
CHAPTER 4 

REGULARITY OF WEAKLY HARMONIC MAPS 

Regularity, existence, and uniqueness of solutions of the 

Dirichlet problem, if the image is contained in a convex ball 

4.1 THE CONCEPT OF WEAK SOLUTIONS 

We first want to discuss the concept of stationary points of the energy 

integral or of weak solutions of the corresponding Euler-Lagrange equations. 

In ·the present chapter, the image Y will always be covered by a single 

coordinate chart so that we can define the Sobolev space 

unambiguously with the help of this chart, without having to use t.he Nash 

embedding theorem as in L 3. 

:J will be an open bounded set in some Riemannian manifold with boundary 

():J . 

In the sequel, we shall use some of the no·tations of [EL4] . 

If u E: W~ (:J, Y) , then du is an almos·t everywhere on :J defined 1-form 

with values in u-l TY . The energy of u is 

where ·the scalar product is taken in T*fJ ® u -l TY . 

We let ¢ E C0 (i1,u 
-1 

TY) be a section along u which vanishes on (l:J 

This means cp (x) E T y 
u(x) 

1\Je want ·to construct a variation of u with 

tangent field ¢ 

Since we assume that Y is covered by a single coordinate chart, we can 

simply represent everything in those coordinates and denote the 

representations in ·these coordinates by and define 
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lit (x) u (x) + t'¢ {x) 

These coordinates also identify each tangent space T Y with 
u 

(n = dim Y) Hence ¢ is a map from D into nf. This allows us to 

define d¢ and hence via this identification also d¢ (Note that it is 

not obvious how to define d¢ intrinsically, since ¢(x) E Tu(x)Y , and as 

u is not necessarily continuous, the base poin·t of ¢ may vary in a 

noncontinuous way.) We then suppose that 

(4.1.1) J <ct¢,d¢> < co 
:;-;: 

a.11d show that the Euler-Lagrange equations, if u is a critical point of E , 

0 Wl oo ,--, n 
for 1/J E 2 n L (.,, JR l 

(1/J I <Hl=O) 
are equivalent to 

(4.1. 3) I <du,d¢> 0 for all bounded ¢ satisfying (4.1.1) and ¢!3D= 0 . 

Proof Let 

Then d¢ \! ( ¢i d:i} dx 
C( Cl¢i d ¢i r~. 

Cluj d 
d 

=----.+ ----
Clxa Clu~ ~J Clx 

a 
au 

k 

Clx 
a 

Hence 

(4.1.4) 

On the other hand, we choose 1/Ji gij ¢j as a test vector in (4.1.2). Then 

the integrand of ( 4 .1. 2) becomes 

\vhich after changing some indices, is the same as ( 4. 1. 4) . 

q.e.d. 
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Remark If one wants to define d¢ also if the image is not necessarily 

contained in a single coordinate chart, one can use the Nash embedding 

theorem as in section 1. 3. 

In the following sections, we want to provide conditions which ensure 

that a weak solution 
1 00 

u E H2 n L of (4.1.2) or (4.1.3) is continuous (which 

then in turn will also imply higher regularity of u ). 

We have already seen in l. 4 that for n ?. 3 is a 

discontinuous weak solution. One might think that the discontinuity in this 

case is caused by the global topology of the image. We can however take the 

totally geodesic embedding i 
n-1 s onto the equator 

of 
n s . By Lemma L 7. 2 , i 

X 

I xi 
-then is harmonic for X "} 0 and hence 

weakly harmonic by the argcunent of 1. 4. The image of i & ~ , howe·ver, is 
I xi 

con-tained in a closed hemisphere, so ·that there is no longer a topological 

obstruction to regulari-ty, and t:he discontinuity has to be caused by the 

geometry of the image. 

As pointed out, in this case the image is con-tained in a geodesic ball of 

radius 1T 

2 
in In the following sections, we shall see that the radius 

1T 
is precisely the limiting case for regularity, i.e. that any weakly 

2 

harmonic map with image contained in a geodesic ball of radius < .'1:: 
2 

actually 

is regular. (We shall of course consider more general image manifolds than 

only spheres.) 

Finally, we remark that in many cases i e ~ even minimizes energy 
I xi 

w.r.t. its boundary values, as was demonstrated by Jager-Kaul [JaK3] and 

Baldes [Ba] . 

In the following sections, we assume w.l.o.g. tha-t the dimension n of 

the domain S1 is at least 3, because otherwise we can simply look at the map 
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U. S] x s1 + y , u(x,t) = u(x) which satisfies the same assumptions as u • 

4.2 A LEMMA OF GIAQUINTA-GIUSTI-HILDEBRANDT 

The following lemma is due to Giaquinta-Hildebrandt [GH]. 

LEMMA 4.2.1 Suppose u' S] + Y is weakZy harmonic, f Y +IRis strictZy 

(4.2.1) 

Fur.>thermore, for any E > 0 and R > 0 we can caZcuZate 
0 

independent of x0 and u with the property that for some R , R1 :,; R:,; R0 

2-n I j 12 (4.2.2) R du :,; E • 

B(x0 ,R) 

c 1 and R1 depend on the supremum of f and on a Zower bound .\ > 0 for 

the eigenvaZues of its Hessian and on the geometry of S] (cur.>vatur.>e bounds, 

injectivity radius, dimension). 

Proof One idea is taken from [JKl], p.ll, the other from [GGl], p. 

We put h = fou. By (1.7.2) 

(4.2. 3) 

Let r(x) = d(x,x0 ) and gp(x) = min{r(x) 2-n- p2-n (%) 2-n- p2-n} on 

B(x0 ,p) Then 

:,; I gp(x) 6h(x) 
B(x0 ,p) 

by (4. 2. 3) 

-I <grad gp' grad h> 
B(x0 ,p)\B(x0 ,p/2) 

f h 6gp - f h <grad 
. B(x0 ,p)\B(x0 ,p/2) · 3(B(x0 ,p)\B(x0 ,p;2)) 

:,; c2p2 + n-2 f h - n-2 f h 
Pn-l 3B(x0 ,p) (P/2)n-l 3B(x0 ,P/2) 
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by Lemma 2.7.1, if p satisfies the assumptions of this lemma. 

Now on 

Since 22-n ( (~) 2-n _ l) 2-n 
r 

2-n 2-n 
r - (2r) , from (4.2.5), defining 

9 i = g -i+l 
R0 ·2 

JB(x0 ,R0 l 

2-n 2 
r(x) lduJ 

where en depends only on n . 

(4.2.4) then implies 

2 2c2 2 c 
I du I ::: -,- en RO + -T- ~ 

A A i=O 

{ (Ro·2-i+l)l-n f h (R. ·2-i)l-n J . h~ 
()B(x0 ,R0 ·2-i+ll- 0 (lB(x0 ,R0 ·2-J.) J 

=: c 3 R~ + c 4 ~ 
i=O 

Hence 

(4.2.7) 
2 

Ro + c 4 ]Jo • 

This implies (4.2.1), noting that 

We first choose so large that 

]J ::; 
0 

can find j , i 0 s j s m + i 0 , with 

sup 
u(m 

f • vol ()B 

1 1 2 
fl.- ll '+1 :::- J.l. :::- (J..lo+c6RO) 

J J m lo m 

For every m E JN , we 

(for the last inequality, note that h is subharmonic and see the proof of 

(2.7.5)). 
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Hence choosing 

(4. 2. 2) follows. 

q.e.d. 

4.3 CHOICE OF A TEST FUNCTION 

Suppose B(x0 ,2R) c ~ for some R > 0 . Let n E Lip(B(x0 ,2R)) be the 

s·tandard localizer, i.e. n = 1 on [vn I c 
:<; R ' supp n cc B(xo,2R) 

Suppose there e~'is·ts a strictly convex func·tion on u(B(x0 ,2R)) , i.e. the 

assumptions of Lemma 4. 2.1 are satisfied. 

Suppose f is a c2 -function on u(B(x0 ,2R)) , and g is a Lipschitz 

function on B (x0 ,2R) , so we can choose llf•n•g as a test vector ¢ in 

(4.1.3). 

If e is an orthonormal frame on ~ , wa the dual co frame, ·then 
a 
a 

du U UJ 
e 

ex 

(4. 3.1) 

Now 

<d ('ilfl, u 

0 

e 
a 

and (4.1.3) yields 

wa> -
T*~@u- 1TY 

u 
e a 

<d (V f) e , u > -l'l'Y a e u 
a 

-1 

<v~ TY Vf' ue > u -lTY 
a a 

where D2 f is the Hessiru' of f 

Hence from (4.3.1) 

f(u) 
e a 

by definition of d 



(4.3.2) I 
B(x0 ,2R) 
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-I ng D2f(du,du) -I 
B(x0 ,2R) B(x0 ,2R) 

+ f f(u) g n 
B(x0 ,2R) ea ea 

Remark If one is not familiar with the notation employed in the derivation of 

(4.3.2), one can alternatively insert the test vector 1jJ given by 

i of 
1jJ = n•g ---. in (4.1.2) and carry out the calculations in local coordinates. 

au~ 

For y E B(x0 ,R/2) , x E B(x01 2R) 1 we now put 

g(x) 
\) 

g (xly) 
2-n min(d(x,y) 1 V) for v E lN • 

2-n 
d(x,y) < v} , (4.3.2) yields 

(4.3.3) f g\)(•,y)e <n f(u))e =-I ng\)(•ly) o2f(du,du) 
D(x01 V 1R) a a B(x01 2R) 

-I g\)(·~y>ne f(u) +I f(u) g\)(·,y)e ne 
. B(x0 ,2R) a ea D(x01V 1 R) a a 

We write (4.3.3) as 

Then with D' (x01 V,R) 2-n {x E B(x0 12R) : d(x1y) ~ v} 

(4.3.4) I = I t.(d(• ly) 2-nlnf(u)- f nf(u) <grad g(• ,y), dO> I 

v D(x0 ,v,R) CJD' (x0 ,V,R) 

since n has compact support in B(x0 12R) 

By (2.1.4) 1 for sufficiently small R (depending on the injectivity 

radius and an upper curvature bound on n ) 

(4.3.5) f Ll(d(• 1 y) 2-n) nf(u) $ c7R2 < E , 
D(x0 ,V,R) 

if R $ R1 (E) , 

where c 7 depends on n dim n , a curvature bound on n , and on :sup f • 

If we choose for fou its Lebes~~e representative, then we can find a 
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slilisequence of the v' s for which 

(4.3.6) lim f nf{u) 

v->= ()D' (x0 , v, R) 

+ 
<grad g(•,y), dO> -(n-2)wn f(u(y)) 

(note tha'c n (y) 1 , since y E B(x0 ,R/2)) • 

Furthermore 

{4. 3. 7) 

where 

Since y E B(x0 ,R/2) , we infer from Lemma 4.2.1 

( , I \) 2. 4.3.8 ng (•,y) D f(du,du) < E(n-2)Wn 
T(x0 ,R) 

for prescribed E > 0 and some R , R2 (E) ~ R ~ Rl (E) , vvhere 

R., = R2 (E) > 0 can be calculated explicitly in terms of E It depends on 
.!. 

the Hessian of f r but is independent of \) aDd y and u 

[du[ ~ c: <f g\J(•,y))~ 
T(x0 ,R) 

(4. 3.9) 

cf g\) (• ,y) [du[ 2 l ~ ~ (n-2)WnE I 

T(x0 ,R) 

again for some suitable R which we can choose to be the same one as in 

(4.3.8). Here, the quantities depend on [vf[ . 

In order to estimate IV\!, let be the mean value of u on 

uR can be defined •rith the help of our coordinates. We write 

u . 

We now write f (u) 

Lcx0 ,R) 

f(uR) + (f(u) - f(uR)) Similar as in (4.3.5) and 
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(4.3.6), we obtain 

(4. 3.10) 

+ J 
T(x0 ,R) 

Furthermore 

by ·the Poincare inequality, where and are independent of R . 

Combined with (4. 3.10), 1:he preceding inequality yields 

~ (n-2)W f(u ) + S(n-2)W 
n R n 

(w.l.o.g. we can assume that (4.3.11) again is satisfied fo:r the same R as 

in (4.3.8) and (4.3.9)). 

From (4.3.3)·-(4.3.11), we obtain for y E B(x0 ,R/2) , using Lebesgue's 

'I'heorem on dominated convergence 

(4.3.12) f(u(y)) 2-n ? d(',y) D~f(du,du) 

for some R :?: R3 (S) where R3 (€) > 0 is independen·t of u and x 0 . 

4.4 AN ITERATION ARGUMENT. CONTINUITY OF WEAK SOLUTIONS 

In this section, we want to use an iteration argument based on (4.3.12) 
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to prove continuity of a weakly harmonic map with image in a convex ball. 

'I'his resul·t appeared explicitly for the first time in [HJW], but the method of 

proof in a somewhat differen·t setting was already developed in [HW2]. The 

present proof (4.2-4.4) uses ideas of Wiegner, Hildebrandt, Widman, Kaul, 

,Jost, Giaquinta, and Karcher, cf. [Wi], [HW2], [HKW3], [HJW], [GH], and [JK]. 

THEOREfvl 4.4. ·1 Suppose u : :J + B (p,IYI) is weakly harmonic, that 

2 2 r 'IT J -w s K s I< are curvature bounds on B (p,M) c Y M < min 21<, i (p) , where 

i (p) is the injectiv·ity radius of p , and x 0 E :J 

Then for each T > 0 one can calculate p > 0 with 

osc U < T . 
B (x0 ,p) 

p depends only on T ,d(x0 , ():J) , curvature bounds cmd the injectiv·i'ty radius 

of :J , dim :J , dim Y , M , w , K • 

In pa:t:>ticular, u is continuous in :J • 

Proof Let 

• ( 'IT mln --
2MK 

Then ·there exists E' , 0 < E' < 1 , with 

Let 

and 

h' 'IT 

2K 

Let E in (4.3.12) be taken as 

h . (2h' K h ] mln -'IT-, 0 

l r _s"l Sh(2-h) min.E', sj 

> 0 • 
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and s be the smallest positive integer with 

The assumptions of Lemma 4. 2.1 are satisfied, because 2 r (q) 
2 

d (q,p) is 

strictly convex on B(p,M) by Lemma 2.3.2. 

We start with R0 = td(x0 , C!rl), p0 = p. On B(p,M) , we initially take 

normal coordinates centred at P = Po . They cover 

by assumption is disjoint to ·the cut locus of p . 

UR 
0 

be the mean value of u on 

taken wi·th respect ·to these coordinates: 

Let c 0 be the unique geodesic arc from p0 

point on with 

Now for q E B(p,M) 

to 

B(p,M) , since 

1T 
5 2K 

by choice of h0 . 

Hence, by Lemma 2.3.2, is convex on B {p,M) . Thus, for 

B(p,M) 

be the 

, where 2R1 

2 

is the radius of (4.3.12), (4.3.12) 

implies for f d (. 'pl) 

(4. 4.1) 2 -
5 d (uR ,p1 ) + 4S 

0 

5 (l-h0) 2 sup ct2 (u(x),p0 ) + 4s 
XEB(x0 ,2R0 ) 

by choice of p1 • 



101 

Let j E JN • 

Suppose now that we have found points pi E B(p,M) 

i ~j-1 with the property that for y E B(x0 ,Ri) 

(4.4.2) 2 
d (u(y) ,pi) ~ (l-hol2 M2 + €' 

and 

and radii R. for 
~ 

(4.4. 3) 2 
(l-h) 2 2 d (u(y) ,pi) ~ sup d (u(x) ,pi-l) + 4€ 

B (x0 ,2Ri_1) 

We then want to prove (4.4.2) and (4.4.3) for i j and suitably chosen p. 
J 

and R. 
J 

First of all, by (4.4.2) 

h' 

If we choose normal coordinates on B(p,M) 

possible by Prop. 2.4.1, and take UR 
j-1 

for 

centred at which is 

as being the mean value of u 

T(x0 ,Rj-l) with respect to these coordinates, then again by Prop. 2.4.1, 

there is a unique geodesic arc in B(p,M) from to 

We choose as that point on with 

d(u(y),pJ.) ~ d(u(y), p. 1 > + d(p.,p. 1 > 
J- J J-

~ 'IT h' + hM 
2K 

'IT 
~ 2K 

by (4.4.2) 

Hence, d2 (•,pj) is convex on u(B(x0 ,Rj_1 )) , and from (4.3.12) for 

y E B(xO,Rj) , taking 2Rj = R ~ Rj-l in (4.3.12) 

over 
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2 d (u(y),p.) ~ 
J 

2 -d (p.,uR ) + 4E 
J j-1 

2 2 -
~ (1-h) d (u ,p. 1) + 4E 

Rj-1 J-

~ (1-h) 2 

Thus (4.4.3) is also satisfied for i = j . 

Iterating (4.4.3), we obtain 

For j > 0 , 1 + (l-h)2j < __ 2_ 
2 - h(2-h) , 

1 - (1-h) 

and thus from (4.4.4) and (4.4.1) 1 since 2 d (u(x) ,p0 ) ~ 

{4.4.5) 2 (l-h) 2j (l-hol2 M2 + sup d (u(y) ,pj) ~ 

yEB(x0 ,Rj) 

M2 , 

min(s•, E~') 

In particular, (4.4.2) holds for i j Moreover, (4.4.5) implies 

u) 2 ~ 4 

and hence 

2 d (u(y),p.) 
J 

osc U < /2' < T • 

B (x0 ,Rs) 

Rs can be computed explicitly, since the radius R3 (s) in (4.3.12) can be 

computed from the geometric quantities of the statement of the theorem by 

Lemma 4.2.1. Note in particular, that the strictly convex function required 

in Lemma 4.2.1 is 2 
d (•,p) and that all choices of f in (4.3.12) are 

likewise given by squared distance functions. Hence their gradients and 

Hessians are controlled by the geometry of the image through Lemma 2.3.2. 

q.e.d. 
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4.5 HOLDER CONTINUITY OF WEAK SOLUTIONS 

~ve now wan·t to prove Holder con·tinui·ty of u . 

THEOREM 4.5. l Suppose that the ass&mptions of Thm" 4.4.1 hold. Let 

B(x1 ,2d) c rl be a baU which is disjoh1t fr-om the cut locus of its centre. 

Furthermore, suppose that -0 2 o; K o; T 2 for ·the curvature on B(x1 ,2d) and 

'l'hen fol" aU x,y E B(x1 ,dl 

d(u(x) ,u(y)) :<; c d(x,y)f3 

where f3 E (0,1) and c depend only on dim iJ, dim Y, 0, T , uJ, K, d, 

and M 

Proof By Tl::uu. 4.4.1, we can find p , 0 < p < d , wit.h 

(4 .5.1) osc u < M 

B(x,p) 

We choose an arbitrary x 0 E B (x1 , d) and R with £ . 0 < R :<; 2 , and deflne 

again T(x0 ,2r) = B(x0 ,2r) \ B(x0 ,r) and moreover 

We let. q be the point, where 

J 2 
H(q) = d (u(x),q) dx 

T(x0 ,2R) 

achieves its minimum. (That vJe can find a unique such q , follows from 

(4.5.1) and (2.3.4)). Then 

I 2 11 d (u(x),p) 
T(x0 ,2R) q 

0 

f -l 
expq u(x) 

T(x0 ,2R) 
0 • 

That means that if we choose normal coordinates centred at q and denote the 

corresponding coordinate representation by v , then 

J v(x) = 0 
T(x0 ,2R) 



104 

and hence by the Poincare inequality 

(4.5. 3) J 2 < 2 J 1Vvj2 
v - cl5 R T(x0,2R) T (x0 ,2R) 

where c 15 like the following constants c16 , •.• is independent of R. 

n from 4.3 will now be required to satisfy n = 1 on B(x0 , 5:) and 

n = o on rl\B(x0 , 7:) • 

In (4.3.3) we now take f(u) = d2 (u,q) and y = x 0 • Then from 

(4. 3. 4)- (4. 3. 6) 

(4.5.4) 2 2 lim I ~ (n-2)wn d (u(x0),p) - c16 R • 
v-700 \) 

Furthermore 

by Lemma 2.3.2 and (4.5.1) and hence 

By choice of n , the integral III\/ extends only over T(x0,2R) , and 

taking V > R2-n , noting f(u) = 2vv (f(u(x)) = v 2 (x)) , 
ea. ea. 

(4.5.6) I I 2-n 
JT(x0 ,2R) 

1Vvl2 + R-n J lvl 2 l III\/ s; c18 (R 
T(x0 ,2R) 

2-n 
J jVvl2 by (4.5.3) • s; cl9 R 
T(x0 ,2Rl 

Now 

for each o > 0 
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Using Lemma 2.7.1 and Holder's inequality, this implies 

(4. 5. 8) 

Choosing o n-2 
R in (4.5.7) and using (4.5.8) and (4.5.3), 

(4. 5. 9) 

From (4.5.3), (4.5.4), (4.5.5), (4.5.6), and (4.5.9) and letting V ->-co 

(4.5.10) J 2-n fduf2 ,; 
2-n I fdvf 2 R2 d(• ,x0 ) c24 R + c26 

B (x0 ,R) T(x0 ,2R) 

J 2-n ldul 2 R2 ,; 
c25 d(•,x0 ) + c26 

T(x0 ,2R) 

(Note that , since ·the energy is invariant under 

coordinate transformations.) 

f 2-n 1 12 Ifwenowadd c25 d(•,x0 ) 1du tobothsidesof(4.5.10), 
B(x0 ,RJ 

Le. we fill the hole (that eJcplains why this device introduced by Widman is 

called the hole filling technique), we obtain with 8 
c25 

< l 

or, using the notation <i?(R) := f· d(•,x0 ) 2-n fduf 2 + c 27 R2 

B(x0 ,R) 

with eo = max( 8,-!:) • 

LEMMA 4.5. 1 (de Giorgi) For and all r < R 

(4.5.13) 
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Proof of the lemma If 2-k-l R ~ r ~ 2-k R , 

~(r) ~ ~(2-k R) ~ 9~ ~(R) by (4. 5.12) • 

-k r 
and using 2 ~ 2 R 

which proves the lemma. 

Since 0 < eo < 1 I a > 0 , and hence Thm. 4.5.1 will follow from (4.5.13) 

in conjunction with the following well-known Dirichlet growth theorem of 

Morrey, noting that the right hand side of (4.5.13) is finite by (4.2.1) or 

by (4.5.11) 

THEOREM 4.5.2 (Morrey) satisfies 

I !Vfl2 ~ M2 pn-2+2S 
B(x1 ,d)nB(x01p) 

for all x0 E B(x1 ,d) and all p > 0 for some positive aonstants S and 

M 3 then f E c0 'S(B{x1 1d)) 3 and 

lf<x> - f(y) I ~ c M lx- YIS n 

for aU x,y E ·B (x1 ,d) 3 where c depends only on n • 
n 

For a proof, cf. e.g. [M3] • 

The preceding proof of Thm. 4.5.1 was taken from [HJW]. It uses the 

method of [HWl]. Different proofs of Thm. 4.5.1 were obtained by Eliassen 

[Es] 1 Sperner [Sp], and To.lksdorf [To]. 

4.6 APPLICATIONS TO THE BERNSTEIN PROBLEM 

Actually, the dependence on the geometry of the domain in Thm. 4.5.1 can 
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be considerably weakened. In [HJW], the following result is shmvn. 

THEOREM 4.6.1 Let again B(p,M) c Y be a geodesic ball, disjoint to the cut 

locus of p , with 

B(p,M) . 

M < J:l:._ where 
2K ' 

are curvature bounds on 

Let D ( 0, 2d) = { x E 1Rn : I xI < 2d} be a coordinate chart on the domain 

with metric tensor yaS(x) satisfying 

(4. 6.1) 

for all x E D(0,2d) and all ~ E IRn 

If u D(0,2d) + B(p,M) is harmonic, then for all x,y E D(O,d) 

d(u(x), u(y)) s c d(x,y) 8 
ds 

for some 8 E (0,1) m~d c > 0 , depending only on n , dim Y , w , K , M, 

:\ , and )1 , but not on d • 

In the proof of 'rhm. 4. 6.1, one has to use the Green flmction of the 

Laplace-Beltrami operator of the domain instead of the approximate 

fundamental sol u·tions vle use in the proof of Thms. 4. 4.1 and 4. 5. L The 

truncated functions g\!(x,y) of section 4.3 have to be replaced by 

mollifications of the Green function. The proof then yields the desired 

result because one can control the Green function only in terms of the 

ellipticity constants of the differential operator, i.e. by (4.6.1). The 

required estimates for the Green function depend on Moser's Harnack inequality 

and are carried out in [GW]. Also, Lemma 4.2.1 has to be proved in a 

different way to get the stronger estimat.e, again using Moser's Harnack 

inequality, cf. e.g. [GH]. 

Thm. 4. 6.1 has ·the following 
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COROLLARY 4.6. 1 Let the manifold X be diffeomorphic to IRn , with a metric 

tensor Yaf$ (x) (x E IRn) satisfying 

Suppose u : X+ Y -l.s harmonic a:ad u(X) c B(p,JV!) where B(p,M) again 

satisfie.s ·the asswnptions of Thln. 4. 6.1. 

Then u is constant. 

Cor. 4.6.1 in turn can be used to prove Bernstein type theorems for 

minimal submanifolds of Euclidean space, when combined with the following 

result of Ru.b and Vilms [RV]. 

THEOREM 4. 6. 2 Suppose F : M + IRn+p is of cla.ss c3 and immerses the 

n-d·imensional manifold M into Euclidean (n+p)-space. Then its Gauss map 

G : F(M) + G(n,p) into the Grassmannian manifold of n-pla:nes in (n+p)-space 

endowed tvith its s·tandard Riema:anian metric is harmonic if and only if 1><1 is 

imme1"sed with parallel mean curvature field. This in parti.cular is the case~ 

if F (M) is a min-l.mal submanifold of IRn+p 

Cor. 4.6.1 and Th.'ll. 4.6.2 yield the following Bernstein type theorem of 

[HJW]. 

THEOREM 4. 6. 3 Suppose F : IRn -+ IRn+p is a c3-immersion and x = F (IRn) 

is minimal or ha.s parallel mean curvature field. Suppose there exists a 

fixed oriented n-plane P0 , and a number a0 

(4.6.2) 

and 

(4.6. 3) 

a > 
0 

m = min(n,p) , 
if m = 1 

if m ~ 2 
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holds for all oriented tangent planes P of x . 

Suppose also that the metria 

of X is uniformly equivalent to the Euclidean metria in the sense of (4.6.1). 

Then, X is an affine linear subspace of n+p 
lR • 

The conditions (4.6.2) and (4.6.3) guarantee that the image of the Gauss 

map of X is contained in a ball in G(n,p) which satisfies the assumptions 

of Thm. 4.6.1, cf. [HJW]. 

If p = 1, then m = K = 1 in (4.6.2), and hence Thm. 4.6.3 implies 

Moser's weak Bernstein theorem: 

An entire solu·tion of the minimal surface equation 

with sup I 'lf I < "" is linear. 

Note that in the strong Bernstein theorem the assumption sup IVfl < 00 

is not necessary. On the other hand, this stronger version is only true for 

n $ 7 , whereas Thm. 4.6.3 requires no restriction on the dimension. 

The results of Thm. 4.6.3 seem to be also interesting, although probably 

not optimal, in codimension p ~ 2 • 

4.7 ESTIMATES AT THE BOUNDARY 

In this section, we want to prove a-priori estimates at the boundary for 

weak solutions whose image is contained in a convex ball. 
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The following result can be found, e.g., in [GH]. 

THEOREM 4.7.1 Suppose u: n + B(p,M) is harmonia, where B(p,M) again is a 

ball with M < 2: and disjoint to the aut loaus of p • Suppose an is of 

class c2 • and IKI ~ A2 for the sectional curvature of n. If g =ulan 

is continuous, then for every £ > 0 we aan find some 8 > 0 • depending on 

w • K • M. A. i(n) • dim n • an. the modulus of continuity of g. and on 

£ • for which 

(4.7.1) d(u(y), u(x0)) ~ £ 

If g is Holder continuous with some exponent !3 , then 

(4.7.2) 

where a and ca depend on w • K • M • !3 • A • i (n) • an • dim n I and 

Proof W.l.o.g. n ~ 3 • We need some definitions: 

If xo € an I let c : [0,1] + B(p,M) be the geodesic with c(O) = p I 

c(l) = g(x0) , parametrized proportionally to arc length, and 

pt := c(t) , 

2 
vt := d {u(x),pt) 

Furthermore, let wt,R be the solution of 

/::,w = 0 
t,R 

R 
As in the proof of Lemma 2.1.3 we derive for y € D{x0 ,2) , 
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(4. 7. 3) - vt (y) 

lwt,R - vi 
dz 

d(y,z)n-2 

using the fact ·that the boundary term on vanishes by definition of wt,R. 

From the definition of and w , we have 
t,R 

(4. 7.4) 
2 2 2 

d (u(y),pt) s (l+t) M 

and 

We now want to exploit that the boundary values of wt, R on cl!"l n D (x0 ,R) 

i.e. con·trolled by assumption. Namely, given 

s' > 0 and R > o, R s Ro , there exis·ts some number r = r(s' ,R) (depending 

()Q 
2 

on s' ' R ' M 
' 

, and the modulus of continuity of d (g(x) ,pt) and 

()Q n D(x0 ,R0 ) with the property that 

(4.7.6) 

for all y E D (x0 ,rl . This is a result from potential ·theory (and can be 

found, e.g., in [GT], Thm. 8.27). 

If 
2 

d (g(x) ,pk) is Holder continuous, we even have 
'-

(4. 7. 7) 

where a , c depend w , K , M , S , ()Q , and lgl B 
c 

We now want tc apply an iteration procedure, and put 

t := 
'IT 

2MK 
1 

s' := min(M2 (1- (1-t) 2 ),E:) 
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t. := it 
1. 

for l :,; i :,; ]J-1 

and t]J := l , where ]J is the smallest integer with ]Jt ;:: l . Furthermore, 

we s·tart with some radius R0 < 1 and define 

R. 
1. 

. [Ri-1 1 m1.n --2--, r(E',R. 1 l I 
1- ) 

where r is the same r as in (4.7.6). 

Then, with 

m. := 
1. 

max 
XED (x0 ,Ri-l) 

(i 

(4. 7.8) 2Km1. ctg ( :<:m~) J i du j 2 l( --1-- -
~ ( ) r(•)n-2 

D y,pi-1 

1' ... ']J) ' 

choosing R small tha·t 2 E' 
Furthermore, so c Ro :,; 

0 26 2 

TI 
m1 $ -

2K 

and if mi $ ·rrj2K, then by (4.7.8) 

i.e. mi+1 $ TI/2K . 

Therefore, by induc'cion, 

and again from (4.7.8) and (4.7.6) 

vl (y) 

for all 

by (4. 7.4) 

'IT 
+ tM $ 

2K 

' 
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This gives the desired estimate of the modulus of continuity at the 

boundary, putting o = R~ 

In case the boundary data are Holder continuous, we use (4.7.7) to get 

q.e.d. 

4.8 c1-ESTIMATES 

Having established Holder continuity of weakly harmonic maps in Thms. 

4.5.1 and 4.7.1, it is well known that these maps are actually of class c1 

(and hence of class c2 'a). Proofs of this assertion can be found in [LU] and 

[G], and more specifically for harmonic maps in [GH] and [Sp]. Instead of 

repeating those proofs, we contend ourselves to derive a-priori estimates for 

the gradient of harmonic maps (i.e. already assuming that the map is regular) 

which can be obtained in a very easy way following [JKl]. 

THEOREM 4.8. 1 Let X and Y be Riemannian manifolds, B(x0 ,R0 ) c X 

R0 < min ( i (x0 ), 

B(x0 ,R0 ) • and 

2;J • 
B(p,M) 

where -wx2 :5 K :5 K2 are curvature bounds on 
. X X 

c Y, M < min(i(p), 2:), where -w2 :5 K :5/ are 
. y y y y 

curvature bounds on B(p,M) • If u : X + B(p,M) is harmonia, then for all 

(4.8.1) I Vu (x0 l I :5 c0 • max 
XEB(x0 ,R) 

d(u(x), u(x0 )) 

R 

Proof The proof is based on an idea of E. Heinz [Hzl] and similar to the one 

of Lemma 2.8.3. Let dim X= n, dim Y = N We define 

~ max (R0 - d(x,x0 )) lau(x) I . 
XEB(x0 ,R0 ) 
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and 

(4.8.2) 

We put 

We shall prove 

(4.8.3) for all e :;;; eo 

where e0 can be chosen so small (with the help of Thm. 4.5.1) that 

Then (4.S.l) follows as in th'e proof of Lenuna 2.8.·3. 

We I}qW use . the. functions . ki of .Lemma 2. 8. 4 . for q = u (~1) . Then 

(4.8.4) 

Moreover 

(4.8.5) where c1 = c1 (<ily,M,N) (cf. ' (4. 8. 33) 

and hence 

(4.8.6) (cf. (1. 7.2) • 

Furthennore, dk is ap.•isometry at u(x1) , and hence from (4.8.5) 

(4.8.7) jdk(y)j :;;; c 2 , (cf. Lenuna 2.8.4) • 

We put 

'o = o(e) :=· max d(u(x), u(xin . 
XEB(x1 ,de) 

By Thm. 4.5.1, o can be made arbitrarily small by choosing 6 sufficiently 

small. At the moment, we need: only. 
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8 ~ M 

By (4.8.7), jk(u(x))- k(u(x1 ll\ ~c2 o , and by (4.8.6), 

Estima-cing the in·tegrals, we also get volume factors 

[
sinh(J\xde) ]n-1 

A de ' 
X 

which will be included in the constants 3,4,5) . Hence 

for all e ~ eo ' 

i.e. (4.8.3). By definition of o(e) and Thm. 4.5.1, o(e0 ) can be made 

arbitrarily small by choosing e0 sufficien·tly small, and the resul·t follmvs 

as in the proof of Lemma 2.8.3. 

q.e.d. 

At the boundary, we have 

THEOREM 4.8.2 Let r2 be a bounded domain in some Riemannian manifold, an 

of class c2 , and let u : n + B(p,M) be harmonic~ where B(p,m) satisfies 

the same asswnptions as in Thm. 4. 8.1. Suppose ulan = ¢ E c2 Then 

\ul can be bounded in terms of the geometric qwratities of 1~m. 4.8.1, 
Cl(Q) 



116 

bounds for the principal curvatures of ()Q , I¢ I 2 , and a l07.;Jer bound for a 
c 

number T satisfying S , B (p,H+T) disjoint to the cut locus 

of P • 

Proof The proof is again taken from [JKl] and refines an argument of [HKWl]. 

Let d(x0 ,Clrl) = R0 . By Thm. 4.8.1, it suffices to show 

max d (u (x), u (x0 )) :O cR0 • 
XEB(x0 ,R0 ) 

This in turn follows, if 

(4 .. 8.9) 

We choose some number T > 0 as described in the statement of the 

theorem; w.l.o.g. 

(4.8.10) T :0 
'IT 

By Lemma 2.4.1, a.YJ.y two points in B(p,.M+T) can be joined by a unique 

geodesic arc inside B(p,M+T) . 

By Thm. 4. 7.1, we can calculate R1 > 0 with the property that~ for all 

R0 :0 R1 and ~ E ~ n B(x0 ,2R0 ) , x1 as above 

(4.8.11) T 
:0 

2 

If u(x) 'I u(x1) , we connect u(x) to u(x1) by a geodesic arc and continue 

·this arc beyond u (x1 ) until a distance T . We thus reach some point 

q(x) E B(p,M+T) 

By Thm. 4.7.1 again, we can find some subdomain S10 c ~ satisfying 

(4.8.12) 
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(4. 8.13) for some o > 0 

for all x E B(x0 ,R0) (cf. (4.8.10)) 

(4.8.15) 

By (4.8.14) 

v(x) 2 
:= d (u(x) ,q) 

is subharmonic in ~0 . 

Let h be the harmonic function on ~O with the same boundary values, 

i.e. 

(4.8.16) 

h(x) 2 d (u(x),q) for xE <l~0 • 

By the maximum principle 

(4.8.17) v,; h in ~0 • 

Now 

by choice of q 

1 2 
,; 2T (d (u(x2),q) 

by (4.8.16) and (4.8.17) • 

Thus, (4.8.9) follows from a Lipschitz bound for the harmonic function h at 

the boundary, which in turn follows from standard barrier arguments, taking 

(4.8.12), (4.8.13), and (4.8.15) into account, cf. [GT], chapter 13. 

q.e.d. 

Different gradient estimates were provided by Giaquinta-Hildebrandt [GH], 
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Sperner [Sp], and Choi [Ci] (only interior estima·tes). The latter two papers 

employ an auxiliary function introduced by ,Jager-Kaul [JaK2], cf. 4.11. 

4.9 HIGHER ESTIMATES 

If we write the equations 

1 a ( - aS a i 1 + yaS ri <luj <luk -- -- vy Y -- 1l I -- -- - 0 
r " a. " B J jk "~_a "xS -vy ox o·"· o~ o 

in terms of harmonic coordinates on domain and image, then the regularity 

properties of harmonic coordinates ( cf. section 2. 8) imm.ecliately imply c2 ,a-

estimates for harmonic maps, again depending only on curvature bounds, 

injectivity radii, and dimensions, using standard results from potential 

theory. We have ·the following result of [JIG]. 

THEOREM 4. 9. "I Suppose that ·the assumptions of Thm. 4. 8.1 hold ar&d T ·is 

chosen as in Thm. 4. 8. 2. on 
r Ro) 

Blxo, 2 is bounded 

in ·terms only of the quantiti.es appear1:ng -in Thm. 4. 8.1 and -r A 

correspond-ing :t'esult ho Z.ds at the bouYtdary, p1oov-ided 3~2 and u I Clrl are of 

(for an c' E (0,1) ). Sim-il.ax'ly if ulan -is only cZ.ass 

, then w-ith appropr-iate est-imates. 

Finally, Thm. 2.8.3 implies 

THEOREM 4.9.2 If under the assumptions of Thm. 4.9.1 the R'i.emann curvatur•e 

tenSOX'B doma-in and -image are of eZ.ass OX' ( k E :lN, p E (0 1 1) ) 3 

then u is of aZ.ass ck+2 k+3+6 or c , resp., and the corre.sponding 

esUmates depend in addi Uon on the or k+6 c -norm, re.sp., of' the 

m<r'1Jature tensors. A. simi Z.ar statement ho Z.ds at the bounda:ry, prov-ided 8rl 

and u I 3~l are suffic-iently r•egular. 
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4.10 THE EXISTENCE THEOREM OF HILDEBRANDT-KAUL-WIDMAN 

In this section, we shall establish the existence of a weakly harmonic map 

with given boundary data contained in a convex ball which admit an extension 

with finite energy. This map will be ob·tained as the minimum of energy among 

maps with image in this ball. The results of the preceding sections then 

imply regularity of this map, and hence we can solve the Dirichlet problem. 

A useful tool will be the following maximum principle for energy 

minimizing maps which is taken from [J6] and based on the same idea as the one 

in [Hl], Lemma 6. 

Ln~~4A 4.10.1 Suppose that B 
0 

and B1 , B0 c B1 , are closed subsets of a 

Riemannian manifold N . Suppose that there exists a projection map 

which is the identity on B0 and which -is of class c1 and distance 

decreasing outside B0 , i.e. 

[d'Tr(vl[ < [v[ v t 0 ' 

is an energy minimizing mapping with respect to fixed 

bounda:r•y values which are contained in B0 , i.e. 

(4.10.1) 

then we also have 

if we choose a suitable representation of the Sobolev mapping h • 

Proof Since [dn(v) [ < [v[ for every nonzero v E TxN, x E B1 \B0 , and 

since TI 0 h E W~(Q,N) , we would have 
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E (Tioh) < E (h) 1 

contradicting the minimality of h , unless dh = 0 
··1 a.e. on h (B1\B0 ) 

Thus dh = dTioh a.e. on Q , and since h and 'Tfoh agree on an by 

(4.10.1), we conclude from the Poincare inequality that TI 0 h = h a.e. on Q , 

which easily implies the claim. 

LEMMA 4.10.2 Suppose that B0 and B1 , B0 c B1 , are corrrpact subsets of a 

Riemannian manifo[d N, and that every point in B1 \B 0 can be joined to 8B0 

by a unique geodesic norma[ to ClB0 , and that 'the distance bei:uJeen every pair 

of such geodesics normal to 8B0 is in B1\B0 a[ways bigger than on 8B0 • 

Then the same conclusion as in Lemff~ 4.10.1 holds. 

Proof We project B1\B0 along normal geodesics onto 3B0 and apply Lemma 

4.10.1. 

q.e.d. 

We shall see another useful consequence of Lemma 4.10.1 in chapter 5. 

\'Je are nmv ready to prove the existence of a weakly harmonic map. 

LH1MA 4.10.3 Suppose B(p,M) is disjoint to the cut tocus of p, and 

'IT " M < 2 K • where, as usual.~ K~ is an upper curvature bound. 

If g : £1 + B (p,M) , &I being a bounded domain in some R·iemannian manifold, 

has finite energy, then there exists a weakly harmonic map u : n + B(p,M) 

with u minimizes the energy among all such maps. 

Proof Since the cut locus of a point p is a closed set, we can find M1 

M <Ml 'IT • < 2 K , for wh~ch 
l 

B(p,M ) is still disjoint to the cut locus o:E 

We ·take a minimizing sequence for the energy in 

ol} v-g E H2 Note that g E V and hence V 'I jll 

l 1 
V := {v E H2 (Q,B(p,M )) 

Such:a sequence-has a 

stilisequence converging weakly in H~ , and the limit, denoted by u , 

p 
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minimizes energy in V because of the lower semicontinuity of the energy 

integral (cf. Lemma 1.3.1). 

We then put BO = B(p,M) and 
1 

Bl = B(p,M ) • If c(• ,t) is a smooth 

family of geodesics with c(O,t) = p , c(l,t) E aB(p,M1 ) , then (2.2.5) 

a 
implies that the Jacobi fields Jt(s) = at c(s,t) are monotonically 

increasing for s E [0,1] • Hence the assumptions of Len~a 4.10.2 are 

satisfied. Therefore, u(n) c B(p,M) • 

We identify 1 B(p,M ) with its image in :rn.N under normal coordinates 

centred at p If 
ol oo N 

n E H2 n L cn,IR ) , we infer that for sufficiently small 

ltl > o , u + tn still maps into 
1 B(p,M) . Hence u + tn is a valid 

comparison map, and since u was minimizing, differentiating E(u + tnl 

w.r.t. t at t = 0 implies (4.1.2), i.e. that u is weakly harmonic. 
q.e.d. 

Remark As easy examples show the map u constructed in Lemma 4.10.3 need not 

be minimizing among all maps v n + y with ( y is a target 

manifold containing B(p,M) ) , not even among maps which are homotopic to u. 

Hence, u in general is only a local minimum of energy. 

Lemma 4.10.3 together with the regularity results of the previous 

sections imply the existence theorem of Hildebrandt-Kaul-Widman [HKW3]. 

THEOREM 4.10.1 Suppose again that B(p,M) is disjoint to the cut Zocus of p 

and M < _:!!__ where 
2K • 

is an upper bound for the sectionaZ curvature of 

B(p,M) If n is a bounded domain in some Riemannian manifoZd and 

g n + B(p,M) has finite energy., then there exists a harmonic map 

(0 < a < ll with At an .. u is as 

reguZar as g and an permit. 

Actually, one can solve the Dirichlet problem for any continuous map 
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w : Cl$1 + B (p,M) , i.e. find a harmonic map u E c2 'a,(S1,B (p,M)) n c0 d'i,B (p,]\11)) 

with uj Cl$1 = w , without assuming that w · admits an extension of finite 

energy. In order to achieve this, one has to combine the a-priori estimates 

of the preceding sections with Leray-Schauder degree theory instead of using 

varia·tional methods. For this, one first deforms w into constan·t boundary 

values, mapping ClQ onto p and then multiplies the nonlinearity in (1.3.1) 

by a parameter A , A E [0,1]. Such a twofold deformation process was 

applied in [HKW2], for instance. 

4.11 THE UNIQUENESS THEOREM OF JAGER-KAUL 

In this section, we wan·t to prove the uniqueness and stability theorem of 

Ja.ger-Kaul [JaK2] for solutions of ·the Dirichlet problem wi·th image contained 

in a convex balL 

THEOREM <l. 11.1 Suppose that u. 
l 

Q + Y , i = 1,2 , a~e harmonic maps of 

class c0 (Q, Y) n c2 (11, Y) , S1 is a bounded domain in some Riemannian manifold., 

and u. (ft) c B (p ,M) , where B (p,H) is a geodesic baU in Y , disjoint to 
l 

the cut 'locus of p and with radius 

sectional curvatu:t'e of B (p ,M) ) • 

Then the function 6 , 

satisfies the maximum principle 

(4.11.1) sup e 
Q 

'IT 
M < 2K 

;;; sup 8 . 
()Q 

is an upper bound for the 
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In particular, if u1 \ 3S"l u2 \ an , then 

The proof of Thm. 4.11.1 will actually show that we have strict 

inequality in (4.11.1) unless 8 = const. Furthermore, Thm. 4.11.1 also holds 

for weakly harmonic maps (cf. [JaKl]). 

Proof V>le assume that 8 has a positive maximum at some interior point 

xo E n . Then, 8 is positive in a neighbourhood of '{o ' and log 8 > -GO 

in this neighbourhood. 

We define 

r ~ (1 - cos Kd(u1 (x) ,u? (x) )) 

~ K -

if IC > 0 

l ~ d2 (u1 (x),u2 (x)) if K 0 

¢i (x) = cos (Kd(p,u1 (x))) , i 1,2 . 

Then 8 , and consequently 

(4.11. 2) grad log 8 
;g:_ad lY _ grad ¢1 grad ¢2 

\jJ ¢1 ¢2 

and 

\grad¢, \ 2 2 
!'Ill! lgrad 1/!1 2 L'l¢1 l\¢2 \grad r)l 2 \ 

(4.11. 3) 6. log 8 
j_ 

1!- --- + ~+ 1jJ2 ¢1 dJ2 ¢2 
'1 2 

Since x + u{x) (u1 (x), u2 (x)) E B(p,M) X B(p,M) is also harmonic, we can 

make use of the chain rule (1. 7. 2) in order to apply Lemma 2. 5 .1. This yields 

(4.11. 4) 

since 

where 

\grad 1/J\ 2 =~<(grad QK)ou, du(ea)>2 , 
a 

is an orthonormal frame on n . 



124 

Similarly, from (2.5.2), since 

<P . (x) 
l. 

2 
1- K QK(p,ui (x)) 

we obtain 

(4.11.5) 

Finally, by (4.11.2), 

(4.11. 6) -!- \grad ~;\ 2 \grad ¢1 \ 2 

+ + 
1~2 ¢2 

1 

2 - (grad log 8, 

Putt:in.g 

k(x) 

and plugging (4.11.4), (4.11.5), and (4.11.6) into (4.11.3), we obtain 

~ log 8 +<grad log 8, k(x)) 2 0 • 

Therefore, 'che assumption that 8 has a positive maximum in the interior 

contradicts E. Hopf' s maximum principle, and Thm. 4.11. 1 is proved. 


