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A NON-STANDARD POST-PROCESSING TECHNIQUE IN THE 

FINITE ELEMENT METHOD 

A.D. Miller 

§1.1 INTRODUCTION 

of·i~en the principal purpose for which a partial diffeJ:ential equaj:ion 

is solved in practice is to obtain accurate values for a few physically 

importaJYt quanti ties. For ins·tance in stress analysis, ·the values of 

stresses (i.e. derivatives of the solution) or stress int.ensi·ty fact.ors at 

a small nu:m.ber of cri'cical sites in a s·truc·ture are important design criteria. 

Decisions on >t;hether a structure meets design and safety specifications are 

often made on the basis of these few quantities. Less is demanded of the 

mass of remaining sol1...rtion information., r-t ma:y· be con1;plet .. ely diE,reg-ardedor 

or only examined qualitatively >vi·th a view ·to determining ••hether the 

solu'cion is physically reasonable. These considerations suggest tha·t some 

thought should be given to how these few specific quantit.ies can be e:Eficien·tly 

approxima·ted. 

In the finite element me'tlwd ·the mos·t straigh·t:fm:ward way (Jf ob·taining 

approximations to soltrtion values and derivatives is 'co directly evaluat:e t:he 

finite element solu·tion or its der:iva'd.ve. However -there are sometimes more 

sophisticated ways of "post-processing'" the finite elemen·i: solution than this. 

In this paper we shall discuss one such me·thod. For a more detailed account: 

than v~e are able i:o give here see [1] - [3] . The above straigh:tfonJard pos-t­

processing technique of course has 'che advan·tage of being comput.ationally 

fasi:o Let us no·te however, U~a·t since only a few quan·tities will 1.1sually 

ever r~eed to he calculated,. there is no real disadvan-tage in expending a 

modest amount of compu·tational effort in any pos·t-processing calculation. 
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The basic error estimate in the theory of the finite element method 

is the best approximation result 

(1.1.1) inf llw-viiE , 
vEs 

where w is the exact solution of the problem, w the finite element 

approximation from the finite element subspace S , and II•IIE is the 

energy norm associated with the problem. Typically II•IIE is an L2 norm of 

first derivatives. The estimate (1.1.1) is relatively easy to obtain, and 

it highlights the special role that the energy norm plays in any analysis of 

the finite element method. Asymptotic estimates for pointwise errors in 

w and its derivatives can be proved in some circumstances, however such 

proofs are considerably more involved than that of (1.1.1). Moreover, 

practical experience indicates that the behaviour of the pointwise error 

in w , and especially in its derivatives is not particularly robust. For 

instance, the errors can vary considerably within elements, or between 

elements, they may not decrease monotonically with mesh refinement, etc. 

While such effects may not be present to any significant extent in the case 

of smooth problems, they can cause serious problems in nonsmooth cases. 

The post-processing technique to be discussed here will calculate 

approximations for pointwise values of the solution w and its derivatives, 

as well as other functionals of w , by global averaging of w The errors 

in these approximations can be directly related to II w-wll E • Because of 

this,the technique tends to be more robust than working directly from w 

Moreover, the approximations are in most cases more accurate than those 

obtained by direct methods. 

The technique can be applied to many linear problems, though for 

simplicity we shall only discuss it here in the context of a mixed boundary 

value problem for Poisson's equation, with a few brief comments about 
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generalizations. This is all done in §2. In §3 we present some simple 

numerical examples to illustrate the theory of §2 and to demonstrate its 

practical viability. 

§2, 1 EXTRACTION EXPRESSIONS AND THEIR APPROXH~ATIONS 

Let r2 c be a bounded domain vvith sufficiently smooth boundary 

3Q • Suppose ()Q consists of ·two pa.rts fN and f 0 (see F'ig.l). Consider 

the boundary value problem: 

1!2w f in Q 

(2. 1.1) w 0 on rn 
vw•n g on r 

N 

ro 

Figure 1. 

For "technical simplicity 1r·Te suppose fD is nonempty, ·though this is nO't 

essential. 

The problem (2.1.1) has a Galerkin formulation as: 

I . { 1, 2 Find wE 1 = wEW (m 

i!v E H • 
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Letting S be a (C 0 -conforming) finite element subspace of H , we 

can pose the corresponding finite element approximation of (2.1.2): 

Find w E S such that 

(2.1.3) Vv E s 

Subtracting (2.1.3) from (2.1.2) leads to the orthogonality relation 

(2.1.4) Vv E s 

from which follows the standard best approximation error estimate 

where 

inf llw-vJIE 
vEs 

is the energy norm associated with the problem (2.1.2) 

Let us be interested in integral expressions for w(P) and Vw(P) 

where P is an interior point of Q . Of course, if we knew the appropriate 

Green's function G(•,•) for this geometry, we could immediately write down 

(2.1.5) w(P) J f(x)G(x,P)dx + J g(s)G(s,P)ds . 
Q rN 

(Similar expressions for the components of Vw(P) could be obtained by 

differentiating (2.1.5) with respect to P. ) However, except for the simplest 

geometries, G(•,•) is not known explicitly. Nonetheless, integral expressions 

which are closely related to (2.1.5) can be readily obtained for quite general 

geometries. 

For the moment let ~ be any sufficiently smooth function defined on 

fi- {P} • Suppose E: is small enough to ensure that {x, I x-P I < E:} c Q • 

Let {x EQ, lx-PI > E:}, and rE: {x,lx-PI=d. (see Fig.l). Multiply 
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the first equation of (2.1.1) by ¢ and integrate by parts over nE to obtain 

,.. 
where n denotes the outward pointing unit normal to anE . Noting that 

dQE = fEU f N U f D , and using the boundary conditions of (2 .1.1) a simple 

rearrangement of the above gives 

(2.1.6) 

- Jr (Vw•fl¢-V¢•flw) 

E 

Now let us be more specific about ¢ Suppose in addition that 

(2.1. 7il.) 1 
¢(x) =- 2TI loglx-PI + ¢0 (x) 

where. ¢0 , IV¢0 1 

(2.1. 7b) 0 on f 0 ; 

(2.1. 7c) (V2¢) extends smoothly to all of n, V¢•n smooth on rN • 

Take the limit as E + 0 in (2.1.6). Because of (2.1.7a) 

(2.1.8) lmt -
E+O 

whilst (2.1.7c) ensures that 

lmt f V2¢w = f~ V2¢ w 
E+O Q " 

.E 

exists. In the limit (2.1.6) therefore becomes 
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on using (2.1. 7b). This expression is quite similar to (2.1.5) in that i·t 

involves in'cegrals of the loading data f and g ,. bert it also con·tains 

terms 1,rhich are 1veighted in·tegrals over and of the solution 

itself. 

') 

In ·the particular case where (2 .1. 7c) reduces to v-rp = 0 in Q- {p} 

then rjl(x) = G(x,P) ·the Green's function for the 

field poin·t P , and (2.1.9) is identical •.liith (2.1.5). 'rhe presence of 

in·tegrals of w on the righ·t hand side of (2.1.9) of course means that in 

general it no longer gives an explicit formula for w(P). However, i·t 

provides a means of relating the pointwise value w(P) to certain averages 

of w over Q and fN Since intuitively we might expect a finite elemen·t 

solution to behave better in an average sense ·than in a pointwise sense, i'c 

would seem na·tural to try to approxima'ce w (P) by 

w p frjl 

ra·ther 'chan by ·the poiirtvlise value ·w(P) 

it.self., we shall discuss 'che accuracy of 

1'1 (P) 

Jr V¢'n;7 , 
N 

of the finite element solu·tion 

\IV p 
as an approxima·tion to 

We shall refer ·to any expression of the form of the right hand side of 

l\ = Q(f,gl + Jn 
,. 

aw + jr bw 

-N 

where Q (f ,g) is a quant:ity involving only in·tegration of ·the dat.e. f,g , 

and a,b are sufficiently smooth functions on rl and rN respectively, 

as an ex·trac·tion c3xp~ession., The functions a and b ~.~.till be called ·the 

corresponding volume and boundary ex·trac·tion functions~ If the terms of 

(2.1.11) ~ake the particular fo~~s 
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g¢ 

for some function ¢ which vanishes on r P , t.hen ¢ will be called a 

generalized Green's function. Often ¢ ;,;ill have some kind of singular 

behaviour at a point: of Q or (JQ In these cases (2.1.12) may need to 

be int:erpreted appropriately o For ins·tance, the in·tegrals of Q (f, g) may 

only exist in a principle value sense; 1.vhile a= \7 2 cp may need ·to be under-

s·tood as meaning ·that V2qJ (•which may not. exist. in a classical sense at all 

poin'cs of Q ) can be extended smoothly by a to all of Q • Like•~rise 

r 
N 

Just as the approximatJ.on a.rose naturally from Jche extrac·tion 

expression (2.1.9), so i·t would seem reasonable to approximate the value A 

of any extraction expression such as (2ol.ll) by 

(2.L13) 1\ Q(f,g) +Law+ 
"' 

J p bw 
JN 

In the above terminology (2~1.9) is an ex-traction expression for w(P) 

which is derived from the generalized Green" s func·tion ¢ of ( 2 0 l 0 7) . 

Ex·tra.ction express ions dnalogcn_~,s t.o ( 2. l. 9) F but which yield ·the 

componen·ts of \lw (P) can be fo1..md by differentiat:ing (2. L 9) with respect 

to P • Al·terna.·tively, the above derb1a·tion can be repeated, but ,,1ith 

(2.1.7a) replaced by 

(2.L14) ¢(x) 

for the deri·vat.ive., or by 
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(2.1.15) ¢ (x) 

for ·the derivative. Notice that the leading terms of {2.1. 7a), (2.1.14) 

and (2.1.15) are simply ·the classical soluLions of Poisson"s equation in ·the 

entire plane corresponding ·to a poin·t load, a dipole load oriented in ·the 

direction, and a dipole load orient.ed in the x 2 direc·tion respectively. 

For ·the approximation (2.1.10) to be practical, generalized Green's 

func-tions ¢ v.rhich satisfy (2 .1. 7) rnus·t be found. ':Chis does not usually 

present much difficulty. 1ile shall briefly ou·tline t:wo quite generB.l methods 

for construc·ting suitable func·tions Cfl 

(a.) Cut-off function me·thod: Let n be a.ny sufficiently .smooth 

function on Q sa·tisfying n = l in a neighbou:dwod of P n=o on 

If we set 

¢ (x) n (x) (- .:If log I x-P I) 

·then (2~1"' 7) is sa-"cisfieCL (See § 3 .l for an example.) 

(b) Blending function method: Choose qJi' to be sufficierrtly smooth 

on and to satisfy 

¢ (x) 

- _l_ log I x-P I x E r0 21T - J f ~ 

l 
2TI 

log I x-P I - ¢* 

satisfies (2.1.7). (Again, see §3.1 for an example" 

Then. 

Clearly 'chere will be a wide choice for the cu·t-off function ~! or 

·the blending function ¢* . Each such choice will lead ·to a different 

extraction expression., Of course" a.ll ·these 1'r,rill yield ·the same resu.l·t 

if applied ·to the exac·t solution w as in (2" L 9). However, t:his will 

not usually be the case for {2 ~ 1 ~ 10); differ.snt choices for cp will lead 

to differen-t approximations ':·11P 
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The above methods can similarly be applied to construct generalized 

Green • s functions for ·the extraction of i:he derivatives. One need only 

replace the term ;TI loglx-PI in (a) and (b) by the leading term of 

(2.L14) or (2.L15). 

§2.2 THE ACCURACY OF A 

If we suppose that A is evaluated exactly, then subtracting (2.Ll3) 

from (2.Lll) gives 

a (1•1-~i) + J r b (;,1-w) I . 
-N 

To help estimate this error we make use of the follmving simple lemma: 

say, and let w be the solution of 

2 1:n n -\1 ljJ a 

(2. 2.1) ~)"" 0 on rD 
\/~Jon= b on r 

N 

Then 

lhv-w!IE inf II1J!-zll 
zES E 

Proof: After an int.egration by par'cs and use of 2.2.lj, we have 

'tfv E H • 

Choose v = w-w E H ·to find 
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However by the fundamental orthogonality property (2.1.4) 

for any z E S 

(2.2.3) 

Thus 

lEI= If V<1/J-~>·V<w-z> I :> 
S1 

Ill 

Notice that (2.2.2) is only an upper bound as it fails to take account 

of any cancellation in the integral in (2.2.3). 

The estimate (2.2.2) confirms the naturalness of the approximation 

A in that it shows the accuracy of A is directly related to the accuracy 

of the finite element solution w as measured in IJ·IJE • However the 

accuracy is also dependent upon how well the solution 1jJ of the auxiliary 

problem (2.2.1) can be approximated by functions from S , as measured 

by II•IIE . Note that (2.2.1) is of precisely the same form as the original 

problem (2.1.1) but with different loading data. The loadings on S1 and 

rN are now the volume and boundary extraction functions respectively. 

We shall leave more specific discussion of the accuracy of A to §3 

where we shall illustrate the high accuracy of extracted approximations 

by way of some simple numerical examples. In this section we shall restrict 

our discussion to some general comments: 

(a) In many cases one can expect and in~ IJ1/J-ziiE to be 
zES 

comparable, at least for some class of finite element subspaces S In such 

a case (2.2.2) shows that lA-AI =O(IJw-wll~>. In particular, using the 

extraction expressions of §2.1 we can obtain extracted approximations for 

both pointwise solution values and derivatives, both to an accuracy of 

Contrast this situation to that of direct evaluation of the 

pointwise valuesandderivatives of w where the derivatives are usually 
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one order of mesh size less accura'ce than the solution values. In addition, 

one can usually expec·t no better accuracy in the point.wise derivatives of 

(b) A number of factors may influence the magnitude of the quanti·ty 

in the es·timate (2. 2. 2), bu·t a major consideration is the 

smoothness of ·the data. of (2.2.1). In cases where the ext.ract.ion functions 

are derived from a generalized Green's func·tion ¢ by means of (2 .1.12), 

·then the smoothness of the extraction function will obviously 

depend in some way on For example, using t;he techniques ou·tlined 

in § 2. 1 i'c is usually no·t too difficult t:o ccmstruct generalized Green" s 

functions which yield appropriately smoo·th extrac·tion functions provided 

the point P is far enough from Clrl • However if P is "close" 'co (lQ 

t:his may not be the case. Unless specia] care is taken in the construction of 

ql , t.he singular behaviour demanded of ¢' at P by (2 o 1. 7a.), (2 o L 14) or 

(2 .1. 15) ~;Jill usually resul·t in unaccepi:able volume or boundary extraction 

functions. An approach that ove:t:comes this problem will be illusi;ral:ed by 

way of an example inl § 3., 2" 

§2. 3 EXTRACTION EXPRESSIONS AT BOUND.Il.flY POINTS 

In §2 so far we have only considered extraction expressions for 

solu·tion values and derivat.ives at: poin:ts P in the int:erior of Q We 

now wan'c ·to handle points orr ()Q • For definit:eness, suppose tha·t 0 E (JQ 

and that 0 is no·t an endpoin·t of eid:~er or Suppose furt:her 

that the ){2-axis is tangeni~ to art at. (see Figo2") an,d tha·t v.Je a.re 

interested in extraction expressions for fl ~ w (0) 

(if 0 E 
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Figure 2. 

Proceeding along similar lines to the derivation in §2.1 we may obtain 

ex·traction expressions for II. of the form 

II. 
2 

II ¢;w -

(2.4.1a) lr ¢; (x) 

¢ (x) 
1 ''1 --- + (x) 
TI Jxj2 

(for 1/w"; (0) , 0 E 

I r-1 
0 ( X[ ) as x + 0 , 

(2.4.lc) 1! 2¢ extends smoothly ·to all of Q V¢ o ?;_ ex~cends smoothly ·to 

a.ll of r 
N 

Notice tha·t ·the leading terms of (2. 4 .la) are no¥1 the classical half-pl2.ne 

solu·tions for a point loading on a homogeneous l'Teumann boundary and a dipole 
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loading on a homogeneous Dirichlet boundary. 

As befm:·e, functions ¢ satisfying (2.4.1) are readily cons·tructed 

using blending and cut-off function techniques. Provided 0 is reasonably 

distant from any endpoint of f N or f D , the resulting extrac·tion functions 

a= 'i72 <j> and b ~ -V'¢•fi can easily be ensured sufficiently smooth. For ins·tance, 

in the ca.se of an extraction expression for w (0) one possibility would be 

-l logJxl- ¢* 
TI 

is any sufficiently smooth function sa·tisfying on 

r D One point t:o note in connection with evalua·ting V<j> ";;; on r N near 0 

in this case, is that \7¢ of course becomes singular as x ~ 0 However 

provided is smooth near 0 , then \7¢•;; is well behaved as a function 

of arcleng·th along r N • The practical consequence of this is that. some care 

needs to be exercised in numerica.lly evaluating \7¢•; here. Likewise in the 

case of extraction expressions for 'ilw•;(O), the leading term of (2.4.1a) 

although singular as x + 0 is smoo·th as a function of arclength along r D 

§2.4 EXTRACTION EXPRESSIONS FOR STRESS INTENSITY FACTORS 

I·t is well known that in the neighbourhood of certain critical boundary 

points (e.g. angular boundary point.s, points when':! fN and fD meet) the 

derivatives of ·the solution of (2.1.1) may exhibit some form of singular 

behaviou:r·. Often it is of practical importance to know the '"s'crength" of 

these singular terms. As an example, consider (2.Lll in the par·ticular 

case of ·the sli'c domain shown in Fig. 3. Hen' the line 8 ~ 0, 2TI is a ·two-

sided part: of I'N If the loading data f and g are smooth enough, 

then the solution w of (2.Ll) is known to have the following asymptotic 

represen·ta·tion: 
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(2.4.1) w(x) 

0(1) as x + 0 • 

Figure 3. 

Note that Vw has an r-1-type singularity as x + 0 . The coefficient k 

in (2.4.1) may, by analogy with fracture mechanics, be called the stress 

intensity factor. (In linear elastic fracture mechanics the stress intensity 

factor gives some indication of the tendency of a crack, as modelled by a 

slit, to extend under the applied loading data.) 

Following exactly the same procedure as in §2.1 we can obtain an 

extraction expression for k : 

(2.4.2) k = lmt (J fcjl+ J gcp) 
E+O rl fN 

E ,E 

where now rlE {xE n: jxj>E} 

(2.4.3a) cp (x) 1 -t TI r cos 6/2 + cp0 (x) 

where cp0 , jvcp0 j = o(r-t) as x + 0 . 
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(2.4.3b) 

(2.4.3c) V2¢ extends smoothly to all of ~ V¢•r; extends 

smoothly to all of rN 

In (2.4.2) the line integrations treat the part e=o, 2'IT of .rN as 

two-sided. Note that the leading term of (2.4.3a) already satisfies 

2 (1 1 e) V 1T r cos 2 = 0 
r 1 -! e) A 

in ~ , and Vln r cos 2 •n = 0 on e= 0 1 2'Tf 

(r#O) • Therefore functions ¢ satisfying (2.4.3) are readily constructed 

by the usual cut-off or blending function techniques. 

§2.5 EXTRACTION EXPRESSIONS FOR INTEGRALS OF BOUNDARY FLUXES 

Consider the case explicitly implied by Fig.l where r0 has two 

components, and say. (We assume that and are a non-zero 

distance apart.) Suppose we are interested in the quantities 

(2.5.1) 

In mechanical terms we can think of A0 and A1 as measuring how much of 

the total applied load L ( = J ~ f + J r N g) is carried by each of the fixed 

supports f~ and f~ respectively. (A simple integration by parts shows 

that L A0 + A1 . ) Although the expressions of (2.5.1) for A0 ,A1 are 

already in some sense integrals of the solution, they are not of the proper 

form for an extraction expression as set out in (2.1.11). However it is 

not difficult to derive some appropriate extraction expressions. 

Let ¢a(a=O,l) be any sufficiently smooth function defined on ~ 

which satisfies 
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1 
¢o = -1 ro 1 on 

' = 0 on ro D 
(2.5.2) 

cpl = -1 on rl cpl = 0 on ro 
D D 

A simple integration by parts shows immedia-tely that 

(2.5.3) !\_ 
0: r 

J~ 
feb 

'G 

f 
+ [ 

Jr 
N 

Finding smooth functions that: sa-tisfy (2.5.2) clearly presen-ts no great 

difficulty. Obvious adaptations of cut-off function or blending func·tion 

construc-tions could for instance be employed. (The smoothness of cpo: and 

the resul-ting extraction functions will obviously depend on ho~; far 

and r 1 are apart.) 
D 

§2.6 MODIFIED VERSIONS OF THE PROBLEM (2.1.1 

In § 2.1 we shmved how to ob"cain extrac-tion expressions for solution 

values and derivatives in a mixed boundary value problem (2.Ll) for 

Poisson~ s equa-tion~ These exJcraction expressions we:ce constructed from 

·the classical poin'c source, and dipole solutions for ·the entire plane. 

lm examina.tion of ·the derivation in § 2.1 shows ·that only ·the local 

behaviour of t.hese solu-tions at P v.Jas essential to the argument.. rche 

fac~c ·tha·t they also happened to be harmonic in Q ·• {P} was more or less 

imma-terial. Thi,s suggests that. ext:raction expressions for solu-tion values 

and derivatives for equations wi·th (smooth) non-constant coefficients 

should be closc::;ly rela.t:ed ·to the corresponding ex·trac·tion expressions for 

·the equation wit.h 11 frozen or coefficients at P 

As an illustration consider t,he following genere<.lization of (2. L 1) 

\]• (k\lw) f in Q 

w 0 011 r 
D 

A 

k\J~4"D g· on r 
N 
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where k is a smooth function on n I k (x) ;;: ko > 0 (X E m . Again let us 

be interested in w(P) and Vw(p) for P an interior point of rl . 

Proceeding as in §2.1 we obtain extraction expressions of the form 

(2.6.1) 

for the quantities w(P) and Vw(P) , where ~ satisfies 

(for w(P)) 

(2.6.2a) ~(X) 
1 xl-Pl 1 Clk (P) loglx-P) I+ ~O = ------------ + 

axl 27fk (P) I x .. p l2 47r(k(P)) 2 

1 x2-P2 1 Clk 
(for (Vw) 1 (P) ) 

~ (x) = ------ ------ + 
47f(k(P)) 2 Clx2 

(P) loglx-PI + ~O 
27fk (P) I x-P 12 

(for (Vw) 2 (P)) 

(2.6.2b) 

(2.6.2c) V•(kV~) extends smoothly to all of n, 

kV~·fl smooth on rN 

The task of constructing functions ~ satisfying (2.6.2) is a little 

more difficult than that encountered in §2.1. The new difficulties arise 

from the first part of (2.6.2c). The operator V•(kV(•)) applied to the 

leading terms of (2.6.2a) no longer yields functions that can be smoothly 

extended to all of n • For instance, in the case of extraction expressions 

for w(P) , 

V •k(V r-1-logjx-PI]) = - 1- ((x-P)•Vk) 
X X 27rk(P) I 12 x-P 

which is singular at x = P • This problem may be overcome however by being 

a little more specific about the form of ~O • If for example we take 
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]1 (x) 

(2.6 .3) 

cvhere 
0 

k (P) 
0 ()k 

(P) lx-Pj (i=l,2) then k = ' k,i dX. f R = -P, 
l. 

l. 

\fo (k\lf.l) is bounded in a neigl:1bourhood of p By adding further terms 

of the form X~ log R, Rs log R (m, s E:lN) with suitable coefficients, 
J 

\]• (k\7]1) can be made successively better behaved at P • lile may now employ 

a cu·t-off function on blending funct:ion construction, just as in §2.1, 'co 

f.! to obtain functions satisfying (2.6.2). Similar considerations apply 

to the cases of extrac·tion expressions for llw(P). 

Ano·ther modification of (2.1.1) that can be similarly handled is the 

inclusion of an absolu·te ·term. Consider for instance 

172~, + cw = f in n 

w 0 on ['D 

k\lw•fi. = g on rN 

where c ~ 0 is assumed for simplici·ty to be a cons'cant. Jl.gain for this 

problem one can obtain ex-traction expressions for \'l(P) and 17'<1 (P) (P E m 
of 'che form 

lmt 
s+O 

f¢ + gq) 

Here ·the generalized Green~ s fu.nc·tions ¢ are essen·tia.lly the same as in 

§ 2 "1, though again with a sornevJhat more specific fonn for to ensure 

that v2cp - c¢ is smooth in a neighbourhood of P " For instance, in the 

case of an extraction expression for w(P) if we take 

11 (x) 

·then o (R2log R) in 'che vicinity of P " The usual cut-off and 
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blending function constructions applied to )-l will yield a sui-table 

generalized Green's func·tion for use in (2.6.4). 

§2. 7 GENERALIZATIONS 

The eX"traction expressions ·that wex·e derived in §2.1, §2.3, and §2.4 

depended on having certain singular solutions of Laplaces equa·tion available 

explicitly. Clearly this sort of requirement places a limitat.ion on the 

class of equations for which ·the techniques can be effect.ively genera.lized. 

However for some practcically important equations such as the biharmonic, and 

those arising in linear elasticity, many of ·the required singular solu-tions 

are available in tractable form from classical sources. For instance in the 

case of plane linear elasticity, ex·trac·tion expressions for pointwise 

displacemen-ts, s'cresses e·tc and for stress intensi·ty factmcs can be readily 

derived •.vit~h the help of t.he methods of [4]. As indicat:ed in §2.6, once 

ez·traction expressions are available for a basic equa-tion, ·then it may not 

be too difficult to obtain cm::re,sponding ex-traction expressions for slightly 

modified equations (e.g. equations with non-constan-t: coefficient.s, equat.ions 

wi·th absolute ·terms e·tc.) o 

§3,1 NUMERICAL EJ\MPLE: A TORSION PROBLE~l 

Consider i:he boundary value problem 

2 

.1.1) 

!Pie shall employ the theory of § 2.1 and § 2. 3 for the calculation of 

approximate values for w(O) and Cl!w) 1 (1,0) A series solution for (3 .1.1) 

can be found by ·the method of separation of variables, so exact values of 

w (0) and (\lw) 1 (1, 0) are available for comparison \vi·th any approxims:'cions. 
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The extraction expression ( 2. l. 9) becomes in the current se·tting 

(3.1.2) w(O) lmt 
s-+0 

I 
J~ ¢ + f~ 2 

1/ ¢w . 
s 

We shall compute with three specific choices for the generalized Green's 

func·tion ¢ . 

cjl(x) 
-1 

log [x[l = 11 (x) ( 2TI CASE I 

11 (x) n n 

1 
l -!~t;;;! 

n (t) 

1-s <It 1-& l 3 ~<lt[;:;l 

with 

~b (x) 
-1 

log [x[ (x) -
2Tf 

CASE II 

where 

2 2 ~ 
-1 l-(l+x1 ) (1-1-x, )] 

¢* (x) - 2 
= 2Tr log 2 

Case I is a cu·t-off function construction, while in Case II a blending 

function me·thod has been used. Ths third choice, Case III, also employs a 

blending function construction though space does not permit us to give 

complete deta.ils here. 

Likewise from 2. 3 we have the extraction expression of ·the form 

Cvw) 1 (l,O) lmt 
s-+0 

¢ + 
2 

V ¢1r1 

Again we shall consider a number of choices for ¢ . Cases A a.nd B will 

involve a cowo'::lined cu·t-off function and blending function construc-tion, 

while C and D jus"c use blending function techniques. We sha.ll only give 

details here of the construction of ¢ for case B. 
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CASE B <jl(x) Y](x) [% 
X -1 

1 '"' 2 - cp (x) 
lx- (1,0) I 

1 

where TJ (x) 

<0 

and ¢* (x) 

Notice that ·the singalar term 
1 xl-1 

1T lx-(1,0) 12 
already vanishes on =1 

To completely sa·tisfy ( 2 o 4. lb) a blending funct:ion technique has been used 

to ensure that \O = 0 on = ±1 , and a cut-off func·tion me·thod ·to handle 

the edge x 1 = -1 , 

Because of the symme·try presen·t in (3.Ll), vJhen solving fm: ·the fini'ce 

element a.pproximation w we need only work on rJre quEu~ter segment · (0 ,, 1) 2 • 

A sequence of uniform square meshes employing bilinear elemen·ts was ·es·tablished 

on ·this quarter segment. The ·top portion of 'I'able 1 shows the finite elemen·t 

"':;rro:t~ as measured by l[litr~W!!E fer each of these meshes,, The remainder of 

Table J. compares the accuracy of the direct approximations \;; (0) and 

(vw) 1 (1 ,0) , to ·the a.ccu.racy of a.pproxima·tions based on the ex'l~rac·tion 

expressions (3.1.2) and (3.L3). No·tice t.hat the firs·t integral of (3.1.2) 

is strictly speaking improper, though in the computa·tions i'c >vas evalua·ted 

using the st:andard 4-point Guassian quadratu:ce on each element. However 

<the first: ini:egral of (3.,1,3) is more cri·tical, and care is needed in its 

evaluation near (1,0). One possibili·ty is to evaluate it analytically, 

'chough there are other possibilities. 

Table 1 shows, as expected for bilinear elements and smoo·th solu-tion w , 

(i) an N -t rate of convergence for bo·th the global error as measured by 

llw-wll, , 
"' 

and ·the error in 1 (1,0) ; and (ii) an 
-1 

N rate of convergence 
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TABLE 1 

NUMERICAL RESULTS FOR THE EXAMPLE OF §3.1 

N(No of elements in 
quarter segment, 4 16 64 
uniform mesh. ) 

ilw-wiiE I llwiiE 30.1% 15.2% 7.62% 

----

Relative error in 
approximations for w(O): 

Direct Evaluation w(O) 5.4% 1.3% 0.31% 

Extraction Expression (3.1.2) 

Case I 8. 7% 2.5% 0.62% 

II 2.5% 0.63% 0.16% 

III 0.95% 0.25% 0.064% 

Relative error in 
approximations for ('ii'w) 1 (1,0): 

Direct Evaluation <Vw> 1 (1,o> 29% 16% 8. 7% 

Extraction Expression (3.1.3) 

Case A 4.1% 0.49% 0.096% 

B 1.3% 0.32% 0.076% 

c 1.5% 0.37% 0.089% 

D 0.59% 0.15% 0.038% 
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for jw(O)- w(O) I Turning now ·to the errors in ·the extracted approximations 

based on (3.L2) and (3.1.3), Tc>.ble 1 shows that in all cases these errors 

are 0 This is consisten-t with the assertion made in §2.2 tha'c these 

errors should all behave as 0 ( llw-wll~l Notice in particular that for 

approximations to the derivative this is twice the order of accuracy of the 

derivative of the finite element solut.ion i·tself. The fac'c that the rates of 

convergence for w(O) and the cases I- III are the same is a consequence 

of our use of bilinear elements; quadratic elements would have produced 

0 for w(O) , but a superior O(N rate for cases I- III • 

Nonetheless, evenforbilinear elements cases II and III consistently 

give better accuracy than w(O) 

The variation of ctecuracies amongs1: the cases I, II and III, or amongst 

t.he cases p,, B, C and D can, at least pa:;:tially, be a~ctributed to the relative 

smoothness of the respec'cive extraction func-tions. For ins·tance, one would 

expect the extraction function b = 17 2qJ arising in case I to be more 

rapidly varying than ·tha 1: arising in case II. It: is not surprising then,. 

that case II yields a consistently more accurate approximation 'chan case I. 

§3. 2 NUI'1ERIC/l,L EXAMPLE: A SLIT DDr1AIN PROBLEM 

Consider the model problem (see Fig. 4. 

(considered two-sided) 

cos 8/2 on 

where the boundary data has been chosen to give an exact solu'cion 

4 3/ 
w r 2 cos 8/2 + r· 2 cos 38/2 

Obviously ·the exact value of ·the stress intensii:y factor k associated tvith 

"' is 1. (cL §2.4) 
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Figure 4. 

Finite element approximations w were compu·ted for a sequence of 

specially refined meshes for ·this problem. Transformed bilinear square 

elements were used. The presence of a singularity a·t 0 means tha·i: uniform 

or quasi-uniform meshes are 'not appropriate for ·i:his problem. For each such 

approximation ·the extraction expression (2.4.2) was employed (with 

¢ = 
1 -! -r 
1T 

cos 8/2) to extract an approximation k from w . Some results 

are sho·vm in Table 2. For the sake of comparison we also give the results 

of an alterna·tive me·thod for approxima·ting k • This method is based on 

rewriting (2.4.1) as 

limit by evaluating 

(3. 2 .1) 

k = lmt 
x-+0 
(8~TI) 

k* 

w(x) 
! ' 

r cos8/2 

w(x) 
~ r cos 8/2 

a.-t poin·ts x sufficiently close to 0 . 

and ·then approxima·ting this 

The following tvJO comments can be made concerning ·the results shown 

in Table 2: 

(a) The error in the extracted e>.pproximation k behaves roughly like 
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TABLE 2 

APPROXIMATIONS TO STRESS INTENSITY FACTOR k 

,.----

! 
I 

I 
I 

I 

N 

(No of degrees-of- 28 
freedom) 

llw-wiiE I llwiiE 13.6% 

Extraction Expression (2.4.2)~ .9857 

(relative error in l (1.42%) paren·theses) 

Method 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

of (3. 2 .1) t"lit:h 

= ( .125,0) 

(0,.125) 

( .125, .125) 

( .0625,0) 

(0, .0625) 

( .0625, .0625) 

( .03125,0) 

(0, .03125) 

t 

r 1.038 

0.8144 

0.9718 

63 

8,7% 

.9922 I 

I 

1-(0. 77%) 

1.067 I 
0.8179 

1.022 

t 
( ;, ) 

0.9887 

J 

(*) These points are vertices of the element E for this mesh. 

98 I 
I 

6.86% i 

.9956 

(0.43%) 

1.093 

0.8486 

1.041 

J..009 I 
0.9895 
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0( (The energy norm of the error 11\·J-wll itself has an 
E 

-1" 
experimental convergence rate of N ' 

use of "'op"timally" graded meshes.) 

'!:'his is a consequence of our 

(b) For each mesh considered "the extracted approximation is markedly 

better than those based on (3.2.1) which are seen to be sensitive to the point 

x used., The problem ~vith (3"2.,1) is that ·the non~lea.ding terms of (2.,4 .. 1) 

will pollute k* To minimize tl1is pollution one can try to move closer 

to 0 ' however w(x) can then be expected to become less accurate. 

v?e shall also use this example to illustrate the difficulties tha"t may 

arise when the ex'craction expressions of § 2.1 are applied at points P close 

to 3Q . Suppose we wish to find the component of \/w a'c P = (.5,.05). 

If v.Je apply the techniques of §2.1 in a straight forward manner using "the 

generalized Green's function (2.1.14) witl1 0 , then .,,1e obtain the 

poor results shoitm in the first part of Table 3. The reason for these poor 

results is tha"t the boundary extraction function b -V¢·~ is changing 

rapidly along near p As was remarked in §2.2 this will generally 

mean "tha"t "the solution V) of the auxiliary problem ( 2. 2 .1) will also not 

be v.rell behaved near P Thus "t1-1e fac"tor inf in the estimate 2.2.2) 

could ,,vell be qui t.e large. Moreover, any rapid changes in b will have a 

bearing on the accuracy of any quadrature formula used. One way "to overcome 

"these difficult:ies is of course 1:o locally refine the mesh near P . Hov;eve:r 

fchis is probably not very practical. Another possibility is to sligl-rtly 

modify the generalized Green's function used above. 

Let 

lJ(X) 
l ( -Pl 

2Ti" I_ I x-P 12 -:-
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TABLE 3 

APPROXIMATIONS TO x1-DERIVATIVE AT (.5,.05) 

N 

(No of degrees-of­
freedom) 

Approximation of (17w) 1 
using unmodified 
generalized Green's 
func-tion. 

Approximation of (Vw) 1 
using modified -
generalized Green's 
function. 
(rela-tive errors in 
paren-theses) 

28 

8.2996 

1.7681 

(v~tJ) 1 (. 5, .05) 

63 

-1.5278 

1.7693 

(0.163%) 

1. 7665 

98 

-1.54 77 

L 7677 

(0.073%) 

where P* (.5,-.05) is the image point of P in the x 1-axis. Then J1 is 

harmonic (excep-t at P and P'") and VJJ•n on the x 1 axis and so in 

particular on (botb. sides of) r~. Clearly ]J. has the necessary asymp·to·tic 

behaviour at P for a generalized Green's function (see (2.1.4)). To 

complete the modification \ve can apply any of a variety of cut-off or blending 

function constructions. For instance, if n is any sufficien-tly smooth 

func'cion defined on Si , satisfying ll 1 in a neighbourhood of P and 

n 0 in a neighbourhood of P'' then 

¢(x) n(x)]l(x) 

is an appropriate generalized Green's function, 

The extraction approxima ):ions resulting from such a modification are 

also sho'tm in Table 3. The improvement in accuracy over the previous case 

is obvious. 
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