT-KAUL-WIDMAN

In this section, we shall establish the existence of a weakly harmonic map
with given boundary data contained in a convex ball which admit an extension
with finite energy. This map will be obtained as the minimum of energy among
maps with image in this ball. The results of the preceding sections then

imply regularity of this map, and hence we can solve the Dirichlet problem.

A useful tool will be the following maximum principle for energy
minimizing maps which is taken from [J6] and based on the same idea as the one

in [H1], Lemma 6.

LEMMA 4.10.1 Suppose that B, and B, » By < B , are closed subsets of a

Riemannian manifold N . Suppose that there exists a projection map

mTs: B, *B
OI

which is the identity on B, and which is of class el and distance

decreasing outside B, > T.e.

|dﬂ(v)[ < ‘vl if vetTN, v#O0, X € Bl\BO .

If h: Q- By 18 an energy minimizing W; mapping with respect to fixed

boundary values which are contained in B, » Z.e.

(4.10.1) h(oQ) < BO '

then we also have
n(f) < BO ’
1f we choose a suitable representation of the Sobolev mapping h .
Proof since !dﬂ(v)| < ]v] for every nonzero Vv € TXN ;) X € Bl\BO , and

since Teh € W;(Q,N) ;, we would have
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E(m°h) < E(h) ,

contradicting the minimality of h , unless dh = 0 a.e. on h"l(Bl\BO) .
Thus dh = dneh a.e. on § , and since h and Toh agree on R by
(4.10.1), we conclude from the Poincaré inequality that meh = h a.e. on Q ,

which easily implies the claim.

LEMMA 4.10.2 Suppose that B, and B, , By < By , are compact subsets of a
Riemannian manifold N , and that every point in Bl\Bo can be joined to BBO
by a unique geodesic normal to SBO s and that the distance between every pair
of such geodesics normal to BBO 18 in Bl\BO always bigger than on SBO .

Then the same conclusion as in Lemma 4.10.1 holds.

Proof we project Bl\BO along normal geodesics onto BBO and apply Lemma
4.10.1.

g.e.d.
We shall see another useful consequence of Lemma 4.10.1 in chapter 5.
We are now ready to prove the existence of a weakly harmonic map.

LEMMA 4.10.3 Suppose B(p,M) <s disjoint to the cut locus of p , and

i ,
M < o= where, as usual, K2 is an upper curvature bound.

If g:9 > B(p,M) , Q being a bounded domain in some Riemannian manifold,

has finite energy, then there exists a weakly harmonic map u : § - B(p,M)

with u-g € ﬁ;(Q,B(p.M)) . u minimizes the energy among all such maps.
Proof since the cut locus of a point p is a closed set, we can find Ml .
il
M < Ml < P for which B(p,Ml) is still disjoint to the cut locus of p .
1 1
We take a minimizing sequence for the energy in V := {v e HZ(Q,B(p,M ))

v-g € %;} . Note that g ¢ V and hence V # 0 . Such:a Sequence has a

subsequence converging weakly in Hl , and the limit, denoted by u ,

2
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minimizes energy in V because of the lower semicontinuity of the energy

integral (cf. Lemma 1.3.1).

o= B(®M and B = B(p,MY) . If c(,t) is a smooth

family of geodesics with c¢(0,t) = p , c(l,t) € BB(p,Ml) , then (2.2.5)

We then put B

. . 39 .
implies that the Jacobi fields Jt(s) = gz-c(s,t) are monotonically
increasing for s € [0,1] . Hence the assumptions of Lemma 4.10.2 are

satisfied. Therefore, u() < B(p,M) .

. . . . . . N .
We identify B(p,Ml) with its image in IR under normal coordinates

1

5 n Lm(Q,DQS , we infer that for sufficiently small

centred at p . If n e ﬁ
|t| >0 , u+ tn still maps §! into B(p,Ml) . Hence u + tn is a valid
comparison map, and since u was minimizing, differentiating E(u + tn)
w.r.t. t at t =0 implies (4.1.2), i.e. that u is weakly harmonic.
d.e.d.

Remark As easy examples show the map u constructed in Lemma 4.10.3 need not

R . 1 .
be minimizing among all maps v : £ > Y with v-g € f (Y is a target

2
manifold containing B(p,M) ) , not even among maps which are homotopic to u.

Hence, u in general is only a local minimum of energy.

. Lemma 4.10.3 together with the regularity results of the previous

sections imply the existence theorem of Hildebrandt-Kaul-Widman [HKW3].

THEQREM 4.10.1 Suppose again that B(p,M) <is disjoint to the cut locus of p

and M < » where 2 is an upper bound for the sectional curvature of

I
2K
B(p,M) . If Q <s a bounded domain in some Riemannian manifold and
g : 2~ B(p,M) has finite energy, then there exists a harmonic map

we 2 QBMEM) (0<a<1l) with ug e ;I;'(Q,B(p,M)) . At 0, u is as

regular as g and Q0 permit.

Actually, one can solve the Dirichlet problem for any continuous map
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w: 32 > B(p,M) , i.e. find a harmonic map u ¢ c2'%(2,B(p,M)) n cO (@B (p,M))
with u|dQ = w , without assuming that w admits an extension of finite
energy. In orxder to achieve this, one has to combine the a-priori estimates
of the preceding sections with Leray-Schauder degree theory instead of using
variational methods. For this, one first deforms w into constant boundary
values, mapping of) onto p and then multiplies the nonlinearity in (1.3.1)
by a parameter A , A ¢ [0,1]. Such a twofold deformation process was

applied in [HKW2], for instance.

4,17 THE UNIQUENESS THEOREM OF JAGER-KAUL

In this section, we want to prove the uniqueness and stability theorem of
Jager-Kaul [J&K2] for solutions of the Dirichlet problem with image contained

in a convex ball.

THEOREM 4.11.7 Suppose that wu, : Q+v, i=1,2, are harmonic maps of
class cO(Q,Y) n CZ(Q,Y) , Q 1s a bounded dqmain in some Riemannian manifold,
and ui(ﬁ) c B(p,M) , where B(p,M) s a geodesic ball in Y , disjoint to
the cut locus of p and with radius M < L (? s upper bound for the

2K
sectional curvature of B(p,M) ).

Then the function 6 ,

qK(d(ul(X),uz(x))

0G) 2= cos(Kd(p,ul(x)))'cos(Kd(p,uz(x)))
1 .
) (1 - cos kt) , if kK>0
(g (8) =1,
t ) _
-5- y if kK=0) ,
satisfies the maximum principle
(4.11.1) sup O < sup 6 .

Q2 o0
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In particular, if ul]BQ = u2|BQ , then

ul:uz.

The proof of Thm. 4.11.1 will actually show that we have strict
inequality in (4.11.1) unless 0 = const. Furthermore, Thm. 4.11.1 also holds

for weakly harmonic maps (cf. [J&K1]).

Proof we assume that 6 has a positive maximum at some interior point

x € . Then, 0 is positive in a neighbourhood of x_. , and log 8 > -®

0 0

in this neighbourhood.

We define

iz (1 - cos kd(u, (x) ,u, (x))) if k>0
Y(x) := QK(ul(x).uz(x)) ={"
1 .2 . -
[5 d (ul(X),u2 (%)) if K=0
d)i(X) = cos(kd(p,u; (x))) i=1,2.

Then 0 = 6—%%;—, and consequently
1 "2
grad ¢l grad ¢2

(4.11.2) grad log O = grad § _ - B
v 3 X

and

2 2
1 2 iy 5 3 5 .
v 1 ¢ 5 o

(4.11.3) Alog®

it

Since x * u(x) (ul(x),uz(x)) € B(p,M) X B(p,M) 1is also harmonic, we can

make use of the chain rule (1.7.2) in order to apply Lemma 2.5.1. This yields

2
(4.11.4) N J—g%%ﬂ—- »<21p(|dull2 + lduzlz) ,
since

lgrad 9] = = <(grad g ou, aule)>’
[¢3

where ey is an orthonormal frame on £ .
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Similarly, from (2.5.2), since

9, () = 1 - K°Q (B, ()

we obtain
2 2
(4.11.5) A9, (x) < -k ¢i|duil .

Finally, by (4.11.2),

2 2
| grad wiz 1grad ¢l| lgrad ¢2l
+ +

2 2 2

> - <grad log 0, ¥ grad log © +

(4.11.6) =%

grad ¢ grad ¢
1 . 3 2> .
¢1 2

Putting
grad ¢l grad ¢2

+
¢1 ¢2

k(x) := % grad log O +
and plugging (4.11.4), (4.11.5), and (4.11.6) into (4.11.3), we obtain
A log 0 + <grad log 9, k(x)> = 0 .

Therefore, the assumption that © has a positive maximum in the interior

contradicts E. Hopf's maximum principle, and Thm. 4.11.1 is proved.



