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A NON-STANDARD POST-PROCESSING TECHNIQUE IN THE
FINITE ELEMENT METHOD

A.D. Miller

§1.1 INTRODUCTION

Often the principal purpose for which a partial differential equation
is solved in practice is to obtain accurate values for a few physically
important quantities. For instance in stress analysis, the values of
stresses (i.e. derivatives of the solution) or stress intensity factors at
a small number of critical sites in a structure are important design criteria.
Decisions on whether a structure meets design and safety specifications are
often made on the basis of these few quantities. Less is demanded of the
mass of remaining solution information. It may be completely disregarded,
or only examined qualitatively with a view to determining whether the
solution is physically reasonable. These considerations suggest that some
thought should be given to how these few specific quantities can be efficiently

approximated.

In the finite element method the most straightforward way of obtaining
approximations to solution values and derivatives is to directly evaluate the
finite element solution or its derivative. However there are sometimes more
sophisticated ways of "post-processing” the finite element solution than this.
In this paper we shall discuss one such method. For a more detailed account
than we are able to give here see [1] - [3]. The above straightforward post-
processing technique of course has the advantage of being computationally
fast. Let us note however, that since only a few quantities will usually
ever need to be calculated, there is no real disadvantage in expending a

modest amount of computational effort in any post-processing calculation.
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The basic error estimate in the theory of the finite element method
is the best approximation result
(1.1.1) [lw=w|_ £ inf |lw-v|_ .
~ B
vES

where w 1is the exact solution of the problem, w the finite element

approximation from the finite element subspace s , and is the

'”E is an L, norm of

energy norm associated with the problem. Typically |
first derivatives. The estimate (1.1.1) is relatively easy to obtain, and
it highlights the special role that the energy norm plays in any analysis of
the finite element method. Asymptotic estimates for pointwise errors in

& and its derivatives can be proved in some circumstances, however such
proofs are considerably more involved than that of (1.1.1). Moreover,
practical experience indicates that the behaviour of the pointwise error

in w , and especially in its derivatives is not particularly robust. For
instance, the errors can vary considerably within elements, or between
elements, they may not decrease monotonically with mesh refinement, etc.

While such effects may not be present to any significant extent in the case

of smooth problems, they can cause serious problems in nonsmooth cases.

The post-processing technique to be discussed here will calculate
approximations for pointwise values of the solution w and its derivatives,
as well as other functionals of W , by global averaging of w . The errors
in these approximations can be directly related to Hw—%HE . Because of
this, the technique tends to be more robust than working directly from w
Moreover, the approximations are in most cases more accurate than those

cbtained by direct methods.

The technigue can be applied to many linear prcoblems, though for
simplicity we shall only discuss it here in the context of a mixed boundary

value problem for Poisson's equation, with a few brief comments about
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generalizations. This is all done in §2. In §3 we present some simple
numerical examples to illustrate the theory of §2 and to demonstrate its

practical wviability.

§2.1 EXTRACTION EXPRESSIONS AND THEIR APPROXIMATIONS

Let § C R2 be a bounded domain with sufficiently smooth boundary

of2 . Suppose 0f consists of two parts FN and FD (see Fig.l). Consider

the boundary value problem:

I
<
g
I
h

in Q

(2.1.1) w = 0 on T

Figure 1.

For technical simplicity we suppose FD is nonempty, though this is not

essential.
The problem (2.1.1) has a Galerkin formulation ass:
. 1,2
Find wéH = {wew Q) : w=0 on FD} such that

(2.1.2) j VweVv = J fv + J gv Vv € H .
Q 9) FN
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Letting § be a (C°-conforming) finite. element subspace of H , we

can pose the corresponding finite element approximation of (2.1.2):
Find W € S such that

{ ~
(2.1.3) J VweVv = J fv + J gv Yv € s
Q Q r

Subtracting (2.1.3) from (2.1.2) leads to the orthogonality relation
(2.1.4) J Y (w-#) *Vv = 0 Vv € S
Q
from which follows the standard best approximation error estimate
— < i -
o=l < inf Ju-v]],

vES

where

g = [ 1 2)°

is the energy norm associated with the problem (2.1.2)

Let us be interested in integral expressions for w(P) and Vw(P)
where P is an interior point of . Of course, if we knew the appropriate
Green's function G(°,°) for this geometry, we could immediately write down
(2.1.5) w(P) = J f(x)G(x,P)dx + [ g(s)G(s,P)ds

Q FN

(Similar expressions for the components of Vw(P) could be obtained by
differentiating (2.1.5) with respect to P . ) However, except for the simplest
geometries, G(°,°) is not known explicitly. WNonetheless, integral expressions
which are closely related to (2.1.5) can be readily obtained for quite general

geometries.

For the moment let ¢ be any sufficiently smooth function defined on
ﬁ-{P} . Suppose g 1is small enough to ensure that {x,|x—P|< elcq .

Let Qe = {x EQ,IX—P|>-5}, and FE = {x,,x—P1= €} . (see Fig.l). Multiply
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the first equation of (2.1.1) by ¢ and integrate by parts over Qe to obtain
2 A ~ 2
- J f¢ = I Vowg = J (Vwend=Voenw) + J Viw ,
Q Qe BQ& Qe

where n denotes the outward pointing unit normal to BQE . Noting that
BQE = FELJTNlJFD , and using the boundary conditions of (2.1.1) a simple

rearrangement of the above gives

- J (Vwefip-Vefiw) = I (V2¢w+f¢) + J (Vwe ip-V e fiw)
re Qa. I|NUFD
(2.1.6) = J (V2¢w+f¢) + J (gb-Voeniw)
Q T
€ N
+ f (Vwenld) .
I-ID
Now let us be more specific about ¢ . Suppose in addition that
. 1
(2.1.7a) ¢ (x) = - 5= log|x-P| + ¢, (x)

~e

where ¢ , iv¢0| = o(]x—PI_l) as x > P
(2.1.7b) $=0 on T ;

(2.1.7c) (V2¢) extends smoothly to all of Q, V¢-ﬁ smooth on FN .

Take the limit as € -+ 0 in (2.1.6). Because of (2.1.7a)

(2.1.8) lmt - J (Vwehip-Vpetiw) = w(P) ,
T

€+0
€

whilst (2.1.7c) ensures that

lmt I V2¢w = J V2¢ w
>0 ‘Q Q

exists. In the limit (2.1.6) therefore becomes

(2.1.9) w(P) = lmt J £ + J gd + J V2w - J Voo Aw
e+0 10 Ty Q Ty
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on using (2.1.7b). This expression is guite similar to (2.1.5) in that it
involves integrals of the loading data £ and g , but it also contains
terms which are weighted integrals over § and TN of the solution w

itself.

In the particular case where (2.1.7c) reduces to V2¢= 0 in Q-{p} ,
Voefi = 0 on FN , then ¢(x) = G(x,P) , the Green's function for the
field point P , and (2.1.9) is identical with (2.1.5). The presence of
integrals of w on the right hand side of (2.1.9) of course means that in
general it né longer gives an explicit formula for w(P). However, it
provides a means of relating the pointwise value w(P) to certain averages
of w over ) and FN . Since intuitively we might expect a finite element
solution to behave better in an average sense than in a pointwise sense, it
would seem natural to try to approximate w(P) Dby

(2.1.10) %P = lmt J £ + J gb + J vzqﬁz - J Voefiw ,
e>0 ‘Q FN Q FN

rather than by the pointwise value w(P) of the finite element solution
itself. We shall discuss the accuracy of %P as an approximation to

w(P) in §2.2.
We shall refer to any expression of the form of the right hand side of

(2.1.11) A =0Q(f,9) + J aw + I bw
T

& N

where Q(£f,g) is a quantity involving only integration of the data £f,g ,
and a,b are sufficiently smooth functions on § and FN respectively,
as an extraction expression. The functions a and b will be called the
corresponding volume and boundary extraction functions. If the terms of

(2.1.11) take the particular forms
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Q(f,g) = J £ + j g9
Q T

N
2
(2.1.12) a =V
b = -V¢en
for some function ¢ which vanishes on FP , then ¢ will be called a

generalized Green's function. Often ¢ will have some kind of singular
behaviour at a point of £ or 98 . In these cases (2.1.12) may need to
be interpreted appropriately. For instance, the integrals of Q(£f,g) may
only exist in a principle value sense; while a= V2¢ may need to be under-
stood as meaning that V2¢ (which may not exist in a classical sense at all
points of ) , can be extended smoothly by a to all of { . Likewise

for V¢eni on FN .

Just as the approximation WP arose naturally from the extraction
expression (2.1.9), so it would seem reasonable to approximate the value A
of any extraction expression such as (2.1.11) by

(2.1.13) A =0(f,9) + [

Q

aw + J bw .
r

In the above terminology (2.1.9) is an extraction expression for w(P)

which is derived from the generalized Green's function ¢ of (2.1.7).

Extraction expressions analogous to (2.1.9), but which yield the
components of Vw(P) can be found by differentiating (2.1.9) with respect

to P . Alternatively, the above derivation can be repeated, but with

(2.1.7a) replaced by

X, -P
1 %1
(2.1.14) o) = 5= —~—IX_P12 + b,

for the xq derivative, or by
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1 %7P

(2.1.15) ¢ (x) =5-1'T‘—|;—_——Iz—+ d)o

for the %, derivative. Notice that the leading terms of (2.1.7a), (2.1.14)
and (2.1.15) are simply the classical solutions of Poisson's equation in the

entire plane corresponding to a point load, a dipole load oriented in the %

direction, and a dipole load oriented in the X, direction respectively.

For the approximation (2.1.10) to be practical, generalized Green's
functions ¢ which satisfy (2.1.7) must be found. This does not usually
present much difficulty. We shall briefly outline two quite general methods

for constructing suitable functions ¢ :

(a) Cut-off function method: Let n be any sufficiently smooth

function on ) satisfying n=1 in a neighbourhood of P , n=0 on FD .

If we set
$(x) = n(x) (- = log|x-p|)
27
then (2.1.7) is satisfied. (See §3.1 for an example.)

(b) Blending function method: Choose ¢* to be sufficiently smooth

on § and to satisfy ¢* = --§F log[x—Pl, X € FD .  Then
$(x) = - 2= log|x-p| - ¢
2T
satisfies (2.1.7). (Again, see §3.1 for an example.)

Clearly there will be a wide choice for the cut-off function Y or
the blending function ¢* . Each such choice will lead to a different
extraction expression. Of course, all these will yield the same result
if applied to the exact solution w as in (2.1.9). However, this will
not usually be the case for (2.1.10); different choices for ¢ will lead

to different approximations Wy e
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The above methods can similarly be applied to construct generalized
Green's functions for the extraction of the derivatives. One need only
replace the term - g; loglx-P| in (a) and (b) by the leading term of

(2.1.14) or (2.1.15).

§2.2 THE ACCURACY OF A

If we suppose that A is evaluated exactly, then subtracting (2.1.13)

from (2.1.11) gives

ISl

a (w-w) +J b(w-w)| .

T

& N

To help estimate this error we make use of the following simple lemma:
LEMMA 2.2.1 Let ac¢ L, () , be L2(I‘N) say, and let Y be the solution of

—Vzw =a in

(2.2.1) Yy=0 on FD

Vei=b on FN .
Then
(2.2.2) H J aw+f bw] - ( J a;v+J b&” S w-illy ing -zl
Q T Q T z€S
N N
Y
where H-HE = [ J V()| ] .
Q

Proof: After an integration by parts and use of (2.2.1), we have

J VyVv = J av + J bv Vv € H .
Q Q TN

Choose v = w-w € H to find

- (e[ 2] - (5] 9) - [ oo
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However by the fundamental orthogonality property (2.1.4)
J VzeV (w-w) = 0
Q

for any =z €S . Thus

r -
(2.2.3) [El=1]] VY@-v)Vw-2z)]| < ||w-x7v||E inf H\U—z||E .
Q z€S
11/

Notice that (2.2.2) is only an upper bound as it fails to take account

of any cancellation in the integral in (2.2.3).

The estimate (2.2.2) confirms the naturalness of the approximation
K in that it shows the accuracy of K is directly related to the accuracy
of the finite element solution W as measured in [+||, . However the
accuracy is also dependent upon how well the solution ( of the auxiliary
problem (2.2.1) can be approximated by functions from S , as measured
by H-HE . Note that (2.2.1) is of precisely the same form as the original
problem (2.1.1) but with different loading data. The loadings on § and

FN are now the volume and boundary extraction functions respectively.

We shall leave more specific discussion of the accuracy of L to §3
where we shall illustrate the high accuracy of extracted approximations
by way of some simple numerical examples. 1In this section we shall restrict
our discussion to some general comments:

(a) In many cases one can expect HW—QHE and inf ”w—zHE to be
comparable, at least for some class of finite elementziibspaces S . 1In such
a case (2.2.2) shows that [A—K|==O(Hw—WH§). In particular, using the
extraction expressions of §2.1 we can obtain extracted approximations for
both pointwise solution values and derivatives, both to an accuracy of
O(Hw—ﬁﬂé) . Contrast this situation to that of direct evaluation of the

pointwise valuesand derivatives of w where the derivatives are usually
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one order of mesh size less accurate than the solution values. In addition,
one can usually expect no better accuracy in the pointwise derivatives of

w than O(Hw—W“E).

(b) A number of factors may influence the magnitude of the quantity
inf Hw—zHE in the estimate (2.2.2), but a major consideration is the
z;iothness of the data of (2.2.1). 1In cases where the extraction functions
are derived from a generalized Green's function ¢ by means of (2.1.12),
then the smoothness of the extraction function will obviously
depend in some way on ¢ . For example, using the techniques outlined
in §2.1 it is usually not too difficult to construct generalized Green's
functionswhich yield appropriately smooth extraction functions provided
the point P is far enough from 092 . However if P is "close" to dQ
thismay notbe the case. Unless special care is taken in the construction of
¢ , the singular behaviour demanded of ¢ at P by (2.1.7a), (2.1.14) or
(2.1.15) will usually result in unacceptable volume or boundary extraction
functions. An approach that overcomes this problem will be illustrated by

way of an example in §3.2.

§2.3 EXTRACTION EXPRESSIONS AT BOUNDARY POINTS

In §2 so far we have only considered extraction expressions for

solution values and derivatives at points P in the interior of § . We
now want to handle points on 232 . For definiteness, suppose that O0€ 30
and that O is not an endpoint of either FN or FD . Suppose further

that the x2—axis is tangent to 90 at O (see Fig.2.) and that we are

interested in extraction expressions for A= w(0) (if 0¢€ FN) , or

A=Vwen(0) (if 0€ ry) -
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X3
Q
N Xy
il
Figure 2.

Proceeding along similar lines to the derivation in §2.1 we may obtain

extraction expressions for A of the form

( N
A = 1mt lJ f¢+»J g¢] + J V2¢w - j Ve nw
e+0 QE FN c 1Y) FN

{xel , |x[>e} if oeT

where now _ = {x€Q: |x|>e}, T = N
€ NE if oer. *
N D
d(x) = - % log|x| + 9o ) (for w(0) , 0€ I)
(2.4.1a)
1 % -
o(x) = b [xl2 + ¢O(x) (for Vwen(0) , O€ FD) .
where ¢_ , |V¢ | = o(|x]~l) as x + 0,
0 0
(2.4.1b) ‘ $ =0 on T (on FD—{o} if 0e€T)) .

(2.4.1c) V%ﬁ extends smoothly to all of § ; Véen extends smoothly to
all of FN .
Notice that the leading terms of (2.4.la) are now the classical half-plane

solutions for a point loading on a homogeneous Neumann boundary and a dipole
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loading on a homogeneous Dirichlet boundary.

As before, functions ¢ satisfying (2.4.1) are readily constructed
using blending and cut-off function techniques. Provided O is reasonably

distant from any endpoint of FN or T the resulting extraction functions

D ’
a= V2¢ and b==—V¢°ﬁ can easily be ensured sufficiently smooth. For instance,

in the case of an extraction expression for w(0) one possibility would be
-1
) = — log|x| - ¢*

where ¢* is any sufficiently smooth function satisfying ¢*==€%.log|xl on
FD . One point to note in connection with evaluating V¢-ﬁ on FN near O
in this case, is that V¢ of course becomes singular as x + 0 . However
provided FN is smooth near 0 , then V¢en is well behaved as a function
of arclength along PN . The practical consequence of this is that some care
needs to be exercised in numerically evaluating V¢'ﬁ here. Likewise in the

case of extraction expressions for Vw-ﬁ(O), the leading term of (2.4.1a)

although singular as x + 0 is smooth as a function of arclength along PD .

§2.4 EXTRACTION EXPRESSIONS FOR STRESS INTENSITY FACTORS

It is well known that in the neighbourhood of certain critical boundary
points (e.g. angular boundary points, points where TN and FD meet) the
derivatives of the solution of (2.1.1) may exhibit some form of singular
behaviour. Often it is of practical importance to know the "strength" of
these singular terms. As an example, consider (2.1.1) in the particular
case of the slit domain shown in Fig.3. Here the line 0=0,2r is a two-
sided part of TN . If the loading data £ and g are smooth enough,
then the solution w of (2.1.1) is known to have the following asymptotic

representation:
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3

(2.4.1) w(x) = kr®cos 6/2 + wo(x)

where Wy o leOl =0(1) as x =+ 0 .

Figure 3.

Note that Vw has an r_%—type singularity as x + 0 . The coefficient k
in (2.4.1) may, by analogy with fracture mechanics, be called the stress
intensity factor. (In linear elastic fracture mechanics the stress intensity
factor gives some indication of the tendency of a crack, as modelled by a

slit, to extend under the applied loading data.)

Following exactly the same procedure as in §2.1 we can obtain an
extraction expression for k

(2.4.2) k= lmt U f¢+J gﬂ +J V%W_J Vo~ hiw
o r Q Iy

e+0
N,

where now Qe = {xeQ: lx|>€} , FN,€= {xe FN' Ix[>e} and

(2.4.3a) O (x) = %'r—%cos 8/2 + NEY)

3

where ¢g , |Vy| = o(x ) as x>0 .
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(2.4.3b) ¢ =0 on FD .

(2.4.3c) V2¢ extends smoothly to all of Q ; V¢'ﬁ extends

smoothly to all of FN .

In (2.4.2) the line integrations treat the part 6=0, 21 of _FN as

two-sided. Note that the leading term of (2.4.3a) already satisfies

[ - ~
Vztl r%cos §]= 0 in Q , and th r %cos gJ'n =0 on 6=0,27m
m 2 ™ 2

(r#0) . Therefore functions ¢ satisfying (2.4.3) are readily constructed

by the usual cut-off or blending function technigues.

§2.5 EXTRACTION EXPRESSIONS FOR INTEGRALS OF BOUNDARY FLUXES

Consider the case explicitly implied by Fig.l where FD has two

1
components, Fg and Fé say. (We assume that Tg and FD are a non-zero

distance apart.) Suppose we are interested in the quantities

0 r1

p
(2.5.1) A= J
Iy D

Vw-ﬁ ds and Al = J Vwen ds .

In mechanical terms we can think of AO and Al as measuring how much of

B!
the total applied load L[= J fi-JF gJ is carried by each of the fixed
Q

N

supports FD and FD respectively. (A simple integration by parts shows

that L = AO + Al. ) Although the expressions of (2.5.1) for AO'Al are
already in some sense integrals of the solution, they are not of the proper

form for an extraction expression as set out in (2.1.11). However it is

not difficult to derive some appropriate extraction expressions.

Let ¢a(u=0,l) be any sufficiently smooth function defined on

which satisfies



165

(2.5.2)

A simple integration by parts shows immediately that
2 ~
(2.5.3) A = J £fo  + J gd  + J V' w - J Voo nw (a=0,1) .
o 0 o r a Q o T Q

Finding smooth functions that satisfy (2.5.2) clearly presents no great
difficulty. Obvious adaptations of cut-off function or blending function
constructions could for instance be employed. (The smoothness of ¢a and
the resulting extraction functions will obviously depend on how far Tg

and F; are apart.)

§2.6 MODIFIED VERSIONS OF THE PROBLEM (2.1.1)

In §2.1 we showed how to obtain extraction expressions for solution
values and derivatives in a mixed boundary value problem (2.1.1) foxr
Poisson's equation. These extraction expressions were constructed from
the classical point source, and dipole solutions for the entire plane.

An examination of the derivation in §2.1 shows that only the local
behaviour of these solutions at P was essential to the argument. The
fact that they also happened to be harmonic in - {P} was more or less
immaterial. This suggests that extraction expressions for sclution values
and derivatives for equations with (smooth) non-constant coefficients
should be closely related to the corresponding extraction expressions for

the equation with "frozen" coefficients at P .
As an illustration consider the following generalization of (2.1.1)

= Ve (kVw)

1
h
"
jal
2

w=0 on T

kVwen

I
Q
]
=}
—
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where k is a smooth function on § , k(x) 2 k0> 0 (x€Q) . BAgain let us

be interested in w(P) and Vw(p) for P an interior point of Q .

Proceeding as in §2.1 we obtain extraction expressions of the form

(2.6.1) imt J £ + J g + j Ve (kVd)w - J kV¢e nw
e+0 IQ Ty Q T

for the quantities w(P) and Vw(P) , where ¢ satisfies

( -1
O = 3oEy log|x-P| + 9 (for w(P)) ;
x_ =P
1 171 1 3k
(2.6.2a) { ¢(x) = + +— (P) log|x-P) |+ ¢
2 ®) |xp|? 4w (k)2 9%, 0
R . . |(for Vw), ()
L d(x) = + == (P) log|x-P| + ¢
2@ 1y 212 aree)) 2 ox, 0

(for (Vw)z(P))

-1
where ¢, , |V¢0] =o(|x-P|™") as x » P.
(2.6.2b) ¢=0 on T .

(2.6.2c) Ve (kV9) extends smoothly to all of Q ,

kV¢efi smooth on PN .

The task of constructing functions ¢ satisfying (2.6.2) is a little
more difficult than that encountered in §2.1. The new difficulties arise
from the first part of (2.6.2c). The operator Ve (kV(¢)) applied to the
leading terms of (2.6.2a) no longer yields functions that can be smoothly
extended to all of {1 . For instance, in the case of extraction expressions
for w(P) ,

Vx'k[vx[?ﬂil('ﬁ 1og|x—Pl:H = T::P? ((x-P) *Vk)
which is singular at x = P . This problem may be overcome however by being

a little more specific about the form of ¢0 . If for example we take
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- 1 2
n(x) = 10 []_ogR -5 k,lxllogR+ k,gx2 logR) + —Lo—é'((klg_))z

2rk 2k 8(k7)

(2.6.3) T
0,2,._2
+ (k,2) JR” log 3]
0 0 ok .

where k = k(P) ., k,i =— (P) , R= ]x—P| A Xi = xi-Pi (i=1,2) then

T o9x.
i
Ve (kVy) is bounded in a neighbourhood of P . By adding further terms
of the form x‘;‘ log R, R° log R (m,s€N) with suitable coefficients,
Ve (kVU) can be made successively better behaved at P . We may now employ
a cut-off function on blending function construction, just as in §2.1, to
U to obtain functions satisfying (2.6.2). Similar considerations apply

to the cases of extraction expressions for Vw(P).

Another modification of (2.1.1) that can be similarly handled is the

inclusion of an absolute term. Consider for instance

- V2w + cw = f in @
w = 0 on T

kVwen =g on T

where ¢ 2 0 1is assumed for simplicity to be a constant. Again for this
problem one can obtain extraction expressions for w(P) and Vw(P) (P€ Q)

of the form

(2.6.4) Int J £ + j 9o + J V2p-ch)w - [ Voonw .
e+0 /g Iy Q r

Here the generalized Green's functions ¢ are essentially the same as in
§2.1, though again with a somewhat more sgpecific form for ¢o to ensure
that V2¢ - c¢ is smooth in a neighbourhood of P . For instance, in the

case of an extraction expression for w(P) if we take

=L < g2
Hix) = o (1+4 R”) log R

then Vzu-cu = O(Rzlog R) in the wvicinity of P . The usual cut-off and
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blending function constructions applied to U will yield a suitable

generalized Green's function for use in (2.6.4).

§2.7 GENERALIZATIONS

The extraction expressions that were derived in §2.1, §2.3, and §2.4
depended on having certain singular solutions of Laplaces equation available
explicitly. Clearly this sort of requirement places a limitation on the
class of equations for which the techniques can be effectively generalized.
However for some practically important equations such as the biharmonic, and
those arising in linear elasticity, many of the required singular solutions
are available in tractable form from classical sources. For instance in the
case of plane linear elasticity, extraction expressions for pointwise
displacements, stresses etc and for stress intensity factors can be readily
derived with the help of the methods of [4]. As indicated in §2.6, once
extraction expressions are available for a basic equation, then it may not
be too difficult to obtain corresponding extraction expressions for sliéhtly
modified equations (e.g. equations with non-constant coefficients, equations

with absolute terms etc.).

§3.1 NUMERICAL EXAMPLE: A TORSION PROBLEM

Consider the boundary value problem

- V%=1 in Q= (-1,1)°
(3.1.1)
w=0 on 39(=FD)

We shall employ the theory of §2.1 and §2.3 for the calculation of
approximate values for w(0) and (Vw)l(l,O) . A series solution for (3.1.1)
can be found by the method of separation of variables, so exact values of

w(0) and (Vw)l(l,O) are available for comparison with any approximations.
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The extraction expression (2.1.9) becomes in the current setting

(3.1.2) w(0) = lmt J o+ J Vow .
e+0 ‘Q Q

We shall compute with three specific choices for the generalized Green's

function ¢ .

CASE I d(x) = n(X)@i log |x|)
i
where NG = n)n,)
1 -3t
with n) =

l—8([tl—%)3 3<|t]s1

CASE II b(x) = %% log |x| - ¢*(x)
(1+x2)(l+x2) ¥
% -1 1 2
where ¢7 (%) = EE'log E_____ET_—___] .

Case I is a cut-off function construction, while in Case II a blending
function method has been used. Ths third choice, Case III, also employs a
blending function construction though space does not permit us to give

complete details here.

Likewise from 2.3 we have the extraction expression of the form

(3.1.3) (V) | (1,0) = Imt J o+ J Vo .
e+0 Q) Y/
Again we shall consider a number of choices for ¢ . Cases A and B will

involve a combined cut-off function and blending function construction,
while C and D just use blending function techniques. We shall only give

details here of the construction of ¢ for Case B.
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1 %571
CASE B o (x) = n(x) | 5= 0% ()
|x=(1,0) |
1 O§x1§l
where n(x) =
1—!x1|3 -1§x1<0
xl—l
and o* (x) = — -
(xl-l) +1
1 %7t
Notice that the singular term T already vanishes on x1= 1 (xz%O).
|x=(1,0) |

To completely satisfy (2.4.1b) a blending function technique has been used
to ensure that ¢=0 on x,= 1 , and a cut-off function method to handle

the edge = -1 .

Because of the symmetry present in (3.1.1), when solving for the finite
element approximation W we need only work on the guarter segment'(o,l)2 .
A sequence of uniform square meshes employing bilinear elements was established
on this quarter segment. The top portion of Table 1 shows the finite element
error as measured by Hw-%HE for each of these meshes. The remainder of
Table 1 compares the accuracy of the direct approximations w(0) and
(VW)l(l,O) , to the accuracy of approximations based on the extraction
expressions (3.1.2) and (3.1.3). ©Notice that the first integral of (3.1.2)
is strictly speaking improper, though in the computations it was evaluated
using the standard 4-point Guassian quadrature on each element. However
the first integral of (3.1.3) is more critical, and care is needed in its
evaluation near (1,0). One possibility is to evaluate it analytically,

though there are other possibilities.

Table 1 shows, as expected for bilinear elements and smooth solution w ,

3

(i) an N~ rate of convergence for both the global error as measured by

”w—WHE , and the error in (V%)l(l,O) ; and (ii) an N_l rate of convergence
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TABLE 1

NUMERICAL RESULTS FOR THE EXAMPLE OF §3.1

N (No of elements in
quarter segment, 4 16 64
uniform mesh.)
i|w—€«]|E / ||w||E 30.1% 15.2% 7.62%
Relative error in
approximations for w(0):
Direct Evaluation w(0) 5.4% 1.3% 0.31%
Extraction Expressiocn (3.1.2)
Case I 8.7% 2.5% 0.62%
IT 2.5% 0.63% 0.16%
IIT 0.95% 0.25% 0.064%
Relative error in
approximations for (Vw)l(l,O):
Direct Evaluation (V%)l(l,O) 29% 16% 8.7%
Extraction Expression (3.1.3)
Case A 4.1% 0.49% 0.096%
B 1.3% 0.32% 0.076%
C 1.5% 0.37% 0.089%
D 0.59% 0.15% 0.038%
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for |w(0)- %(0)| . Turning now to the errors in the extracted approximations
based on (3.1.2) and (3.1.3), Table 1 shows that in all cases these errors

are O(Nwl) . This is consistent with the assertion made in §2.2 that these
errors should all behave as O(Hw—%”é) . Notice in particular that for
approximations to the derivative this is twice the order of accuracy of the
derivative of the finite element solution itself. The fact that the rates of
convergence for w(0) and the cases I~ III are the same is a consequence

of our use of bilinear elements; quadratic elements would have produced

-%

~ -2
O (N ) for w(0) , but a superior O(N ) rate for cases I-III .
Nonetheless, even for bilinear elements cases II and III consistently

give better accuracy than w(0) .

The variation of accuracies amongst the cases I, II and III, or amongst
the cases A, B, C and D can, at least partially, be attributed to the relative
smoothness of the respective extraction functions. For instance, one would
expect the extraction function b = V2¢ arising in case I +to be more
rapidly varying than that arising in case II. It is not surprising then,

that case II yields a consistently more accurate approximation than case I.

§3.2 NUMERICAL EXAMPLE: A SLIT DOMAIN PROBLEM

Consider the model problem (see Fig. 4.)

V2w =0 in @
~ 0
Vwen = 0 on PN (considered two-sided)
~ 1 1
Vwen = il%ﬁfl r? cos 6/2 on FN

where the boundary data has been chosen to give an exact solution

3 %>

w=1r° cos 0/2 + ¢ cos 36/2 .

Cbviously the exact value of the stress intensity factor k associated with

w is 1. (cf. §2.4)
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Figure 4.

Finite element approximations w were computed for a sequence of
specially refined meshes for this problem. Transformed bilinear square
elements were used. The presence of a singularity at O means that uniform
or quasi-uniform meshes are not appropriate for this problem. For each such

approximation the extraction expression (2.4.2) was employed (with

¢ = %~r_% cos 0/2) to extract an approximation k from w . Some results
are shown in Table 2. For the sake of comparison we also give the results
of an alternative method for approximating k . This method is based on
o w(x) . . .

rewriting (2.4.1) as k = 1lmt I and then approximating this

x+0 r®cos0/2

(0#m)
limit by evaluating
(3.2.1) K* = %W(X)

r° cos 6/2

at points x sufficiently close to O .

The following two comments can be made concerning the results shown

in Table 2:

(a) The error in the extracted approximation k behaves roughly like
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TABLE 2

APPROXIMATIONS TO STRESS INTENSITY FACTOR k

N
(No of degrees-of- 28 63 98
freedom)
l|w—w||E / ||wnE 13.6% 8.7% 6.86%
Extraction Expression (2.4.2) .9857 .9922 .9956
(relative error in
parentheses) (1.42%) (0.77%) (0.43%)
Method of (3.2.1) with
*
(i) (xl,x2)= (.125,0) ) 1.038 1.067 1.093
(ii) (0,.125) 0.8144 0.8179 0.8486
(iii) (.125,.125) 0.9718 1.022 1.041
*
(iv) (.0625,0) *) 0.9887 1.009
(v) (0, .0625) 0.8735 0.8815
(vi) (.0625,.0625) 0.9411 0.9895
*
(vii) (.03125,0) ) 0.9632
(viii) (0,.03125) 0.9036
(ix) (.03125,.03125) 0.9262

(*) These points are vertices of the element E for this mesh.

L
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O(Hw—%”é) . (The energy norm of the error Hw—%HE itself has an
3

experimental convergence rate of N . This is a consequence of our

use of "optimally" graded meshes.)

(b) For each mesh considered the extracted approximation is markedly
better than those based on (3.2.1) which are seen to be sensitive to the point
x used. The problem with (3.2.1) is that the non-leading terms of (2.4.1)
will pollute k* . To minimize this pollution one can try to move =x closer

to 0 , however w(x) can then be expected to become less accurate.

We shall also use this example to illustrate the difficulties that may
arise when the extraction expressions of §2.1 are applied at points P close

to 9 . Suppose we wish to find the x component of Vw at P = (.5,.05).

1
If we apply the techniques of §2.1 in a straight forward manner using the
generalized Green's function (2.1.14) with ¢0 = 0 , then we obtain the
poor results shown in the first part of Table 3. The reason for these poor
results is that the boundary extraction function b = —V¢-ﬁ is changing
rapidly along Fg near P . As was remarked in 82.2 this will generally

mean that the solution Y of the auxiliary problem (2.2.1) will also not

be well behaved near P . Thus the factor inf ”W-ZHE in the estimate (2.2.2)
z€S

could well be quite large. Moreover, any rapid changes in b will have a
bearing on the accuracy of any quadrature formula used. One way to overcome
these difficulties is of course to locally refine the mesh near P . However
this is probably not very practical. Another possibility is to slightly

modify the generalized Green's function used above.

Let
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TABLE 3
APPROXIMATIONS TO Xl—DERIVATIVE AT (.5,.05)

N
(No of degrees-of- 28 63 98
freedom)
Approximation of (VW)1 8.2996 -1.5278 -1.5477

using unmodified
generalized Green's
function.

Approximation of (Vw)

using modified 1

generalized Green's 1.7681 1.7693 1.7677
function.

(zzlaiige errors in (0.095%) (0.163%) (0.073%)
parentheses)

Exact Value: (Vw)l(.S,.OS) = 1.7665

where P* = (.5,-.05) is the image point of P in the xl-axis. Then WU is
harmonic (except at P and P¥*) and Vu-ﬁ = 0 on the x1 axis and so in
particular on (both sides of) Fg. Clearly W has the necessary asymptotic
behaviour at P for a generalized Green's function (see (2.1.4)). To
complete the modification we can apply any of a variety of cut-off or blending
function constructions. For instance, if 1 is any sufficiently smooth

function defined on § , satisfying n = 1 in a neighbourhood of P and

n = 0 in a neighbourhood of P* , then

$(x) = n(x)ux)
is an appropriate generalized Green's function.
The extraction approximations resulting from such a modification are

also shown in Table 3. The improvement in accuracy over the previous case

is obvious.
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