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FOURIER THEORY ON LIPSCHITZ CURVES 

Alan Mcintosh and Qian Tao 

The aim of this talk is to indicate how the theory of Fourier multipliers 
in Lp (!R) can be adapted when the real line IR is replaced by a Lipschitz 
curve r. Details will appear in [6]. 

(I) Let us start with a resume of the usual theory concerning Lp(IR). 

(Ia) The Fourier transform 

f{t) = J e-ixt f{x}dx 

IR 

defines a mapping 

where Co denotes the space of continuous functions on (-ro,oo) which 

tend to zero at :±: oo • We consider the inverse Fourier transform 

v 1 M ·~ 
I } J ,J...,,.~ w(.t.) -""' w,x ::: 2n " " .,. '"'" 

-oo 

4, t1RJ ;;:. s 
where S is the Schwartz space of rapidly decreasing functions on 

Then 

(1) 
1 "" 

JHxJ w(x) dx = 2n J i:(~J w(-~J d<; 
-oo 

for all feLt (R} and w <e>S , so it is consistent with the case 

p = 1 to define 

by 
{!R) ~ S' 

<1, "'-) = :m J x(x) w(x) ax , ., e s , 
IR 

for 1 < p ~ "" , where w- (~) = w(-t;,) and S' is the space of the 

tempered distributions. We note that 

(2) fw I weS/. is dense in 4 {IR), 1 .i p < "" , and in Co (JR) , 

from which it is immediate that 

(3) ~ (R} ~ S' is one-one. 

Of course, the following also holds~ 
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{ 4) Assuming f 11: L1 M) and w <E S, then f "" w i:f and only if 

f=w. 
(Ib) Next we note some facts concerning the convolution 

(I c) 

(,P*f) (x) ""J.P(x-y) t(y) dy. 

(5) Let 1 ~ p ~ "" • If !f. tit Lt tlRJ, f t~t Lp M), then !f. * f t~t Lp IIRJ 

and II.P * fll" ~ II.P!I 1 IIfi!P 0 If t t~t C., (IR), then so is !f. * t . 

Proof: (when 1 ~ p < oo). Let p' = p(pF1)-1 Then 
1 

li.P * fliP = tJ i J tp(x~y) f(y) dy I P dxJP' 

IR IR 
1 

~ tJ I tp{x-y) I dy JPIP' tJ I tP 

IRIR 

II :t(y) I~' dy1 dxJ"ii 

1 

s.tsp J I tp(x-y) i dyjll'v• lsp Ji tp(x-y) I dx}fi Ifill~> 

R IR 

II.PII1 II fliP II 
It is straightforward to show 

(6) if !f. ' f € IIRJ, then (lj) "' :tr'' = ~1 
Exuple: Define cpA for IlliA > () by 

(x) = { ~ iAX (j e X ) 
X < (I 

and, fo:r IW. < 0 ' by 

(x} = { 0 
0 L\x X > 0 

-z e X < 0 • 

Then II«PAII 1 = I Il!iA I -i , and ~A((;;) = (t;->,)- 1 

f e L1 IIR), 

So, for 

l
iJ </A f(y) dy , Ill!A > () 

* f) (x) 

and 

Let 1 i p < oo • 

'J(X 

"" -if eiA(x-y) f(y) dy , 

g~x 
IlliA < () 

Consider the operator D = ~ 1 
.l uX 

as a closed linear operator in Lp(IR) 

L~ (IR) = If tit LP {IR) I f' € LP (IR) J ' 

with dense domain 

where f' denotes the distribution derivative of i . 
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It is straightforward to show 

{7) when IIIIA ~ 0, then {D-'AI)- 1 f = 4>').. *f for all f€4> (IR), so 

II {D - 'AI)- 1 11 s IIIIIAI- 1 

and 
{{D- 'AI)- 1 t/'(~) = {~->.)- 1 Jt~J. 

Note in particular that the spectrum u{D) is contained in IR • 

(Actually u {D) = IR • ) These results also hold when Lp (IR) is 

replaced by Co (IR) with the norm II fll = sup I f {x) j. 

(Id) Let beL~<-~.~>. Then b is an Lp(IR)- Fourier-multiplier means 

there exists a bounded linear operator Bin Lp{R) such that 

{Btl' = bJ , f e LpnL1 (R}. 
If p = ~, Lp(IR) is replaced by C0 (R). 

We denote the set of Lp(IR) -Fourier multipliers by ~(IR), and, 

in analogy with (Ic), we write b{D) for B when b e ~ (IR). 

Let us list some conditions which ensure that a function b 

belongs to ~(IR). By S: we mean the double sector 

SO = lz e C I I Im z I < p I Rez I J p 
and by H (S0 ) we mean the space of bounded holomorphic 

~ p 
functions on SO • 

p 
(i) 1 s p s ~ . If 4> e Lt (R) then ~ e J$, (R) and ~{D)f = 1/) * f • 

(ii) 1 i p i ~ • If b e: H (S0 ) 
~ p 

for some· p > 

{ I b!<l-A. I< c I <1 s • I~ i 1 

I b((") I s c I~ -s , I~ ~ 1 , 

for some bo, c, s > 0 , then b e J$, (R). 

(iii) p = 2 • 

(iv) 1 < p < 
If b e L . , then b e 16 (IR) • 

~ 

~ • If b e L and, for all a > 0, 
~ 

2a 

Ja ldb{t) I s const , 

then b e J$, (R) • 

0 , and 

(v) 1<p<~. If b e H (S ) for some p > 0, then b e ~ (R) • 
~ p . 

(vi) 1 < p < ~ • If b = AJ , the characteristic function of an 

interval J, then b e J$, (R) • 

(vii) 1 < p < ~ • If b e L and there exists 4>: R -101 + C and 
~ 

c > 0 such that 

l4>fx) I s const. lxl- 1 

lt/>{x+b) - t/>{X) I S const. lbl 0 lxl-<1+c), 
and 
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00 

p.v. J«P(x) w(x) dx"" ~ J b{i;)w(-~}d~ ' w € s ' 
!R 

-oo 

then b (D) f (x) p.v. ~ ¢{x-y) t(y} dy, :f e Lp t!RJ. 

To prove {ii), apply the Cauchy formula for b(z) + ib0 (z-i)- 1 on the 

bouniiary of ~12 • (c.f. [5] and [4] .) Parts (v) and (vil are both 

corollaries of (iv) which is due to ~!arcinll:iewicz. See, e.g., [7]. 
The operators XJ (D) are spectral projections for D. Part (vii) is 
essentialy proved in [7]. (c.f.[2].) 

Ezuple: If b (t;) = sgn (~-a) for a e !R , then ip (x) = ('nix)- 1 ex:p (ixa), 
so 

sgn (I)-a) f (x) = 1., p. v J 
1U · x-y 

(x-y) f(y) dy , 

and 
!R 

X[a,b](D)f{x) = ~i p.v J /: .. y !eia(x-y) 

IR 

(x-y) J f(y) dy • 

(II) Henceforth g denotes a real-valued Lipschitz function w.ith 

l!g'!l00 5, N ( "" , 

r = lx + (',y) E: c I x e Rl 

and 

r = I z-(' I z e r , c £ rl . 
Note that 

res = {z eC 1/Imz/ S.N/Rezf I. 
N 

Our aim is to see what happens when IR is replaced by r in the 
results of {I). We work in the spaces Lp(r) for which 

llfiiP = tJ /f(z) /'' < "" ., 
('.rhere the integral is with :respect to arc-length) and in C" (-,) • 
Let us first consider convolution on r • 

(Hb) If .f e Lp and 4> is defined on r , then (4> * f) (z} is 
defined by 

(;jl * .f) (z.l = J¢ f (i;;) ~ 
T 

whenever the right hand side makes sense. The inequality in (5) is 
no longer correct, but the proof goes through except for "the final 
equality. So we have, for 1 i p s oo , 

1 1 

II.P *fliP i!~f Jfip(z-{')/ /d(ffi5' lfHf J!«P(z-{')/ /dzfl'P 1/f//P 
r r 

if lj>(z-.) and .p(.-{') e Lt (y) for all z and ;;: e y • 

EzaJJJple: Define ~ : SN + c when I!JJA > 0 by 



(II c) 

<P;>, (z) - { i - 0 

and, when Im A ( (I ' 

<Pr, (z) { 0 

-i 

iAZ e 

by 

iAZ e 
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Re z > 0 
Re z ! 0 , 

Re z l 0 

Re z < 0 • 

write z = x + iy and A = p + iv When vx > 0 , 

/1/JA (z) I = exp (Re (i).z)) = exp (-vX-IlY} 

! exp (-vx(l-Jilfftllv /)) 

which tends to zero exponentially as lx! ~ oo if A e SN • 
Computation gives, for ;>, Er SN , 

t e L (;} • 
p 

Let 1 ! p < oo • Define the closed linear operator 
1 

domain Lp (y) dense in Lp (y) as follows. 

If u: y ~ C and z e y , define u' (z) by 

, 1 ) _ l~ {u (z + ll~ - u (z)} u ,z - n -
z+ €7 

D with 
y 

provided the limit exists. Let ~ be the space of continuous 
:functions u with compact support fo:r which u' exists and is continuous 

on y • Then cl (y) is dense in Lp (y) • Let 

L~ {y) = { t € Lp (y) I 3 h € Lp {y) 

for all if e d (y) } • 

J f{z)u1 (z)dz = 
T 

1 
and define J) by ]) t = .i-lh for f € Lp {y) and 

T y 

So ]) 
1 d in the weak =-:-

dz 
sense. 

y .l 

It is straightforward to show that when A e SN , 

then (JJ7 - "A.I)- 1 t = ¢'"A * t for all f e L" (JR} , 

so 
II (JJ - AI)-1 I! s { dist (i\ , SN) }- 1 

T 

and o (D ) c SN • 
y 

h a.s 

-J h{z)u(z)dz 
y 

above. 

These :results also hold when Lp (IR) is :replaced by c, (!R} • 

Exuple:: 

y: 
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If y is the curve defined by the function 
g(x) { 0 , x ~ 0 

"" a.x, x2:0 

then o(D ) is as shown in the 
y 

sketch. In particular, 

if >. = p_ + i v where -ap. < v < 0 , then exp (iAz) € Lp (y) and 

and 

(DT - 1\I) ei'Az = 0 , 

which means that such a number A is a eigenvalue of (acting in 

or in Co ) 0 

This example shows in particular that a(D ) is not necessarily contained 
y 

in R, so it is not reasonable to try to define b{D} for b € L (-oo,oo). 
T "" 

Of the results listed in (Id}, there are however natural ways to define 

b(D } in the following cases. 
y 

( i' l 

(v') 

t(r) = sup (/1/>(z)/ ! zer, /z/ = rl, and fP(D) f = ¢ * f, 
T 

is bounded in Lp 

/b(z) -b., I ~ cfz/" 

{z) I ~ c fz 

for some bo , c and 

{,'J") for some p > N , and 
p 

, /z/ -s 1 

, /z I ~- 1, 

s > o, then b(D ) 
T 

can be defined as a 

bounded operator in Lp (y) (or Co (y)) using contour integration 

on the boundary of where N < a < p • (c. L [5] amd [4].) 

1 < p < "" • If b e H (SO) for some p > N , then b (D J 
.. P r 

can be defined as a bounded operator in Lp 
This can be achieved when p = 2 using quadratic estimates. 

"" Jll tD (I + t 2 JJ 2 )- 1 f 11 2 t- 1 dt ~ const. ilfli 2 •• f e Lz (r) r r 
~ 

(c.f.[5]l, or using singular integrals as in [3]. Both methods 
depend on the type of estimates first proved in [1]. The methods 
can be adapted to work when p ~ 2. See [4] and [3]. 

(III) To proceed further we make an additional assumption, namely that the 
function g defining y satisfies 

Then 

The functions 
namely 

sup fg (x) I i N <' oo • 

r c: I z e SN I I Im z I 5. N J 

qj>A defined in (IIb) now satisfy an additional estimate, 

I.PA (z) I = exp(-vx - J.J.Y) S. exp( fp_fJ.!) exp(-vx) 

when vx > 0 • ie find that, whenever v = ImA ~ 0 , 
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II¢,* fll ! fv/- 1 exp{2/JJ./11) ~1+11.12 l!fll . 
A p p 

So o (lJ ) c IR (Actually o (D ) = !R) and we now have the 
y y 

possibility of defining Fourier multipliers. Let us start with 
Fourier transforms. 

(IIIa) Define, for -oo <a < oo , Ea to be the space of measurable 

functions w on (-oo,oo) for which 

and 

{The space 11 .~ 
tY. Yl'r rx 

The Fourier transform 

defines a mapping 

"'I j e2a:f~llw(i;JI2 d~J% < oo, 

-oo 

{ w e: E I w ', w" e a 

was used in [3].) 

1tzJ dz 

J 

L1 (y) ~ 

provided f3 > M. It can be shcnm that the material in (Ia} goes 
through provided S is replaced by E~ and S' by (E~)' • 

To be precise consider the inverse Fourier transform 

as a mapping 
Lp (y) ? E2 

f!, 

again with f3 > M. Then 
00 A 1 I f(z) w (zl dz =- I f(~) w H;) d.; 

2n 
y -oo 

for all f e: L1 and w 2 
e E/3 ' p = 1 to define 

Lp ~ {E2 
. 13 ) ' 

by 

< f,w- > = 2n J f{z)w{z) dz 
y 

so it is consistent vii th the case 

for 1 < p s oo • Again we can show that the mapping Lp(y) ~ (E~ )' 

is one-one, and that, whenever f e L1(y) and w € E~, then f = w if 

and only if f = w , but first we need some density results, in 

particular that lw I w € E~l is dense in Lp(y} for 1 s p < oo and 

in Co {y}. When 1 < p < oo, this follows from the results of [3] , 

but we need density in L1 . (Actually we need it in L1 n L~> (y). 

To see this, proceed as follows. Let 
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hn (() = { exp (-((/n)« ) Re ( > 0 

exp (-(-(/nl« ) Re ( < 0 

where a is a little larger than 1, and define hn(D) as in ,.. 
For f e Lp (;>1 or Co <n, 
let fn = hn (D) f and fn,m(Z) = (1 + z2 /m2 )- 1 fn (z). 

T 

Then fn, m e E~ , and fn ~ f and fn, m ~ fn in the appropriate 
topologies. 

A different argument will be presented in [6]. 

(iiI) o 

(IIId) Let fe L (-®,®) • Then b is an LP(rl -Fourier multiplier means 
co 

there exists a bounded linear operator b(D) in LP (rl such that 

(b(D )f)" = b'i , f e LP nLJ. <rl • ,.. 
If p = co , LP (y) is replaced by Co (rl • 

The set of Lp(y) -Fourier multipliers is denoted by ~(y). 

The following theorem is useful in studying ~(rl . 
Theore•: Let 1 ~ p ~ co • 

contained in [ -L, L]. 

and 

Suppose ., e..( and the support of ., is 

Then 

UwiiLp (R) i c ~1+/P exp(2l!L) nwnLp (y) 

for some universal constant c • 

Proof: Let e be a C2 function with support in [-2,2] such that 

8(~) = 1 if I~ I ~ 1 , and let 9L (~) = s(VLJ. Then eL is an 

entire function which 

satisfies leL (z) I i fL (I zl) for all z such that I Im zl i 1! , 

where 

Now ., = eL w, so 

and 

W(Z) = 'L(z-x)"Jf(X) dx 1 Zej, 

W(X) = J SL (x-z) W(Z) dz , X e IR • 

r 
On proceeding as in (Ib) we obtain the required estimates. 



165 

Corollary: If b IS l1p rlRJ and sppt (b) c[-L,L] , then b e l1p (y) • 

More generally we can show that if b (.';;) exp it; I) e l1p (!R) for some 

f3 > 11 , then be Jfp (y) • Using this, we obtain the following results. 

(iii') p ""2 If (t:,) Is c exp jt; /) , then b el1z (y) • 

(iv') 1 < p <"" • If jb(~) IS c exp(-2,8/~/) and, for all a> 0 , 

2o. J jdg{~)i ;{ const., 

"' 
where g (f;) = .b (~} exp ( 2f31 ~ I ) , then b e Hp (y) • 

(vi') 1 < p ( "" • If b = Xl , the characteristic function of an 
interval J , then be l!p (·r) • 

(vii') 1 < p < "" • If .b e112 (y) and there exists q>:J:.,.fOJ ? c and 
a> o such that 

14> (z) I :I const.! zl-1 

I.P(z +h) - q>{z) IS const.lhl 0 lzi-(:H·a) 

and 

p. v. J.p {z) w(z) dz 

r-r 

00 

= :! Ib{f;) w(-fi;) di; 

-·oo 

for all ( er (where y -~; lz-;; fzey}} 
b e: Np (y} and 

b{Dr)f(z) =p •. v. J,P(z-t;)f(t;)d?; 

T 

t eLp (y) 

Part (vi') is a consequence of the preceding theorem when 

then 

J is a bounded interval, of {v') when J = (-oo, 0] or [O,oo), and 

of a combination of the two when J is an unbounded interval. 

The operators XJ(D7) are spectral projections for D7 . 

An alternative approach to (vi') if via the Lp-boundedness 

of sgn (D - a} for a e: IR 
y 

Use (vii') to write 

Le. 

sgn (D -a)f(z) = ~ r m p.v. J z~{' 
r 

sgn {D - a) = G sgn {D ) G 
T a y -a 

where Ga denotes multiplication by exp{iazl. Now 

fe:Lp(y) 
so 

l!sgn(D -alli~exp{2ia!M>IIsgn(D >II, 
r T 

and sgn (D) is bounded by (v'). Indeed sgn 
T 

operator, the boundedness of which was first 

{D ) is the Cauchy 
T 

shown in [1]. 
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