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EVOLUTION OPERATORS OF PARABOLIC EQUATIONS IN CONTINUOUS
FUNCTION SPACE

A. Yagi
1. INTRODUCTION
Let
du/dt + % aa(t,x)D“u = f(t,x) in (0,T1 x Q@
loel<2m
P b b.B(t,X)DBU = 0 on (O,T] X 82, j = s,**-,m
[8l<m.
i
u(0,x) = uo(x) in &

be the initial value problem of a parabolic partial
differential equation in a (bounded or unbounded) region @
in R". This Note studies the construction of an evolution
operator (fundamental solution) for (P) in the continuous
function space €(8) on Q. Inthe Lp (1 < p < ») space case
the construction has been studied by several authors,
including Kato et al.[1], Tanabe [41 and Yagi [6]. Recently
Tanabe [8]1 and his student Park [2] showed existence of the
evolution operator for (P) even in a "worse” function space
Ll(Q) (recall that there is no a priori estimate for elliptic
operators in L1 space). We are then interested to work in
another "worse" function space g .

For 0 <t <£T let A(1) denote the operator
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b aa(t,x)Da acting in €(Q) with boundary conditions
lal<2m
8

z b‘B(t,X)D u=0 on 90 for 1 < j £ m. According to
IBISij

Stewart [3]1, A(t) are shown under suitable assumptions to be
the generators of analytic semigroups on Q(ﬁ), therefore (P)

can be formulated as an abstiract evolution equation

B { du/dt + ACt)u = £(1), 0< t<T
u(d) = uO
in the space g . In the present case, however, we have to

notice that the domains 92(A(t)) of A(t) may be no longer
dense in #(Q) (for example, consider the Dirichelet condition
u=0 on 980 for second order operators in Q, clearly the

space {u € €@); u =0 on 8 is not dense in €@,

2. ABSTRACT EVOLUTION EQUATION (B

Let X be a Banach space. In this section we study the
construction of an evolution operator for an abstract
evolution equation
() { du/dt + A(tdu = f(t), 0 < t <T

u(0) =u,

in X. (E) 1is of parabolic type, this means that each A(t),
0 £t £T, is the generator of an analytic semigroup on X,
but the domain 2(A(t)) of A(t) 1is not assumed to be dense
in X. £:[0,T] » X and U, € X are given, u:l0,T] » X 1is
unknown.

In the case where A(t) are densely defined, there is

already a large literature on the present problem. Some of
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them, especially we are concerned with [6], can be generalized
to the case of non dense domain. According to [6] let us make
the following hypotheses:

(1) The resolvent sets p(A(t)) of A(t) contain a sector Z
= {1 € C; larg x| 2 n/2 - 8} where & > 0, and there the

resolvents (n - A(t)) "1 satisfy
1

T = A Ty g, < M/CIxl + 1), X € I,
(I1) The function A(~)—1 is strongly continuously differen-
tiable on [0,T1: AC-) L € Ql([O,T];ﬂo(X)).

(II1) The derivatives dA(t)_1

1

/dt, 0 £ t £ T, satisfy

dAcCt) L/del, < N/(al + )W, aiesx

Z(X)
with some constants 0 ¢ v £ 1 and N = 0.

fACEY (X - ACE))

Then we can prove:
THEOREM 2.1 There exists « family U(t,s), 0 £ s £t < T, of
bounded lLinear operators on X which have the properties: a)
Uct,s)U(s,r) = U{t,r) for 0 <r <s<t<T, Uts,s) =1 for
0 <8 £ T; b) UCt,s} ig strongly continuous for 0 < s < t <

T with an estimate HUCtis) < Cl; c¢) the ranges

XD
RCU(t,s)) are contained in PA(t)) for all 0 < s < t £ T,

and A(tYU(t,s) is strongly continuous for 0 < s < t < T

1

with an estimate WA(LIUCL,s) < C,(t - s) ; and d)

X090
Ult,s) is sirongly continuously differentiable in t for 0O
<8 <t €T, and QU(t,s)/8t = ~A(EYUCL,8).

U(t,s) is called the evolution operator for <(E). In fact,

an existence and unigueness result of strict solution u (i.e.

u € @1((O,T];X), AC-)u(-) € €((0,T1;X), and 1lim A(O)—l(u(t) -
t=0

Yy = 0 in X) for the problem (E) is obtained by using
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the operator U(t,s).

THEOREM 2.2 For any £ € €°(00,T1;X), o > 0, and any u, € X,
the function u defined by

2.1) u(t) = UCt,00u, + fé UCt,mf(tydt , 0<t<T,
gives a strict solution of (E). Conversely, let u be any
strict solution of (E)Y where f € €([0,T1;X) and u, € X
are arbitrary, and assume that u satisfies a growth condi-
tion: lu(tilly < ct™¥ near t = 0 with some v < v; then,
necessarily u nust be equal to the funciion given by (2.1)
for all 0 < t < T.

The spirit of proof of these two theoremsis quite similar to
that in [6]1 where the theorems have been proved in the case
where P(A(t)) are dense. We have to recover, however, a
technical difficulty that the Yosida regularization

nin + ACt)) !

of A(t) converges to the identity mapping no
longer on the whole space X but only on the closure of
P(A(t)), which results from lack of the density of the domains.

Full proof will be seen in the forthcoming paper [v].

3. INITIAL VALUE PROBLEM (P

Let us observe in this Section how to apply the abstract
result in the previocus Section to the problem (P).

Let & be a (possibly unbounded) region in Rn with the

boundary 8Q, x = (X, '",x ) € . For each integer k = 0,

1 9
@k(ﬁ) (resp. QR(SQ)) is the Banach space of all continous
bounded functions on & (resp. dQ) which have smooth and

bounded derivatives on Q (resp. 8Q) up to the order Kk; @O(ﬁ)
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(resp. €O(GQ)) will be abbreviated to €(8) (resp. €(3Q)).
For 0 < t £T, let

ACt,x:D) = b3 aa(t,x)D“
loe]<2m

be differential operators in @ of order 2m, where D1 =

i—18/8X1,°‘~, D = i'la/axn, and D% = p§1---0%n  for multi

1
index o = (ul,"°,an). And let
B.(t,x;D) = z b.B(t,x)DB . j=l,°°<, m
1 [8]l<m. J

J
be boundary differential operators on 8Q of order mj < 2m-1.

We assume the following conditions:

(R1) The boundary 8% is uniformly regular of class sz.

(A1) ay € Ql([O,T];Q(ﬁ)) for |o] £ 2m, moreover aa(t,-)
are uniformly continuous on & for el = 2m.
(A2) A(t,x;D) are uniformly strongly elliptic, i.e.

= a 0% 2 El£|?™ (E > 0) for £ € R", x € O, 0<t<T.
loel<2m

(BL) b, € glcro,71:2°™™;5¢00)) for |[B] < m, 1<j<mn; and

Dijs(t,~) are uniformly continuous on 8 for |yl = 2m—mj.

i9.2m
DY
Bj(t,x;D) satisfy the complementing condition on a product

(B2) For 8| 2mn/2 - & (& > 0), ACt,x;D) - e and
region & X Ry (specifically see e.g£.[8,p.2511).
Set

(f € g, lim  £(x) = 0}
X€Q, | x|~

(X = ¢ if Q 1is a bounded region)

X

h£ly = Hfﬂg(ﬁ).

And define, for each 0 £ t £ T, a linear operator A(t)

acting in X Dby

- 2m qy. .
( A = tue o, W (@; ACt,x;D)u € X and
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i B,(t,x;D)u =0 on 8R for 1<j<m,
A(tu

= A(t,x;D)u - AOu.

Then it is verified that:
THEOREM 3.1 A(t), 0 £ t £ T, satisfy the Hypotheses (1),
(11> and (III) +in Section 2 (we shall assume if necessary

that the constant A is sufficiently positive).

0
Proof In fact, (I) has been already verified by Stewart [31].

To verify (II) and (III) we use a priori estimates in

P space for 1 < p < . For X € Q and r > 0, Q(x,r) =

Loc

(v € Q; |ly - x|l <r}y. For 0<j< 2m, I-I is the usual

i.p,0
norm of the Sobolev space W;(w) on o < Q.

LEMMA 3.2 For any 1 < p < » there are two positive consit-
ants Cp and Rp such that, if larg x|l =2 n/2 - & and |r]

> C and if r =2 R, then
b P

2m .
3.1 = |2t J/zmsugllull. D.R(X, 1)
i=0 X€EQ 1P ’
< C_{supl(x - ACt,x;D))ul
P el 0,p,0(x,1)
m m
1-m./2m

= x| i"“suplg. i z suplg. i, _ )
j=1 <eg 3 0,p,0(x,1) j=1 xeq 3 2m mj,p,Q(x,r)

for all u € wim(ﬁ), here gj (1 £ j € m) are arbitrary func-

tions in Wim-mj(ﬂ) provided g; = B,(t,x;D)u om 2.

We take some n/2m < p < «, and assume that XA, = Cp. Let

0
f € (@) be a function with compact support;: since f €
2@, at) Yt belongs to wim(9> and satisfies
(3.2) (ACt,x;D) - AO)A(t)—lf = £ in Q, and
(3.3) Bj(t,x;D)A(t)‘lf =0 on 89, 1<j<n.

Then, by using the a priori estimates in Lp(Q), it is shown

from (Al) and (Bl) that A(')-lf is, as a Wﬁm(ﬁ)-valued
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function, continuously differentiable on [0,T] and the
derivative dA(t)_l/dtf is specified by

(3.4)(ACt,x:D) - AO)dA(t)-l/dtf =

- = aaa(t,x)/atD“A(t)'lf in @

leel<2m
(3.5)Bj(t,x;D)dA(t)_l/dtf =

B 1

- = SbjB(t,x)/OtD ACt) "f on 8Q.

<m.
|81<m,

This then shows by the Sobolev imbedding theorem (wgm(g) c

1

g@)) that A(-)> 't € g1(10,T1:X). Take an arbitrary point

X, € @, and let ¢0(x) = ¢(x-x0) be a function such that ¢ €

0
Qg(Rn) with supp ¢ c {(|x]| < Rp} and ¢(0) = 1. Then

I{dA(t)-l/dtf}(xo)l

-1 u -1 1-u
< {ﬂ¢OdA(t) /dtfﬂzm’p,g} {“¢OdA(t) /dtf“o,p,g }
with u = n/2mp, so that
-1 N -1 1-u
SCp{“dA(t) /dtf"Zm,p,Q(xo,Rp)} {HdACt) /dtf“O,p,Q(XO,Rp)) .

We here use the local a priori estimate (3.1) with Xx = AO’

then it follows from (3.4) and (3.5) that
< Cc_ supllact) el

P xeQ
We use again (3.1), then (3.2) and (3.3) vyield

2m,p,Q(x,Rp)'

-1
(3.6) supllact) “fl < C_ suplfll
<€8 2m,p,Q(x,Rp) P cen O,p,Q(x,Rp)
< Cp"fng(ﬁ).
Hence we have proved that
-1
fdA(t) /dtfug(g) < Cpﬂfﬂg(ﬁ),

the constant Cp being independent of f. (II) then follows
easily from the fact that functions in €(@) with compact
support are dense in X.

Verification of (III) is now an easy analogue to the
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L? case (cf. [51 or [61). For Jarg Al 2 mn/2 - & and 0 < t

1

< T, we denote the operator A(t)(A - A(t)) Tdact) 1/dt by

Dx,t). Let { € g(Q) be again with compact support; D, {){f
is a function in wim(Q) c Q(ﬁ); in the same way as above it
is seen that
(3.7)"D(A,t)fug(§)

< C_{suplD(x, t) £l
P xeq

with u = n/2mp. But, since

y* (suplD(x, t) £l yLou

2m,p,Q(x,Rp) %€0 O,p,Q(x,Rp)

- A, ;DDA ) = (ACE,x5;D) - A )dA(t)_l/dtf in Q

(n + 2 0

0
and (3.4), and since

Bj(t,x;D)D(A,t)f = —Bj(t,x;D)dA(t)_l/dtf on 9, 1 £ j<m
and (3.5), it follows by using (3.1) that

2m .
S (a2 upipa, £

i=0 x€Q J»P’Q(X,Rp)
-1
< C_{suplact) £l
P 1e0 2m,p,Q(x,Rp)
2 [x|lmg/2m suguA(t)'lfum 0. R’
1$jSm,mj¢O x€Q j’p’ s \p
(note that B, (t,x;D) = b,o(t,x) = 1 if m, = 0). Therefore

from (3.6)
1-v
< cplxl B llfllg(m,
where vB = Min{mj>0; 1 £ j < m}/2m. We therefore conclude
(from (3.7)) that
— b -y —
IDX, Oflg gy < Cplxl B Hfﬂg(g).
The density of functions with compact support provides thus
4 - v
IDX, )0y 0y < cp!xl B,

hence (III) (remember that p was arbitrarily taken in n/2m

< p < @),
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4. PROOF OF LEMMA 3.2

Lemma 3.2 is a slight modification of the ordinary a
priori estimates in Lp space. Under (R1), (Al-2) and
(B1-2) it is known (see e.g. [8,Lemma 17.6] that:
Theorem 4.1 For any 1 < p < « there is a positive constant

Cp such that, if larg Al 2 n/2 -6 and x| 2 Cp, then

(4.1) %mlxll'j/zmuuu < C_{lhn - ACE,x;D)oull +
el i,p,Q p T 0,p,Q
m m
1-m./2m
=[xl i g | + z g .l }
N Ot 3 . LIPS *
j=1 i p,R =1 i 2m mJ P,8

im-mj(ﬁ) with the condition

that gj = Bj(t,x;D)u on 98, 1 £ j < m.

for all u € Wim(Q), where gj € W

Let ¥ be a function in QE(R“) with supp ¥ c {(Ix| < 2}

1 on {|x| £ 1}. For any X, € Q and r 21, we

set WO(X) = ¢((x—x0)/r) and apply (4.1) to Wou. Since

and ¥

i - A(t,X;D))(Wou) = ¢O(A - A(t,x3D)u

+ S S (g)aa(t,x)Da$0Da_Yu in Q,
lal<2m O=y<a

it follows that
hax - A(t,x;D))(¢Ou)u0,p,Q

< C ol - ACt,x3D)ul + 1hul

O,p,Q(xO,Zr) 2m—1,p,Q(xO,2r)}

On the other hand, if we put

(B)bjs(t,x)DYWODB_Yu , for 1 £ j £ m,

h, = .
WOgJ y

>
J [81<m, o=vss

2m-m,
p iN¢SD.
satisfies for 0 < k £ 2m - mj the estimate

then h, € W , h, = B, (t,x;D)f.u) on 38R and h.
J i J 0 ]

Il

1
i k,p,8 < Cp{"gj“k,p,Q(XO,Zr) * r"u"mj+k—1,p,Q(x0,2r)}

Hence it turns out that
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2m .

s (afiTi2myyy
=0

< C_ {llix - ACt,x:;D))ul

2m .
< 5 'lll-J/Zm

. I ult
J,p,Q(xo,r) j=0 0

i,p,Q

p O,p,Q(xo,Zr)
m m

1-m./2m

+ T |al j g . 1 z g, _ 5yt

j=1 i O,p,Q(XO,Zr) j=p 4 2m mj,p,Q(xo,ax)
m
1-m./2m ,
* Cp/r{jfllll J I "mj—l,p,Q(xo,Zr) * "u"2m—1,p,Q(XO,2r)}‘

To complete the proof it now suffices to notice a fact that
for an integer N, which is independent of XO € and r =
1, Q(x0,2r) can be covered by N number of Q(xi,r), xi € ﬁ,
1 £1i < N, and therefore

vl . < N sup fvil,

. v € Wj(Q)
J,p,Q(XO,ZI‘) %€0 _],p,Q(X,I‘) P

hold for all 0 £ j £ 2m.
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