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EIGENSTRUCTURE SPECIFICATION IN HILBEET SPACE

B.M.l. Clarke

INTRODUCTION

The sclution of the problem of spectrum assigonment by linear
state feedback for linear finite dimensional systewms, is by now a
classical result of linear svstews theorv. The proof was first
given in [141. 6# statement of ths problem and its solution is to be
found in good texts on linear systewms theory [13, [113. In the
main, the proofs rely on a transformation of the original linear
system into a canonical form, wherein the effect of the feesdback
matrix on the closed loop characteristic polyvynowmial is directly
apparant. If the svstem is completsly controllable, it is shown
that the coesfficients of the characteristic polynowial of the
canonical form of the closed loop systewm, may be arbitrarily
specifised by choice of the feedback wmatrix.

There has been recent interest in this problewm for infinits
dimensional state spaces [23, [331, [41, [91, [1d&1. Inn £23, [18] for
systews described by a2 class of linear hyperbolic partial
differential sguations, an approach analagous to the finifs
dimensional treatment described above has been adopted. That is, a
transformation to 2 canonical forw and a choice of feesdback to

assign the specirum of the canonical forw. We have two wain

i

criticisms to makes of this approach. Firstly, it doss noi ssew
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readily adaptable to other classss o

sysigms which are of initsrssi. Sscondly, the fesdbzack construcisd
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for the canonical forwm does not readily lead to the required
feedback for the original systewm.

Our viswpoint is wore geowetric than wost slucidated thus far.
We strongly adopt the position that the closed loop spectrum of the
linear system should not be the only concern of a theory of spectrum
assignment. Whilst the specirum provides iwmportant gualitative
information, the sigenvectors provide egually important guantitatiwve
information. Indeed, in many cases the spectral representation of
the closed loop system operator given by the closed loop
sigenvectors, leads to effective construction of the closed loop
system sewmi-group.

Our dictuwm is that a general theory of spectrum assignment
should ianclude naturally, the generation of the eigenvectors
corresponding to the assigned closed loop spectrum. We eschew
canonical forms and work directly with the given systewm. We show
the possibility of spectrum assignment depends in a crucial way on
the dimension of the control space heing sufficiently large in
relation to the diwension of the sigenspaces of the linear system
operator. This problem was previously considered by Sun [131 for
the case of a one dimensional control space. Our methods are
unrslated to those of [13]1 and significantly iwmprove on the main
result which appears there.

To maks matisrs concrete, we consider the linsar systewm

%# = fix + Bu (1.1}

where H:[@,m) -+ H, ¥ a complexn, seperable Hilbert space,

urld,w} 5 U , U a2 finite dimensional complex inner product space,
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dim U = m , A:X =+ ¥ , a closed, linear operator with dense dowain,
B:U 5 ¥ a non-singular bounded linsar operator. Precise conditions
on the pair (A,Bf will be given presently. For the mowment we
assume that # has pqre point spectrum () = {hi; io= 1;2...%
and the esigenvectors of A form a basis for X . There arises the
gquestion as to whgther, given a countable set of cowplex numbers
{pi; i =1;2,... , there sxists a bounded linear operator

F : ¥ 3 U such that o(4 + BF) = {gi s i= 1,2,...Y . This
guestion arises after thes introduction into (1.1) of a control of

linsar state feedback type, u = Fx , wherein (1.1} becomes
# = (4 + BF)=x (1.2}

In the following sections of the paper we state conditions on the
pair {(f,B} , and the sat {#i} which provide an affirmative answer
to this guesstion. Moreover, we provide a constructive procedure for

obtaining F .

Cur proof proceeds as follows: Corresponding to the set
{gi 5 i = 1;2...} with corresponding multiplicities
{vi; i=1,2,... , we construct a countable set of wectors in X

Subject to the pair (A,B}) being controllable and conditions on the

sets {ﬂi} ’ {vi} , this set of vectors is shown to form a Riess
basis for X . The linsar operator F is then defined on ¥ and
shown to be bounded. The Riesz basis constructed for ¥ is shown

to consist of eigenvectors of A + BF corresponding to
s{fh + BF} = {ﬁi} with corresponding multiplicities {vi} .
Previpusly almost nothing was known concerning this problem for

the case of multiple inputs (dim U = m } 1} or when A has
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sigenpvaluss of multiplicities greater than one. We provide a
complete solution for the general problem by a construction which
can provide a basis for cowputation. Horsover ocor results improwve
in a sigunificant way over previous results, even for the single
input case.

We state ocur main result
THEOREH 1 Let # ke a discrete speciral operator of scalar type
on a Hilbkert space H apd st A satisfy conditions 1,2 bslow,
Let B Be a nonsinguliar operator from t™ inte X and Iet the
pair {(A,BY &be contrallaklie.

Then for any countable distinoct set of complex numbsrs {yi}
and any countable set of positive integers {vi} satisfying
conditions 4,5 below there exists a bounded [inear operator
"

F : ¥ =€ such that A + BF is discrete, speciral and scalar,

s{f + BF} = {#i} and dim Ker{f + BF - gi} = v,

HMAIHN BESULTS. Let 8 : H -+ H be discrete, spectral and of sclar

tvpe and oci{fl} = {ki 3 1= 1,2,... with the following properties
i. inf Jx, -2 | =80
i#k
1
2 sup & { o™
B OiFk _ 2
2 |

Let E, = Eer(h;—ﬁ} , dim E_ = v, ¢ @ . The adjoint

H

& : H =+ H has spsctrum sy = {ii ; i=1,2,...7 and
corresponding eigenspaces Fi = Ker(.?—\i - ﬁﬁ), dim F‘i = v, LA - I

et B : C" - X, Ker B = €@} . A crucial property of the

linear system {(A,B} is that it be controllabie. We recall the
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folliowing result [&61.
THEOREH 2. (8,B) is caontrollable if and only if B : X o€V is

an isomorphiism on the subspacs Fi for each i1 = 1,2,... .

From the above result it is necessary for controllability of {(4,B}

that vy sm for i1o= 1;2,... . g {4,BY is not controllable,
then dim B*Fi =, { v for some i . Leat Fi’c Fi be a subspacs
of H ; dim Fi’: v, - T, ¥y @ , such that B*£ = @& for f € Fi’ .

Consider

(A + BF ) £ = (A" + FB =AF = h.£
That is, ii(hi} is an esigenvalus of (g + BF)* {(ft + BF} , with
corresponding eigenspace of dimension v. - r. ¥ @. HWe assume that

i 1

3. (1, B} is controllable.

. #
We choose an orthonorwmal basis for sach B Fi s
i : i . . .
{YJ S ] 1,..,,vi} . Each 93 has a unigus inverse image

€ F. . That is,

The collection of esigenvectors of
" .
8 et 1 L= 1,2..., § = 1,...;&13 is & Hiesz bhasis for H [71 ,

o

and {ég} is these unigus dual binrthﬁgonal_hasis for H consisting

of eigenvectors of A& . That is,

i ke . .
{éd, %l r o= Eikﬁgl’ 1,k=1,2,..,,4=1,‘,.,ui; l=1,‘.,,uk,
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o0 Y3 :
for nw € ¥, x = I EZ { uy, ¥. ) ¢
i=1 j=1 J

cixt? < £ z]¢ w0t )% < coxn? .
i d

We complete the set {YE} to an orthonormal basis for

c, {VJ 3 = l;...,m>
1 j1 iyl = 1,...,m

We choose a segquence of complex numbers {giT anid a sequence

of positive integers {vi} satisfying

= 2
4, Eop.-x 7 e
. i i
i=1
3. (i} ¥, i om
i
{ii} For some integer k ) @ , v, = v, for i > k
| (O 3 '
{iii} z v, o= z v,
i=1 i=1

We initially assume that Hy £ p{A) and define a seguence of

vectors {ek s B o= 1,2,...3 1 = 1,...,uv. 3 by

1 R
(. —h, YRz Q)ka 1 2w
Bk kR’ 1’ R 4
ek -
i
Bg 3 H)Bfk 1 Y w
[ 1 k
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for 1 = 1,...,vk

. ki k -
Consider, { R(#k; A)Bvl, ?J o= B?l, R(pk; B O
W {vﬁ,s*v‘ > <y§,vf}
= { By, by = = J
R Fpm> Ry
for 1 = 1, iV J o= i, Py
Then,
#e e ki
{ yl, vj | Y os 3
yk—hi
"k i
Cep#y) =
i 3 i
— C¥p, ¥, Ly v, 1) vy
i
for 1 = 1,...,vk

Consider the esxpansion

- o3 i = . .
eﬁ = £ I < eﬁ, ety gt
i=1 j=1 J J
o =%
¢§ + I R R AR
i#gk i~k !
kM
r z Y VE’ 5y 8t L 1 vy
i#k § mph J 4
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for 1 = 1,...,§k . We now rewmove our assumption ity £ p{A} . If

e

iy = hk € g{fA} , we define e% by the abowve forwula, obtaining

k
s iy
ek -
b=
r oz 1o« vﬁ, ¥y ¢t 1 vy
ik § A A d

e

for 1 = i,...,uk .

It is owr intention to show that the seqguence {eﬁ} def ined

above is a Hiesz basis for ¥ . To this end we recall the following
definitions;
Two seguences {Hi} . {yi} in X are said to be guadraticaily

claose if

2
f ik -y 17 < o

i=1
i oo
The seguesnce {xi} is w-linearly independent if z CFE P @
i=1
implies c, = @, i = 1,2,... .

THEOHEM 3. {Bari [71}. Anv w-linearly independent segquence which
is guadratically close to a Riesz basis of H , is also a Riesz
hasis of H .

We show that {;?} is guadratically close to the Riesz hasis

{¢2} . Because of 3{ii}, 1 v, occurs at most finitely often.

Therefore for k Y H |
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ook
- E Ok . .
ueﬁ - ¢%u2 =1z — | ¢ yﬁ, ¥ giy?
ik § | Mk d i
- 1m0 R e
" S 4 1 i 2
= e, -x |70 E 1+ — - g
ETRD O S Ay A j A h, J
tyo,vy
- 2 ! i,2
t Clug-a "0z 2 $ 1 {from 1, 4}
gk § B i 4
2 ! i
R R et (Erom 0¥, = 1)
izk [a x|
Therefore
~“k_ k.2 2 !
Z e -# 0" zCrC2Z iﬂk-hki 3| sup E a
EYE EYE KYE  i#k
In, -x |
B i

1
8

Guadratic closeness to a basis already iwmplies that

{ET; kE ¥ HY is w-lipnearly independent for H sufficiently large
and it is easv to prove that {e%; B 4 HY is linearly independent

for any H . {e?} can be made into a basis by replacing at most

finitely wmany wectors. Defining F:¥ - c™ by
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for 1 = 1,{..,vk y it easily follows that

“h

~hR ~
(R+BF)el = 2y 1 =1,...,v

K °
That is {eﬁ} are eigenvectors of A+BF corresponding to
“k

eigenvalues {yi} « From this, it rapidly follows that {el} is

w-linearly independent and hence is Riesz basis for H , by the

theorem of Bari.

We can extend F to H by

v
© K ~e R
X = £Z E 0« x,El ) El , ® € H
k=1 1=1
and

) Ui

Fx = L L ¢ xyfs) Fe'
k=1 1l=1

where {fﬁ} is the unigue dual basis of ¥ , biorthogonal to
{ei} It only remains to show that F is bounded, A+BF has no other
eigenvalues than {ﬂk} and each eigenspace of A+BF has dimension

Uy which is easily done., This completes the proof of our main

result.

A number of concluding rewarks are worth wmaking:
(al {13}, {¢3}, {W3J can be made explicil, hence also {e?} .

{(hY F is not unique. Is there a smallest F and how is it
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characterized.?

()} It would be useful to rewove the condition that #&, A+BF
is scalar. The Riesz hases would then consist of
generalized eigenvectors. This would allow sigenvalues of

{(generalized}) multiplicity greater than w .
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