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REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS
J.H. Michael

This is a report on some research done jointly with William P. Ziemer
at the Centre for Mathematical Analysis. The research establishes interior

regularity for a solution to a classical obstacle problem of general type.
1. INTRODUCTION

Let £ be a bounded non-empty open set of ™ . Let K Dbe the convex

1,0

subset of the Sobolev space . W () consisting of all v , such that v

agrees with a boundary function © on 232 in a suitable way and
vix) 2 Y(x)

for almost all x € § , where U 1is a function defined on § (the

"obstacle"). Put
I(v) = J F(x,v(x),Dv(x))dx (1)
Q
for v € K, where F is a function with suitable properties. Let
o = inf I (v) (2)
vEK
and suppose there is a function u € XK , such that

I(u) =0 . (3)

The above is a general description of a classical obstacle problem and
u is a solution. A great deal of research has been done on the regularity
of such solutions [1,2,4]. Our research assumes much less about the function

Y than has been assumed in earlier work.
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Actually our results are obtained in a slightly more general setting.
It is well known that if u€ K is such that (3) holds and the function F

satisfies appropriate conditions, then

n )
) f 2 xuea pue) B max
Q 9P *i

i=1 i
oF
+ J T (u,u(x),Du(x))p(x)ax 2 0 , (4)
Q z
for all ¢ € wé'“(n) with
¢(x) 2 P(x) -u(lx) (5)

for almost all x € Q .

This is a special case of the weak inequality:

n
) I A, (x,u(x),Du(x) 2 (x)ax
o & 0%,

i
+Jgammmhmmn¢mmxzo ()
for all ¢ € W.'(@ with

¢ (x) 2 P(x) -u(x) (7)

for almost all x € Q . Our research is concerned with this more general

inequality. It will be assumed that u € Wl'a(ﬂ) (where 1<q<o®)
u(x) 2 P(x) (8)

for almost all x € Q@ and u satisfies the inequality (6) for all
¢ satisfying (7). It will also be assumed that Y is an upper semi-

continuous function en {2 satisfying the approximate continuity condition:
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YP(x) = lim YEya . (9)
p>0+ !E—x|<p

[The symbol }- denotes the integral average.] The coefficients Ai and B
are Borel measurable functions on X RX Rn and they satisfy the following

standard conditions.

|ac,z) | s ulp|® +ulz|* sy, (10)
peatx,z,p) 2 [p|% - ulz[* - v, (11)
[B(x,2,0) ] < u|pia_1 + u|z|OL—1 + v (12)

for x €0 , z€R , p¢€ R® , where U , Vv are non-negative constants.

2.  DISCUSSION OF THE RESULTS.

We observe to begin with that as a conseguence of the upper semicontinuity,

Y is locally bounded above.

A standard iteration procedure followed by an interpolation argument

(see [3] and [5]) yields the following.

2.1 LEMMA  TIet M, >0 and Y > 0 . There exists a constant ¢ > 0 and such

that, for every xy € Q, every p €(0,11 for which Bp(xo) c Q and every

constant M for which |M| < My it is true that

(i) the inequality

ess sup (u(x)—M)_
|x-xo|<ip

1

<c )[ {1 Vax|Y + cp
]x—xol<p

always holds and
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(ii) the inequality

ess sup (u(x)—M)+

lx—x01<%p
1
< c[][‘ l { (u(x) 1) +}de}¥ +Cp
X=%X_|<p
0

holds, provided that Y(x) £ M for all x € Bp(xo)

It follows immediately from 2.1 that u is locally bounded on § .

By using a standard iteration, combined with the John-Nirenberg lemma,

we are able to prove

2.2 LEMMA et My > 0. There exist B> 0, <>0, vy € (0,11 , such
that for every Xy €0, every p e (0,1] for which Bp(xo) c Q and every

M for which |M| < M

o and u(x) z M for almost all =x ¢ Bp(xo) s, the

inequality

ess inf (u(x)-M)

|x—x0}<%p
1
2 C[][l l (u(x)-M)de:iY - Bp
x-x_|<p
0

holds.

Consider an arbitrary X € Q and a p € (0,11 such that Bp(xo) cQ .
Put

mk = ess inf u(x)
lx-x0|<x

for 0 <A< p . By 2.2

1

Ya. Y
m -m_ 2 C f (u(x)-m ) 'dx
ie e [ IX'X01<p P }

I\

and hence
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i 1
Y
m -m 2 C(M-m_ ) (u(x)-m_)dx (13)
o o P ][ P !
]x~x0[<p
where M 1is an upper bound for wu . But, since u is locally bounded
above, m.p approéches a limit as p + 0+ . Hence

§~ (u(x)-m )dx = 0
!x—x0l<p P

as p =+ 0+ . Then

lim }- u(x)dx exists and
l X_xo l <p

00+
= ess lim inf u(x) . (14)
P~>0+
We now define
um& = lim thk (15)

o0+ |x—x0|<p

for all X € @ . Then

u(x) 2 P(x)
for all x € Q . It follows from (14) and (15) that u is lower semicontinuous
on § .
Put
H={x;x€Q and u(x) = Y(x)} (16)
and
QO =0~ H. | (17)

Then H is closed relative to ! and (o is open. Standard regularity

theory for solutions to quasi-linear partial differential equations gives

2.3 LEMMA  There exists a § € (0,1) and such that, for every compact subset

K of Qo s u is Holder continuous with exponent § on K .
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Consider a point Xy of the contact set H . Let
' > uxg) = W(xo)

and let p € (0,11 be such that Bp(xo) CQ and

sup Pix) <T .

Ix—xo|§p
By 2.1 (ii), with y =1 ,
sup (u(X)—l“)Jr < c][ (u(x)—I‘)+dx + Cp . ' (18)
|x—x0|<§p |x—xol< 0
Now let
w(x) = influ(x),l'} .
Then

u = (u—T)+ + W

so that by (15)

} (u(x)-T) Yax + f- w(x)ax + u(x) (19)
]x—xO <p X=X <p

as O -+ 0+ . But
wix) 2 inf u({x)
-x _|<
|x=x, | <p
when |x—x0|<p , so that by (14) and (15)
lim inf {- wi{x)dx 2 u(xo) .
p+0+ [x—x0{<p

Therefore, by (19)

lim sup { (u(x)—F)+dx <0
o0+ x-xo <p

and hence by (18)

lim sup u(x) £ T . (20)

X+XO



35

Since [' was arbitrary and we already know that wu is lower semicontinuous

at x5 - Thus wu is continuous on .

Now we consider a point x_ of the contact set H at which { is

0

Holder continuous; i.e., we suppose there exists a § € (0,1) and an

E , such that
W) -vg | < Elx-x0|6 (21)

for all x € Q . By (13),

1
m, -m 2 C°' {~ (u(x)-m )dx Y ’ (22)
ip P |x“xo|<p P

so that (putting A = (C')_Y) v

u(x)dx S m_ + A(m, -m )"
J[lx—xo <p P o e

¥
u(xg) + A(ll)(xo)—mp) .

IA

But

m_ 2z inf Y(x) z W(xo) - Ep6

P lx—x0|<p
and hence

]( u(x)ax S u(xy) + A% . (23)

IX—X0l<Q

Put
Fp = sup U (x)
[x—x0|<p
and
wp(x) = inf{u(x),Fp} .

Then

+
= —I‘
u wp + (u p)
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so that by (23)

][ W, (%) dx +][ (u(x) —Fp)+dx S ulxg) + Ao . (24)
lx—xo!<p [x—xo <p

But

][ w_(x)dx z-J( P(x)dax 2 w(xo) - Ep(S
{x-x0|<p e ]x—x0|<p

and therefore b& (24)

]LI (u(x) —I’p)+dx < 220 & mol.
x-x_ |<p
0

Hence, by Lemma 2.1 (ii),

sup (ux)-T') £ CAEYp(SY + CEpS + Cp .
Ix—x0[<§p P
Therefore
Y .Sy 8 §
sup (u(x)—u(xo)) SchE'p”' + CEp + Cp + Ep . (25)

lx_x0l<§p
Since

inf (u(x) —ulxy) ) 2 inf W (x) =y (xo) )

|x—xo‘<%p lx—x0{<ip
z - Ep6

it follows from (25) that u is Holder continuous at x0 .

It is now possible to prove the following theorem:

2.3 THEOREM  Suppose & € (0,1) <s such that Y <is Holder continuous with
exponent § on every compact subset of § . Then there exists a &' € (0,1)
such that w is Holder continuous with exponent §' on every compact

subset of Q .
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