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REGULARITY THEOREMS FOR ELLIPTIC EQUATIONS 

WITH NON-SMOOTH COEFFICIENTS 

Huy-Qui Bui 

0. PRELIMINARIES 

We are concerned with the elliptic equation 

(1) Lu(x) 

where the aa's are not infinitely differentiable but merely are locally 

in some Besov space Bs or Triebel space Fs Hereafter we assume that p,q p,q 

all functions and distributions are defined on Rn. As 

Lu(x) 

where 

(2) T(x,S) 

and 

<(x,D)u(x) -n J ix.i; (2n) <(x,s)e O(s)ds, u ' s 

I aa(x)(iS)a, 
\a\~m 

is the Fourier transform of u, one is led to study pseudo-differential 

operators (ljidos) whos.c symbols a (x, s) (not necessarily of the form (2)) are 

not smooth in x. In fact, motivated by applications to equation (1), we 

proved in [Bull the following result. 
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THEOREM 0 (cf. [Bul, Theorem 3]). Assume that p > pB (resp.pF) and 

for any multi-index S and for aZZ s E Rn . Then o(x,D) is bounded on 

Bs (resp. Fs ). 
p,q p,q 

Unfortunately, there is no good symbolic calculus for ·the type of 

symbols in Theorem 0. In fact, Bony [Bo] noted that it is impossible to 

include in the same algebra all the differential operators of constant 

coefficients as well as the operators of multiplying by functions in Bp 
oo,oo 

To overcome this difficulty, Bony [Bo] replaced the ordinary multiplication 

by an operation he called para-multiplication, a version of which, as 

given by Meyer [M], will be presented next. 

and 

Let~ be a function inS such that supp $ = {1/2 ~ lsi ~ 2}, and 

1 for any s + 0. Let~ .• j = 0,1,2, .•. , be such that 
J 

$0 <s) + L ~jCs) 
j=l 

l, 2,. .. ' 

1, 

Let a be a bounded function. Then, the para-multiplication by a is defined 

by 

TI(a,u) 
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It is easily seen that ~(a,•) is a ~do whose symbol oa is given by 

where 

II~ IL, :£ c lla JL. 

Here we adopt the convention that C is a constant which may be different 

from one occurrence to the next one, and which may depend on the 

particular parameters appearing in the context. Noting that 

supp ~ c {lsi :£ 2k}, we derive from the above inequality and Bernstein's 

theorem (cf. [P, Chap. 3, Lemma 1]) that 

Thus, oa satisfies 

0 
Esl,l 

0 It is well-kno~~ that ~dos whose symbols are in s1 , 1 are 

not even bounded on L2 . The boundedness property of these operators is 

investigated in the next section. 

Next, we define the spaces necessary for our study. Following 

Peetre [P] and Triebel [T] (cf. also [Bu2]), we define 
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B;,q {f ES' \llf IIBS ( jL (2js lll/J/'f llp)q) l/q < co}, 

p,q 

F;,q {f ES' illfiiFS II [jL (2jsll/Jj"<f(•)i)q)l/qllp < oo}, 

p,q 

where -oo < s < oo, 0 < p, q ;:; oo, and p < co for F-space; s, p and q will be 

as above unless otherwise indicated" 

The above two scales of function spaces contain many function spaces 

appearing in the literature, eog., the generalized Sobolev space, denoted 

by LP by Meyer [M] (1 < p <co), coincides with 
s 

space Cp Bp (p > 0); the local Hardy space 
co 00 

' 

1. OPERATORS WITH SYMBOLS IN S~,l 

Our aim is to prove the following theorem. 

F8 
2 ; the If6lder-Zygmund 

p, 

hP = F0 
p,2 

0 THEOREM 1 Assume that o E s1, 1, i.e., o satisfies (3). 

(i) 

{ii) 

or 

If s > max(O,n(l-1/p)), then o(x,D) is bounded on B8 
p,q 

If either 

0 < p;:; 1, p < q;:; oo and s > n(l/p- p/q), 

1 < p < oo, p < q;:; oo and s > n(l/p- 1/q), 

then o(x,D) is bounded on Fs . 
p,q 

Proof We begin with the proof of (i). We follow the method used to 

prove Theorem 0. Assume first that o is an elementary symbol, i.e., 
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cr(x,i;) L m,(x)¢.(S), 
j=O J J 

for some positive integer N, and 

(4) 

Then 

cr(x,D)f 

and for each k 0,1,2, ... , 

(5) 

0,1' 2, •... 

L m.(¢.*f), f E S. 
j=O J J 

A 

1, 2,... , 

By considering the supports of ''' and f we derive that there exists '~'k j ,t' 

a positive integer m such that 1/Jk*fj,t = 0 except for those j and t 

satisfying 

(6) 0 ~ j ~ (k -mN)+ = k* and k* ~ t ~ k + mN, 

(7) 0 ~ t ~ k* and k* ~ j ~ k + mN, 

or 

(8) j,t ~ k* and jj-tj ~ mN + 2. 
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Denote the corresponding sum in the right-hand side of (5) by st, S~ and 

S~, respectively. We shall give the 'estimates for k + 0, as the case 

k = 0 can be similarly handled. For each i as in (6), 

k* 

j!O ~~k*fj,i(x)i 

where ¢jAf is defined as in [Bu2, p.587]. Now, it is easily seen that 

and thus, 

(9) 
k* 

:;; c I 
j=O 

(by (4))' 

If 0 < p < 1, then, choosing 2h > s, we derive from the above inequality 

(9) that 

C {sup 22(j-k+k-i)h+(k~j)s} x 

Q:;;j:;;k* 
k*:;;i:;;k+rnN 
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by a maximal inequality (cf. [Bu2, Theorem 2.2]). As a similar estimate 

holds for k = 0, we obtain 

(10) sup 
k 

c llf II 
Bs 
p,p 

,O<p<l. 

On the other hand, if 1 ~ p ~ oo, then with h as above, we see that 

and thus, 

( 11) sup 
k 

zks lls 1 11 ~ c llf II 
k Bs 

p,l 

2 
Next, we turn to the estimate for Sk. For each j as in (7), 

k* 
~ell jiO 1/J_q,ll1 1~jt<Pj\f(x) 

~ C¢*;f(x) 
J ' 

k* A A -k* 
by (4) and the fact that ~j=O 1/J_q,(s) = ¢ 0 (2 ;). Thus, it is obvious that 

S~ satisfies inequalities similar to (10) and (11). 

Finally, as, 
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(13) 

2 
an argument similar to that used in the estimate for Sk shows that 

and thus, 

as s > 0 and j ~ k* 3 To estimate Sk in the case 0 < p < l, 

note that 

A I I < j+mt'H4} supp[ .•• ] c { s ~ 2 . 

Hence, it follows from a convolution lemma [P, Chap.ll, Lemma 8] that 

;;;; czjn(l-p) 1\w liP \\(z 1/J )*m. JiP II<P. *f JJP 
'k p ~ ~ J ~ J p 

;;;; CZjn(l-p)+kn(p-1) \\<P .*f JJP . 
J p 

Thus, 
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as sp -n(l-p) > 0 and k -j ::£roN. Consequently, S~ also satisfies 

inequalities similar to (10) and (11). 

1 2 3 
Now, combining the above estimates for Sk, Sk and Sk, we derive that 

a(x,D) is bounded from Bs into Bs if 0 < p < 1 and s > n(l/p - 1), p,p p,oo 

a(x,D) is bounded - s into Bs if ;:;; ;:;; co and 0. tram B 1 p s > Hence, p, p,oo 

a(x,D) is bounded on Bs if s > max(O,n(l/p -1)) by real interpolation 
p,q 

and 

(cf. [Bu2, Theorem 3.3(i)]). The proof of (i) for elementary symbols is 

thus complete. 

We now turn to the proof of (ii) in the case when a is elementary. 

First, observe that (9) implies 

(14) sup 2ksls~(x)i ::£ 
k~O 

c sup 2js~~ f(x). 
j~O J;\ 

2 Next, by (10) we see that Sk also satisfies an inequality similar to (14). 

Finally, it follows from (13) that 

2ksls~(x)i 

00 

I !! <z ~ 
j=k* 

;:;; c( f 2(j-k)(;\-s)](sup 2js ~J;\f(x)) 
j=k* j~O 

;:;; C sup 2js~j;\f(x) for ;\ > s > n/p • 
j~O 
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Hence, it follows from a maximal inequality (cf. [Bu2, Theorem 2.2]) that 

o(x,D) is bounded on Fs if s > p,oo Now, if p, q and s satisfy the 

assumptions of (ii) of the theorem, then we can choose s 0 , s1 , p0 , p1 , 8 

such that 

1 1-8 8 
s = (1-e)s + es , - = -- +-, 

o 1 P Po Pl 
1 1-8 

Part (i) of the theorem implies that o(x,D) is bounded on 

Fso (-- Bso ) , ( while the above implies that o x,D) is bounded on 
Po•Po Po·Po 

Fsl Thus, the desired result (ii) follows from complex interpolation 
pl,co 

([T, Theorem 2.4.7 (ii)]). 

The conclusion of the theorem for general symbols follows from that 

for elementary symbols by a standard method (cf. [C-F] or [Bul, Proof of 

Theorem 3]). 

2 REGULARITY THEOREMS FOR DIFFERENTIAL EQUATIONS 

We return to equation (1). Assume that Lu = f, and that 

(15) jthe aa's, u and f are locally 

in Bs (resp. Fs ) at x 0 , where 
p,q p,q 

s > m+n/p (resp. s > m+n/p, 0 < p < q;,; co), 

s+m s+m As our aim is to show that u is locally in B (resp. F ) at x0 , p,q p,q 

by multiplying by appropriate c;-functions, we may assume that the aa's, u 

and fare in Bs (res~. Fs ). We shall give details only for the B-space 
p,q p,q 
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case, because the other case can be similarly handled. By the Sobolev 

embedding theorem, 

(16) u 
a 

(r = s- m- n/p > 0), 

so that Lu is defined pointwise. Now, 

(17) Lu R(a ,u ). 
a a 

As each ua E L co by (16), 1T (ua, ·) is a lj!do with symbol in S~ ,l, and thus, 

by Theorem 1. On the other hand, for each a, 

I 
k=O 

and hence, R(aa,·) is a l/Jdo whose symbol is given by 

where 
k+2 

I 
j=(k-2)+ 

(lj!. *a ) • 
J a 

As a~ E Bs c Bm+r (cf. (16)), we derive from Bernstein's theorem that 
~ p,q co,co 



106 

Consequently, 

Therefore, it follows from Theorem 1 that 

(19) R(a ,u ) E Bs-\a\+m+r c Bs+r 
a a p,q p,q 

Combining (17), (18) and (19), we obtain 

f - L rr(u ,a ) - L R(a , u ) a a a a 
a a 

. m/2 s-m Lett~ng v = (I - fl) u E B , we derive the following pseudo-
p,q 

differential equation 

\ a -m/2 
Av = L rr(aa,·)o3 o(I-fl) v =g. 

()1, 

Assume now that (x0 ,s0) is non-characteristic with respect to L, i.e., 

(20) 

Then, as the symbol of A is given by 
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it follows from (20) that 

(21) lim inf loA(x0 ,A~ 0 )1 > 0. 
A+oo 

Also, it is easy to verify that 

and for each fixed ~. 

Thus, oA is in the class Br+m defined by Meyer. This fact, (21) and 

0 -m-r oo 
[M, Proposition 4] imply that there exist T E Sl,l' p E: Sl,l , 6 E: c0 , 

~ E: Coo such that 

~(~) for 1~1 ~ R0 and A~ 1, 

and 

T (x,D) oA 8(x)~(D) + p(x,D). 

As T(x,D)Av E Bs and p(x,D)v E Bs+r by Theorem 1, it follows that 
p,q p,q 

B(x)~(D)v E Bs , i.e., vis micro-locally in Bs at (x0 ,~ 0 ). Further, 
p,q p,q 

if L is elliptic at x 0 , then we can repeat the above argument for every 

direction ~O' and conclude that v is locally in Bs at x 0 , which implies 
p,q 

that u is locally in Bs+m at x Thus, we have proved the following 
p,q o· 

theorem. 
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THEOREM 2 Assume that L is elliptia at x0, Lu = f, and the assumptions 

(15) at the beginning of §2 are satisfied. Then the solution u is loaally 

in Bs+m (resp. Fs+m) at x0. 
p,q p,q 

3 REMARKS AND FURTHER RESULTS 

REMARK 1 Some cases of Theorem 2 have been known. In [B-R, Theorem 

2.2], the result is proved for the space B~, 2 (= F~, 2 = Hs) by the use of 

a different class of symbols. s On the other hand, Theorem 2 for B2 , 2 , 

Bs and Fs 2 (1 < p < oo) are implicit in the works of Bony [Bo] and 
oo,oo p, 

Meyer (M]. As seen from the proof of Theorem 2, the main tool, besides 

the symbolic calculus developed by Meyer, is Theorem 1, and in [M] Meyer 

showed that ~dos with symbols in 0 bounded on Fs (= LP in his 31,1 
are 

p,2 s 

notation), 1 < p < oo, s > 0, and thus Theorem 2 is valid for s 
F 2' p, 

1 < p < co, s > n/p, without the restriction p ;:> 2. Meyer's proof of the 

boundedness of ~dos relied on an inequality due to Paley (randomization) 

[M, Lemma 4], and it seems not possible to extend his arguments to the 

case q f 2. By complex interpolation of his result and ours (Theorem 1), 

one can remove the restriction p ::> q in Theorem 1 in some cases, and 

hence, Theorem 2 is true on any resulting space obtained by such 

interpolation. 

REMARK 2 It is also a routine matter to extend the result of Bony and 

Meyer (cf. [M, Theoreme 6]) on non-linear equations to our space Bs and 
p,q 

Fs , because the key tool is again Theorem 1. In fact, part of our 
p,q 

result, Theorem 1(i) and the application to non-linear equations, has been 

also given in the author's talk [Bu3]. 
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REMARK 3 This remark concerns with the extension of the results to weighted 

spaces, Theorem 0 has been extended to weighted spaces, where the weight 

function is in the class A00 of Muckenhoupt (cf, [Bu 2, Remark 3.4(c)]). 

The proof of Theorem 1 has been done in a way that it can be extended to 

some weighted spaces. 
1 2 

In fact, the estimates for Sk and Sk are based on 

maximal inequalities and hence are readily extended to weighted spaces 

via the results in [Bu2], As for S~, if 1 < p < oo and w E Ap, then (13) 

implies that 

z: liM ( [ 0 •• ]) II p,w 
j=k* 

:;; c z: 
j=k* 

II l ... l II p,w 

by the weighted estimate for the Hardy maximal function. (Here M denotes 

the Hardy maximal function.) Thus, (13)' holds also for the weighted 

case and hence, it follows that the weighted version of Theorem l(i) is 

valid if 1 < p < oo, 0 < q :£ oo and VJ E: A (by the interpolation theorem 
p 

in [Bu2]). Consequently, we see that Theorem 2 is true for Bs,w if 
p,q 

furthermore w E Md and s > m + d/p (the last two assumptions are made to 

ensure that we still have Sobolev embedding theorem (cf. [Bu2, Theorem 

2.6 (v)]), so that Lu = f is defined pointwise). It remains an open 

question to extend Theorems 1 and 2 to other cases (e.g., >if E A00 , 

0 < p S 1, etc.), 
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