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THE REGULARITY OF WEAK SOLUTIONS 

TO PARABOLIC SYSTEMS 

Yan Ziqian 

There has been. a lot of work devoted to the regularity of weak 

solutions to elliptic systems since De Giorgi [3) had shown in 1968 that 

his celebrated regularity result for elliptic equations cannot be 

extended to systems. Various methods such as the direct approach, the 

indirect approach and the hole-filling technique were developed to 

study the partial and everywhere regularity for quasilinear and 

nonlinear elliptic systems (see e.g. [4), [8) and the references cited 

there). It is reasonable to ask the following questions. How about the 

problem of regularity for parabolic systems? Are the results. for 

elliptic systems still true for them? And do the methods mentioned 

above work in the parabolic case? Basically, the answers to these 

questions are positive. 

Let n be an open set in RD , T > 0 and Q = n x (O,T) . 

Denote z = (x,t) , where For z = 
i 

i = 1,2 , introduce the parabolic metric 

Throughout this paper we use the convention that repeated indices are to 

be summed for a and ~ from 1 to n , for i and j from 1 to 

N , but not for k . 
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In 1973, M. Giaquinta and E. Giusti [5] first studied the 

regularity of weak solutions for uniformly parabolic systems 

0 • i 1, ... ,N , z e Q 

with bounded and continuous coefficients using the indirect 

approach. The direct approach, for which the LP-estimate for the 

spatial derivatives of weak solutions is crucial, has been carried on in 

S . Campanato {1,2], M. Giaquinta and M. Struwe [7], under strictly 

controlled and quadratic growth conditions respectively. This work 

generalized the partial regularity result of [5]. By means of the 

hole-filling technique, an everywhere regularity result for.diagonal 

parabolic systems with quadratic growth was obtained by M. Struwe [9] 

and improved by M. Giaquinta and M. Struwe [6]. 

S. Campanato considered first (in [1]) the quasilinear system 

(1) 1, ... ,N 

and then (in [2]) the nonlinear system 

(2) 1, ... ,N . 

He assumed, among other conditions, that have the 

following growth, which he called strictly controlled: 



with and 
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belonging to so~e LP spaces and 

{

2(n+2)/n 

s '¥ < 

4 

if n <!: 2 , 

if n = 1 0 

He established the LP-estimate for the spatial derivatives of weak 

solutions of system (1) and (2), similar to those in elliptic case, and 

showed partial Holder continuity of every solution of system (1) or (2), 

with a singular set Q0 , closed in Q , such that 

0 0 ' 

where H11 stands for the Hausdorff measure (relative to the parabolic 

metric d of dimension n , and meas the Lebesgue measure of 

dimension n+1 o 

For systems (1) with quadratic growth, Mo Giaquinta and Mo Struwe 

[7] proved the LP-estimate and partial Holder continuity, and provided 

the singular set Q0 with a refined estimate: 

0 for some Eo > 0 0 

A few questions about the results mentioned above can be raisedo 
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(i) Can we get LP-estimate for system (2) with controllable 

growth for the critical case 1 = 2(n+2)/n and without 

exception of n=1 ? Does there also exist an LP-estimate for 

nonlinear systems (2) (not only quasilinear systems (1) !) 

under the natural growth conditions? 

(ii) Is every weak solution of system (1) or (2) partially Holder-

continuous under both natural and controllable growth 

conditions including the case 1 = 2(n+2)/n ? How about the 

Hausdorff measure of its singular set? 

(iii) For what sort of parabolic systems does any weak solution have 

everywhere regularity? 

(iv) Under what conditions can further regularity be obtained? 

Here I wish to briefly describe some results by myself [10], which 

have partly answered the,above questions. 

Consider parabolic systems 

(3) 1, ... ,N , z e Q . 

Assume that the controllable growth conditions hold, i.e. 

(4) 

2(n+2) 

A~(z,u,p)p! ~ Alpl 2 - Clul n 

n+2 

(5) IA~(z,u,p)l ~ C(lpl+lul n + fia) , 0 ~ fia e L0 (Q) , 
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n+4 n+4 

(6) IB1(z,u,p)l ~ C(lplii+'2 + lui n .+ f 1) , 0 ~ f 1 e LT(Q) . 

For z0 (x0 ,t0 ) e Q , and R > 0 , we denote 

and 

THEOREM 1. 

> 2(n+2) 
T ---n+4 

{t 

f 1 f -=--- -
Q measQR Q 

R R 

Suppose that (4), (5) and (6) hold with a> 2 , 

2 1 N m 2 N If u e L (O,T;H (n,R )) n L (O,T;L (n,R )) is a weak 

solution of system (3), then there exists an exponent p > 2 such 

that p 
IDul e L10c(Q) .· noreover, for Q(z0 ,R) c Q(z0 ,4R) c Q, we have 

2(n:2)Jp/2 ]1/p [[ 2 2(n:2) ]1/2 
+ I u I dz ~ C f [ I Du I + I u I ) dz 

Q4R .· 

provided R < R0 , where C and R~ are constants depending on u '·· , ;. 

and 



F f + 
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n+2 

f~+4 
l 

Next we consider system (3) under natural growth conditions: 

(7) 

(8) 

or 

(9j' IB(z,u,p)l:;;; alpi 2 + b, 0 ~be L 7 (Q} and 2a!><I <A, where 

M = suplul 
Q 

THEORE~ 2. Suppose that (7), (8) and (9) or (9)' hold with a> 2 and 

r > 1 , and that u e L2 (0,T; (a,IRN)) n r.""(Q,IRN) is a weak solution 

of syste~ {3), with suplul = M. Then there exists p > 2 such that 
Q 

provided 

and 

R < R 
0 

t'l!here C and R0 are constants depending on u , 



F f + l L • 1(); 
1,0\ 
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1/2 
+ 2 f. 

. 1 
1 

(or 

Applying the LP-estimates to quasilinear systems 

Bi (z,u,Du), i 1, ... ,N , z e Q 

with assumptions: 

(12) There exists a continuous, bounded, nondecreasing and concave 

function w such that ~(0) = 0 and 

for any z,z0 e Q and any 

n+2 

(13) la~(z,u) I :S C( lui n + 
1 

f ia e La ( Q ) ' 

n+4 n+-4 

(14) IBi(z,u,p)l S.:. C(lp1 11 +2 +lui n + fi), fie Lr(Q), 

we can get the partial Holder continuity for their solutions. 

Precisely, we have 

THEOREM 3. Suppose that 
2 1 N oo 2 N u e L (O,T;H (n,~ )) n L (O,T;L (n,R )) i.s a 

weak solution of system (10) and that (11)-(14) hold with a > n+2 and 

2 
r > (n+2) 

n+4 
Then u is Holder continuous in an open set Q' c Q 
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0 , where p > 2 is the number appearing in 

Theorem 1. 

As mentioned previously, M. G:iaquinta and M. Struwe [7] have 

already proved the partial Holder continuity for system (10) with 

quadratic growth. Theorem 3 is not an immediate consequence of that 

result, although controllable growth is much weaker than quadratic 

growth. This is because in the former case, weak solutions are not 

required to be bounded. 

As far as everyi~here regularity is concerned, we have the following 

Theorems 4 and 5. 

Consider the parabolic system of triangular form, i.e., system 

Bi (z,u,Du) , i 1, ... ,1\T,zeQ 

with A~~ satisfying 
lJ 

for all i 'j ,k l,.~~,N ~ 

.II 2:: A > 0 • 

all N n z e Q , u e ~ , ~ e R and some 

THEOREM 4, Under controllable conditions (13) and (14) with a > n+2 , 

every solution 
2 ] N oo · 2 N 

u e L (O,T;H.(2,R )) n L (O,T;L (~.R )) of 

triangular parabolic system (15), (16) is (locally) Holder continuous 

in Q . 
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THEOREM 5. Under the natural growth conditions 

la~(z,u)l S fi e L0 (Q) , a> n+2 , 
1 a 

n T( ) T > ! 1 0 < li < rt+2 ;' f i E L Q , 2 + , 

2 1 _N CD N every solution u e L (O,T;H (a.~-)) n L (Q,R ) ot' a triangular 

parabolic system (15), (16) is (locally} Holder continuous in Q 

Unfortunately, we have found no way out yet to show the everYWhere 

regularity for the triangular parabolic system (15), (16) with quadratic 

growth (9)'. As for the system of diagonal form 

(17) B1(oz,u,Du) , i 1, ... ,N, z .e. Q; 

M. Giaquinta and M. Struwe [6] proved the following result:. 

Let 
2 . 1 N CD . N 

u e L (O,T;H (R,R )J n L {Q_,R .) with suplul = M be a weak 
Q 

solution of system (17) which satisfies the conditions: 

A~A>O, 

IB(z,u,p) I S alpt:2 + b , 

aM< A , be LT(Q) , T > ~ + 1 . 

Then u is (locally) Holder continuous in Q . 
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Let us come back to the general quasilinear system (1) and state a 

further regularity result. 

THEOREM 6. Sup,nnse u e c11 •1112 (Q RN) 0 < " < 1 
r- loc ' ' ~ - ' is a weak solution 

of system (1). Assume that 

Ai;(z,u) and a~(z,u) are Holder continuous with 

exponent ~ in x,u and ~/2 in t , and 

IB(z,u,p)l ~ C(1+1pl 2 ) . 

Then the derivatives Du of u are (locally) Holder continuous in Q 

with the same exponents ~ and ~/2 in x and t respectively. 

Starting with Theorem 6, higher regularity can be obtained from the 

linear theory. 

In conclusion, I wish to point out that M. Struwe [9] has given a 

global regularity result. But, in general, the regularity up to the 

boundary has not been studied extensively. 
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