RIESZ CAPACITY AND THE APPROXIMATION OF SOBOLEV FUNCTIONS BY SMOOTH FUNCTIONS

J.H. Michael

This work, done jointly with William P. Ziemer [2], is a generalisation of the following result, proved by F.C. Liu in 1977 [1].

If Ω is a strongly Lipschitz domain in \mathbb{R}^n , $\mathbf{f} \in \mathbb{W}^{\ell,p}(\Omega)$ (where $1 \leq p < \infty$) and $\varepsilon > 0$ is arbitrary, then there exists a \mathbf{C}^{ℓ} function \mathbf{g} on Ω such that

(i) the set $\{x \; ; \; x \in \Omega \; and \; \; f(x) \neq g(x) \}$ has Lebesgue measure $< \epsilon$ and (ii) $\left| f - g \right|_{\ell, D} < \epsilon$.

The Michael-Ziemer generalisation gives a $\,C^{m}\,$ function g on $\,\Omega\,$ (with m \leq l), the approximation in (i) is with respect to capacity and the approximation in (ii) is with respect to the norm in W^m,p . Moreover, $\,\Omega\,$ is an arbitrary open subset of R^n .

Riesz capacity can be defined in the following way. Let $1 \le p < \infty$ and let k be a real number, such that k>0 and kp < n. Let $f \in L^p(\mathbb{R}^n)$ and suppose $f \ge 0$. The Riesz potential $I_k f$ of f is the function defined on \mathbb{R}^n by

$$I_{k}f(x) = \frac{1}{\gamma(k)} \int_{\mathbb{R}^{n}} |x-y|^{k-n} f(y) dy ,$$

where $\gamma(k)$ is a positive constant whose value is not important in the present context. For each subset E of Rⁿ, the Riesz capacity R_{k,p}(E) is defined by

$$R_{k,p}(E) = \inf(|f|_p)^p$$
,

where the infimum is taken over all non-negative $f \in L^p(\mathbb{R}^n)$, such that

$$I_k f(x) \ge 1$$

for all $x \in E$. We define

$$R_{0,p} = m*,$$

where m* denotes outer Lebesgue measure.

 $R_{k,p}$ is not additive, hence it is not a measure; however it is countably sub-additive. Let H^Ω denote Hausdorff measure of dimension α . If kp < n , then

$$H^{n-kp}(E) = 0 \implies R_{k,p}(E) = 0$$

and

$$R_{k,p}(E) = 0 \implies H^{n-kp+\epsilon}(E) = 0$$

for every $\varepsilon > 0$.

There is a difficulty in generalising the Liu theorem. A function $f\in W^{\ell,p}(\Omega)\quad \text{may be undefined on a set of measure zero and this set could}$ have positive capacity. So we establish the following result on approximate limits.

THEOREM Let lp < n, Ω be an open set of R^n and $f \in W^{l,p}(\Omega)$. Then there exists a subset E of Ω , such that

$$R_{\ell,p}(E) = 0$$

and

$$\lim_{\delta \to 0+} \frac{1}{m(B_{\delta}(0))} \int_{|y-x| < \delta} f(y) dy$$

exists for all $x \in \Omega \sim E$.

Thus, each Sobolev function can be represented by a function which is approximately continuous except for a set of zero capacity. The Michael-Ziemer approximation theorem can now be stated.

THEOREM Let $1 \le p < \infty$, let l,m be positive integers with $1 \le m \le l$ and (l-m)p < n and let Ω be an open set of R^n . Let $f \in W^{l,p}(\Omega)$, and be approximately continuous at every point of Ω , except for a set E with $R_{l-m,p}(E) = 0$. Let $\varepsilon > 0$. Then there exists a C^m function g on Ω , such that

- (a) the set $F = \{x : x \in \Omega \text{ and } f(x) \neq g(x)\}$ has $R_{\ell-m,p}(F) < \epsilon$ and
- (b) $|f-g|_{m,p} < \varepsilon$.

Since ${\rm R}_{0,p}$ is Lebesgue outer measure, Liu's theorem is the special case with ${\rm m}={\rm \ell}$.

REFERENCES

- [1] Fon-Che Liu, A Lusin Type Property of Sobolev Functions, Indiana
 University Mathematics Journal, 26 (1977), 645-651.
- [2] J.H. Michael and William P. Ziemer, A Lusin Type Approximation of Sobolev Functions by Smooth Functions, to appear.

Department of Mathematics
The University of Adelaide
Adelaide SA 5001
AUSTRALIA