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SQUARE ROOTS OF OPERATORS AND APPLICATIONS 

TO HYPERBOLIC P.O.E.'s 

Alan Mcintosh 

INTRODUCTION 

Throughout this paper H denot.e:s a complex Hilbert space and V 

denotes a dense subspace, also with a Hilbert space structure, which is 

continuously embedded in H • The two norms are denoted II e II and II ·II V 

For each t E [O,t1J, Jt denotes a sesquilinear form wi·th domain 

V x V which satisfies 

0 ::: Jt [u,u] and 

for all u E V , where K and !Vi are positive numbers, independent of t 

and u . 

The associated operators Tt are the operators with larges·t domains 

satisfying 

Jt [u,v] ~ ,v) 

for all v E V . They are non-negative self-adjoint operators and have 

non-negative square roots T J,; with domains 
t 

for all u and v in V . See [7] for details. 

Indeed 
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If the fonns Jt depend differentiably on t , we would like to 

know whether this same property is inherited by the operators In 

general it is not, as was shmvn in [8] . The forms constructed there are 

actually of the type 'i,-.Jith and 

for all u E V The associated square roots 

as func-tions from (-1,1) to L(V,H) , are not weakly differentiable at t=O. 

The above question was raised by Ka·to in connection with the approach to 

second order evolu·tion equations illustrated in the next section. In particular 

he asked whether positive results could be obtained for elliptic forms. The 

simplest such case occurs when H = L2 (JR) , and 

Jt[u,v] = J.oo at(x)u' (x)-;_;; (x) dx , 
-oo 

and K S a~(x) S M for each It was 
L. 

suggested in [8] that this question is related to tha.t of Calderon 

concerning tl1e problem of showing the L 2 -boundedness of the Cauchy in·tegral 

on a Lipschitz curve. Indeed this ·turned out to be the case. It can be 

proved using the methods of [2] and [3] that if the functions 

r ()u (lv 
Jt [u, vl I I a (x' (x) (x) dx 1 ·t,jk J ()xk (lxj 

J 
JRn j ,k 

.with for each t' j 1 k and 

for all t;; E cr:n the corresponding result is known only when 

I - t I < t: for some t: depending on n (c.f. [ 1] ' [4] a. 'k J ·- I -c, J- JK 
It is not 

kno1:.-m whether or not i·t is true , ... ;i"'chou.t this restriction~ 
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This paper is concerned with forms associated with the Dirichlet 

problem on domains n in Rn . It will be indicated how results of the 

above type can be obtained under mild regtilarity conditions on the 

coefficients and their derivatives with respect to t • The proofs are 

not as deep as those needed for L00-coefficients. 

Full proofs of the theorems stated in this paper, and also of 

related results, will be published elsewhere. see [9]. 

AN APPLICATION 

As an application involving the differentiability of the 

following method of treating second order evolution equations by reduction 

to first order evolution equations is presented. No attempt at maximum 

generality is made. Indeed the first order equations are treated using 

the pioneering work of Kato [6], published in 1953. Note however that the 

conclusion that u(t) E V(Tt) for all t is quite strong, as V(Tt) may 

vary considerably with t • 

THEOREM Consider the initiaL vaLue probLem 

r 
~ (t) + Ttu(t) + Ftu(t) f(t) 0 s t < t 1 1 

dt 
(*) u(O) V 1 

du(O) vl . dt 

Assume, in addition to the properties aLready specified, that Tt ::: I I 

Ft E L(V ,H) I f(t) E C([O,tl] IV) I v E V(T0 ) and vl E v . Suppose, 

for each E v .. that t 2 
I H) and E 1 

I H) w Tt wE C ( [O,t1J Ftw C ( [O,t1 J 

Then there exists a unique soLution u(t) of (*) , such that 

2 1 
u(t) E c ([O,tl] I H) n c ([O,tl] IV) • 



127 

Proof Let 

and 

At + 

Then (*) becomes 

(**) lf :~ (tl + At ~(tJ 
v(O) 

f (t) 

= v 

>vhere 

f (t) and v 

For suitable )\ , At + AI are maximal accretive opera·tors in 

H = H ffi H wi-th domain V v ffi v 

f(-t) E C( [O,t1 J , ~) o Also v E V It follows from standard results [6] 

t.hat (''*) has a unique solution 

On converting back ·to the origina.l problem, we find that the theorem is 

proved. II 

On le·tting Tt denote elliptic operators as specified in the next 

section, and Ft first order operators, results on hyperbolic partial 

differential equations are obtained. 

Similar results under stronger conditions are presented in [11]. 
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THE MAIN RESULT 

Let H = L2 (rl} where Q is an open subset of Rn , and let 

v co 
the closure of c0 (st) in the Sobolev space H~(Q) with norm 

llullv { llull 2 + .I1 11 aa:.11 2}~ 
J= J 

Consider the forms Jt defined on V x V by 

J { I at, J'k (x) :: (x) ::. (x) + at (x) u(x) v(x) }dx , 
Q j,k k J 

where for each 

and 

for all x E Q , I;; E O:n , and SOIII£l.. M , K > 0 Then these forms have 

the properties specified at the beginning of the paper. The corresponding 

operators Tt are defined by 

where 

a 
ax. 

J 

(a ~) 
'k " + at u , t,] oXk 

In order to proceed, we make some regularity assumptions on the 

region Q and the coefficients at, jk · Let us first define the fractional 

order Sobolev spaces by quadratic interpolation. 
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J[H1(~) 'H2(~)]s-1' 1 < s < ,., 
~ ' 

Hs(Q) [L 2 em , H1 em J s , 0 < s < 1 

Lu'hml*, L2(n)]s+l' -1 < s < 0 

For we say tha·t ~ has property provided 

r r - 01 ('" 1172f - -l+s '"' } l+s (") u: t H oo 1 v t H \" 1 C H oo • 

This property holds, for example, if ~ is a strongly Lipschitz bounded 

domain, i.e., if ~ E N°' 1 , as can be shown on applying the results of [5]. 

The assumptions on ajk, t are made in ·terms of them being pointwise 

mul·tipliers of Hs Cm . We denote the space of such mu1 tipliers by Ms (Q) • 

That is, 

for all 

and 

llbll = llbll + sup{Jibull liiull 1} . s co s l s 
M H H 

These spaces are well understood. For example 11 if J E NO,l 
' 

then 

CO,t(~) c Ms(Q) when 0 < s < t s l ' and also X~ E Ms(m if 0 < s < l 
2 

0 

where is ·the character·is·tic func·tion of [10]. 

Let m be a non-negative in·teger. 

THEOREM Let Jt denote the forms defined above, and suppose that ~ is 

sufficiently regulwo that property (Rs) is .satisfied 

Suppose also that, 

fol' 1 <: j s n and 1 s k < n • Then 

L (l/ ,H) l . 

some s E (O,tl • 
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In order to prove this theorem, a more abstract result is first 

presented" 

A HILBERT SPACE RESULT 

Let Bt denote self-adjoint opera·tors on a Hilbert space K such 

that IIBtll :S p < 1 for t E [O,t1 ] , and let A denote a one-one closed 

operator from H to K with domain V and closed range R " Then the 

forms defined by 

have the properties specified at the beginning of the paper, with V = IIAull ' 

Let E deno·te the orthogonal projection of /( onto 

R , and, for each s ~ 0 

space with norm 11\A*\ 

negative integer. 

THEOREM Suppose for some 

Then 
l 

T -,: 
t 

E 

Indeed, if 

~ II 

dj 
ull --:-B 

ptJ -t 

11\A*\ s 
dj 
-. Bt ull 
dtJ -

let Rs = R n V(\A*\sl , which is a Hilbert 

In particular R0 = R . Let m be a non-

s E (0,1) , that 

m C ([O,t1 J , L(IJ,Hl l 

< AjPIIull , u E R , and 

]J AjPII\A*\8 ull :S s 

for some ]..ts and A , and for 0 :S j < m , then there exists K > o such 
s 

that 
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{Kl-l ;\mp(l-p)-(m+l) + cS 0 }jjuflu · 
s s m v 

OUTLINE OF PROOF Let U denote the partial isometry from H to K such that 

A*= U*!A*[ and that ·the kernel N(U*) = R Note that U is one-one. 

So 

Tt A* (I-Bt)A 

21T -lU* Jco 
0 

U*[A*I (I-~t) [A*[u 

for u E V(Tt) [7]. On expanding as a power series in ~t and ignoring 

problems about domains, we ob"cain 

T J; 
t 

- -1 
21T U* 

(' 
Jo I T lA* I 

l+T21A*[2 k=l 

1 
2 2 

l+T [A* I 

T2[A*[2 

dT 
-A 
T 

B { ~t - 21 12 J.+T A'' 
Br ~t 

1 dT 
A. 

l+T21A*[2 T 

The (formal) expression for the derivative of '1' 
! easily be -t can 

derived. We will choose one term in its expansion and show how it can be 

estima'ced. Le·t 

co 
T[A;' I dB, 21 2 

f ~c T A* I 1 dT 
wt 

J 0 l+T2[A* 12 dt l+T2[A* 12 
!lt 

l+T2[A*[2 T 

By assumption, there exist operators Bjst E LCRJ such that 
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and 

Hence 

d~\ T ( 2-s) [A* I ( 2-s) 

dt l+T21A*i2 

Now apply the following lemma [3] " 

co 

Jo z dT s T 
T T T T 

co 00 

Jo s, 
s * ctT II! II Jo 

.l 

"" T * T dT II 2 

T T T T T 
supllz II 

T 
T 

dT 
T 

whenever s 
T 

z, and TT are bounded operators uJhich depend continuously 

on T , and for which the operators on the right hand side exist in the strong 

topology. 

Note also that 

,0IA*\0 

l+T21A* 12 

if 0 < o < 2 . Therefore 

::': 1 if 0 ::': 0 < 2 ' and 



133 

On estimating the ot._her terms and summing, we find that 

< 2u-1 fc 1 c ~ Ap + c 1c l _-s s s s 
~ k+l} L (k+l)~sAp IIAull 

k=l 

The higher derivatives can be es-timated in a similar way. Their 

continuous dependence on ·t poses no problem. // 

Details concerning the above reasoning will be presented elsewhere. 

Note that the expansion of the square root as a power series is different 

from that used in [1], [2], [3] and [4], though the justification of the above 

reasoning is similar to that presented in [3]. Note also that ·the assumption 

that Bt be self-adjoint can be dropped. 

PROOF OF THE MAIN RESULT 

Let Jt denote the elliptic forms defined previously on V 

suppose, without loss of generality, that i'1 ::: 1 Let p 1- K 

K = ffi L2(Q) ' A 
n+l 

(I, (): , .•• , -()~e, JT , and, for each t E [O,t1 l 
1 K 

Bt be the matrix of operators with components 

l Bt,OO multiplication by bt 1- at ' 

Bt,jk multiplication by b 
t, jk 0jk- at, jk 

I 
Bt,Ok Bt,jO 0 l ' 

where 1 < j < n and 1 < k :S n Then B E L CKJ ' t 

forms Jt can be expressed as 

let 
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The results of the preceding section apply to give a proof of the 

main theorem once· i·t is verified that 

Now A is an isomorphism from V ( IAil+s) to Rs , so this condition is a 

consequence of the following one: 

(#) 

Note that 

The assump-tion that Q sa'cisfies property (Rs) implies ·that 

while the assumption on Bt implies that 

Moreover 

So (#) holds and the result follows. # 

These sketchy details will be elabora·ted in a more comprehensive 

paper. It will be shown there that similar methods can be used for forms 

corresponding to Neumann and mixed boundary value problems. See [9] · 
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To conclude, we remark tha 'c the results can readily be expanded to 

cover the case when the forms Jt have first order terms. 
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