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DEFORMING RIEMANNIAN METRICS ON THE 2-SPHERE

P.R.A. Leviton and J.H. Rubinstein

In 1982, Hamilton [Ha] proved the following:

Theorem Let X be a compact 3-dimensional Riemannian manifold of positive

. d 2 '
Riceci curvature. The evolution equation 3E'gij = §~rgij - 2Rij’
r =] Rdux/f dux, has a unique solution for all t and it converges as

x
t > ® to a metric of constant positive curvature. . Furthermore, any isometries

where

of X are preserved as the metwxic evolves.

The aim of this paper is to prove a 2-dimensional version of this
theorem. We have also obtained analogous results for Kahler and Hermitian
manifolds by applying the same method with Huisken's higher dimensional

version of Hamilton's theorem [Hul].

We start with a compact, oriented Biemannian surface of positive
Gaussian curvature (already this is enough to show that M is diffeomorphic to
s2 by the Gaués—Bonnet theorem and the classification of compact surfaces).
We then show that there is a principal s! bundle over M with a metric of
positive Ricci curvature such that the projection map is a Riemannian
submersion. We allow the metric on this bundle to evolve to a metric of
constant curvature; the metric on M then evolves to a metric of constant

curvature also.
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Let P be a principal s! bundle over M and let w be the projection
map. Let w be the connection form and Q the curvature form of a connection in

the bundle P. & is a horizontal, invariant 2-form (because S1

is abelian) so
*
Q=1 (y) for some 2-form Yy = gduM on M where duM is the volume form on M and

g is a smooth function on M.

Let f be a smooth positive function on M. As in [X], define an
1nvariant metric on P via <u, v>P = {mu, w*v>M + n*(fz)w(u)m(v). Note that
any invariant metric on P may be coustructed in this way; in fact we can.
recover the connection by defining the horizontal space to be the orthogonal
complement of the fundamental vector field V, the metric on M via
{u, V>M = <u*, v*>é where u* and'v* are the horizontal lifts, with fespect to

the connection just defined, of u and v respectively and f via £2 = <V, ¥pe
Llet p € P, m = w(p) and let X X. be an orthonormal basis for

17 72
Tm(M). Let Yl and Y2 be the horizontal lifts at p of Xl and XZ respectively

and let Y =1 V, so that Y

0 £

0’ Yl, Y2 1; an orthonormal basis for Tp(P).

A straightforward but lengthy calculation shows that the Riceci

curvature of P with respect to the basis Yj, Yy, ¥, is given by:

22 -2 :
f7g" - g-Af fg;z + 3f;2g —fg;1 - 3f;1g
1 * 22 2 2
5w fg;z + 3f;2g 2R - £fg ~ §-f;11 - ¥-f;12
2 22 2
—fg;l 3f;1g ?f;21 2K g -ff;zz

where ; denotes covariant differentiation in M with respect to the basis X

X2 and X denotes the Gaussian curvature of M.



125

For any harmonic 2-form Y on M which represents an element of
HZ(M; Z), thére exists a principal S1 bundle over M and a connection in this
bundle such that the curvature form is n*(y) (see [K], proposition 9). Thus
there exists a principal s! bundle P over M with g a positiye constant

function chosen so that y = gduM € HZ(M; Z).

Let § be a lower bound for the Gaussian curvature, so 0 < § < K.
Choose f to be a constant function such that 0 < f < é—/ZG, so that
0 < f2g2 < 26 € 2K, With this choice the Ricci curvature of P with respect

to Yy, Y, ¥, is given by:

242 0 0
%
T 0 %® - £2g° 0
0 0 % - £2g2

which is obviously positive definite.

We now let the metric om P evolve, as in Hamilton's theorem, according

' 3 _ 2
to the equation TS i = -3--rgij ZRij.

As the initial metric is invariant under the st action, it remains so

for all time and hence it induces a metric on M, a connection and a function

f, all of which will evolve as the metric on P does.
Another long but straightforward calculation shows that the evolution

equation for the metric on M is:

3 _ (2 _ 2 2 2
Ez-gij = (3 r—-2k +£fg )gij +F f;ij

and for f is:
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E——f=Af+(—;—r—lf2g2)

at 7 £

1,22 2 ot o
“where r = [ £ (2K - &= £°g° - = Af)au, /[ fau,.
" 2 £ )

The evolution equation for g is more difficult to calculate, however

’ o ol Jo ke 1 .22 2
the scalar curvature R of P is §" invariant and R = 7 (ZK -3 £f7g" - 3 Af),
~ ~ % ~
so0 f2g2 = 4K - 2R - -lfi Af (where R is the function on M for which R = w.(R)).

" Hamilton [Ha] has already calculated the evolution equation for R as:
9 2 ik j1
3t R = AR - 3R+ 2S, where S =g gJ Rinkl‘
From previous calculations of the Ricci curvature, t;ze have

_ 1,22 2

w2

2 2 1 2 1
—f-Af) »+E(fg;2+ 3f;2g) +—2-(fg;1.+ 3f;1g)

1 22 2 2 1,2 2 1 .22 2
P K- m g E)) r e (F )t (K- mF E,,)

N

which may be written as a function of E, K and £ although it is unpleasant.

_ From this we may derive the evolution equation for R as
—g—t— R = AR + fl <Vf, VR - % IR + 2§, where the extra term is because the

Laplacian is now taken in M,
Thus we have the following:

Theorem Let M be a compact, oriented surface of positive Gaussian

curvature. The system of equations:

]

3t B ~ (-§'r+2K—2R—7f—Af)gij +?f;ij

£} 1 ~
sz'f = 3Af + (g'r - 2K + R)f
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3~ ~ 1 o~ 2 ~ ~
= R = &R + ¢ <VE, VB> - 3 1R + 28

where S is a function of R, K and £, r = [ £R duM/f £ duM and initially gij
M M :

is the metric, £ is the constant function chosen before and R = 2K - %.fzgz

with g the constant function chosen before, has a unique solution for all t

and gij converges as £ * « to a metric of constant positive curvature on M

while f and R each converge to constant functions.

It is possible to extend this theorem to allow the Gaussian curvature

of M to have isolated zeros, the only added complication being that we can no

longer choose f to be constant.
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