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REGULARITY FOR SOLUTIO~JS TO OBSTACLE PROBLE~1S 

J.H. Michael 

This is a repor·t on son1e research done join·tly v.Yith William P .. Ziem.er 

at the Cen.rcre. for l'-1athern.at:ical Analysis.. The research establishes in·terior 

regularity for a solut,ion to a classical obstacle problem of general type~ 

1. INTRODUCTION 

Let: Q be a bounded non-·empty open set of Let K be the convex 

subse·t of thco Sobolev space consistin•g of all v Jl such that: v 

a<;:rrees 'vith a boundary funct:ion 8 on ()Q in a sui"ca.ble way and 

v (x) ;;; 1jJ (x) 

for almos·t all x E Q , where \~ is a function defined on Q (the 

~'~obst.acle'li Put 

I (vJ In F(x,v(x),Dv(x)}dx 

for v E K , where F is a function \vith suitable properties. Let 

(] inf I (v) 
vEK 

and suppose there is a function u E K , 

I (u) a . 

such that 

(1) 

(2) 

(3) 

The above is a general description of a classical obstacle problem and 

u is a solution. A great deal of research has been done on 'cl1e regularity 

of such solutions [1,2,4]. Our research assumes much less about the function 

1)i ·than has been assumed in earlier >vork. 
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Actually our results are obtained in a slightly more general setting. 

It is well known that if u E K is such that: (3) holds and the function F 

satisfies appropriate conditions, then 

for all 

I f ~F (x,u(x),Du(x)) ~ (x)dx 
i=l r.i pi Clxi 

with 

+ f ~F (u,u(x),Du(x))<jl(x)dx ~ 0, 
r.: oz 

<jl (x) :? 1/J (x) - u (x) 

for almost all x E r.: • 

This is a special case of the weak inequality: 

Ei_ 
(x,u(x) ,Du(x)) dX. (x)dx 

~ 

+ J B(x,u(x),Du(x))<jl(x)dx ~ 0 
n 

¢ (x) ~ 1/J (x) - u (x) 

for almos'c all x E r.: . Our research is concerned with ·this more general 

inequality. It will be assumed that u E lJifl,Ol<m (where 1< a< oo) 

u(x) ?;; ljJ(x) 

for almost all x E rl and u satisfies the inequality (6) for all 

¢ satisfying (7) . _ It will also be assumed .that 1jJ is an upper semi-

(4) 

( 5) 

(6) 

( 7) 

(8) 

continuous function on rl satisfying the approximate continuity condition: 
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~(X) = lim f ~(~)d~ . 
p+O+ I ~-xI <p 

(9) 

[The symbol f denotes the integral average.] 

are Borel measurable functions on n x R x Rn 

standard conditions. 

for X E n I z E R I p E Rn I where ~ I v 

2. DISCUSSION OF THE RESULTS. 

The coefficients A. and B 
1. 

and they satisfy the following 

(10) 

(11) 

(12) 

are non-negative constants. 

We observe to begin with that as a consequence of the upper semicontinuity 1 

~ is locally bounded above. 

A standard iteration procedure followed by an interpolation argument 

(see [3] and [5]) yields the following. 

2.1 LEMMA Let M0 > o and y > o There exists a constant c > 0 and such 

that, for every x0 En, every p E(0 1 l] for which BP(x0) c n and every 

constant M for which IMI ;:;; M0 , it is true that 

(i) the inequality 

ess sup (u(x)-M) 
lx-xol<!p 

::; c[f 
always holds and 

lx-xol<p 

' 1 

{(u(x)-M)-)Ydx]Y + cp 
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(ii) the z:nequali-ty 

ess sup (u.(x)-M)+ 

jx-:xoJ 

"11 
{ (x) -!VI) IY + cp 

_l j<p 

holds. provided that 1/J (x) ;;; 1'1 an X E B" (xo) 

'"' 

It; follO\'i'S immediately from 2.1 thctt U is loca.lly bounded on Q • 

By using a standard itera-tion, combined vlith t.he John-Nirenberg lemma, 

we are able ·to prove 

2. 2 LE~livlf-1. Let > 0 There exist B > o c > o " y E (0, 1] :3 such 

·thai: for every E S6 ~ every p E ( o , ll which c Q and every 

1.>1 for whi-ch I ~1J ;;; and u (x) ;;; M for almost aU. x E the 

-~nequal?:ty 

holds. 

ess inf (u(x)-M) 
I<Jp 

(u(x) 

\<p 

Consider an arbitrary x 0 E Q and a p E (0,1] 

Put 

for 0 < A. ;;; p • By 2.2 

and hence 

ess inf u(x) 

I l<~c 

1 

(u(xJ -m l Ya.x lr 
p J 

such ·that B 
p 

c n . 
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(u(x) 

J<p 

~!1. , __ 
1.,. 

d:< II 
J 

'+Nhe:ee .fyJ. is an uppe:c bound for u But, since u is locally bounded 

approaches a limit as p ·+ 0+ . Hence 

a.s p + 0+ " Then 

v?e nmv- define 

u 

r + (u (x) -m ) d,'{ + 0 
Jj J<p p 

lim 
p+O+ 

lim 
p->-0+ 

]<p 
u(x)dx exists and 

ess lim inf u(x) , 
p~rO+ 

u (x) <':L" 
]<p 

for all E Q . Then 

u (x) :i: W (x) 

(13) 

(14) 

(15) 

for all x E Q • It follows from (14) and (15) that u is lmier semicontinuous 

on Q • 

PUt 

H {x;xE Q and u(x) \)! (x)} (16) 

and 

(17) 

Then H is closed relative to Q and rlo is open. Standard regularity 

theory for solutions to quasi-linear partial differential equations gives 

2.3 LEM1~A There exists a 8 E (0,1) and such that, for every compact subset 

K of n0 , u is Holder continuous with exponent o on K • 
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Consider a point x0 of the contact set H • Let 

and let p E (0,1] be such that Bp(xo) c rl and 

sup 1/J{x) < r . 
lx-xol:>p 

By 2.1 (ii), with y = 1, 

sup (u(x)-f)+ :> C f (u(x)-f)+dx + Cp 
lx-xol<!p lx-xol< p 

Now let 

w(x) ='inf{u(x) ,f} . 

Then 

u = (u-f) + + w 

so that by (15) 

f (u(x)-f)+dx + f w(x)dx + u(x0) 
Jx-x0 1<p lx-x0 l<p 

as p + 0+ . But 

w(x) ~ inf u(x) 
lx-xol<p 

when lx-x0 l<p , so that by (14) and (15) 

lim inf f w(x)dx ~ u(x0) • 
p+O+ I x-xo I <p 

Therefore, by (19) 

lim sup f {u(x)-f)+dx :> 0 
p+O+ lx-x0 1<p 

and hence by (18) 

lim sup u(x) :;; r . 
x+xo 

(18) 

(19) 

(20) 
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Since r was arbitrary and we already know that u is lmver semicontinuous 

at: X 
0 

Thus u is continuous on 

Now we consider a point X 
0 

of the contact set H at lrlhich \V 

Holder continuous; i.e., we suppose there exists a o E (0,1) and an 

E , such tha·t 

I!J! (x)- ~~ 

for all X En. By (13), 

- m <:: c•[_[ (u(x)-mp)dxl.~, 
p - J lx-xol<p J 

so that (putt.ing 1\. 

But 

and hence 

Put 

and 

Then 

f u (x) dx ;;; m + 1\ (m, -m i y 
I I p !P p x-x0 <p 

m ;;;: 
p 

"'p (x) 

sup <}! (x) 
lx-xol<p 

inf{u(x),f} . 
p 

is 

(21) 

(22) 

(23) 
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so that by (23) 

But 

and therefore by (24) 

Hence, by Lemma 2.1 (ii), 

Therefore 

Since 

inf (u(x)-u(x0)) G 
lx-xol<!p 

inf (~(x)-~(x0)) 
lx-xol<!p 

0 G - Ep 

it follows from (25) that u is Holder continuous at x0 

It is now possible to prove the following theorem: 

(24) 

(25) 

2.3 THEOREM Suppose o E (0,1) is suah that ~ is Holder aontinuous with 

exponent o on every aompaat subset of n. Then there exists a o' E (0,1) 

suah that u is Hb~der aontinuous with exponent o' on every aompaat 

subset of n 
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