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" FOURIER THEORY ON LIPSCHITZ CURVES
Alan McIntosh and Qian Tao
The aim of this talk is to indicate how the theory of Fourier multipliers

in ILp{R) can be adapted when the real line R is replaced by a Lipschitz
curve 7 . Details will appear in [6].
(1) Let us start with a resumé of the usual theory concerning Lp (R).
(Ia) The Fourier transform

Bg) = [ &% £impax

R

defines a mapping

L (R) =23 C,

where (o denotes the space of continuous functions on (-c,) which

tend to zero at xew. We consider the inverse Fourier transform
v, o1 T ixe
wix) = = I e w(g) dg
=00
L R) & v
where S 1is the Schwartz space of rapidly decreasing functions on

(-o0,00) .  Then

Fle) wi-¢) de

Sy, §

(1) jf(x) wix) dx =
R

L
7n

$

for all fels ®R) and we$S , so it is consistent with the case

p =1 to define

LR >
by

2, w->=2njf(x) Yi(x) dx, weS,
R

for 1< p< o, where w-(¢) = w(-£) and $' is the space of the

tempered distributions. We note that

(2) {#w|weSj is demse in L, (R), 1 < p< w , and in Co(R) ,

from which it is immediate that
(3) L, @® 2y 8' is one-one.

Of course, the following also holds:
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(4) Assuming fel, (R) and weS$S, then f =w if and only if

f=w.
(Ib) Next we note some facts concerning the convolution
(@*f) (x) = j¢ (x-y) £(y) dy.

(5) Let 1< psow. If ¢ eli(@), f el (), then ¢ * f ¢ Ip (R)
and ¢ * fll, < liell lifll, - If f e, (R), then so is ¢ * £ .

Proof: (when 1 < p < o). Let p' = p(p-1)-* . Then

1
o * £, = {[| [ ¢(x-y) £(y) dy|* dx/>
R R

i
s{j/jw(x-y) | dy je/e’ 1j|¢(x-y) || £(y) |® dy] dx/®
R R

1
Sisp [ 1@ (x-y) | dyi™e’ (syp [| ¢(x-y) | dx/® |£le

R : R
= llolly, £l - //
It is straightforward to show
(6) if ¢ , f e L, R), then (® * £)" = 3 ¢
Example: Define 47)\ for Imrn > 0 by
¢A(x)={iem , x>0
0 , X< 0,
and, for Im» < 0, by
_fo , , x>0
¢A(X) B { -i e , XxX<¢O0.

Then |lg,ll, =|Zur |-t , and @, (¢) = (g-2)-* . So, for

f el R),
Y fy)yay , > 0
ylx
(9, * £)(x) =
A Iir(x-y)

—i!e ¥ f(y) dy , Imx ¢ 0
yrx

and

@, "% £ (&) = (¢-R)-1 £(g)

(Ic) Let 1 { p < o+ Consider the operator D = -‘% ad;
as a closed linear operator in Ip(R) with dense domain

LR =i{felhR |f ekR/,

where f denotes the distribution derivative of f .
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It is straightforward to show
(7) when Im» = 0, then (D-AI)-1f = q>>‘*f for all felp (R), so
l(D = AI)-t}] < |[Imn|-t
and
((D - AD)-t£)"(g) = (e-7)-* E(e).

Note in particular that the spectrum o(D) is contained in R .
(Actually o(D) =R .) These results also hold when ILp (R) is
replaced by G (R) with the norm ||ff = sup|f(x)].

Let b e Lm(—oo.oo) . Then b is an L, (R) - Fourier-multiplier means
there exists a bounded linear operator B in LP(IR) such that

(Bf)" = b2 , £ el (R .
If p= o, %(R) is replaced by CO(R).

We denote the set of LP(IR) - Fourier multipliers by MP(IR), and,
in analogy with (Ic), we write b(D) for B when b e I‘IP(IR).
Let us list some conditions which ensure that a function b
belongs to MP(IR). By S: we mean the double sector

.S;, =fzecC| |Imz| < p|Rez|}
and by Hw(S‘;,)
functions on 6:’ . .
(i) 1<$p<w.If¢ elr(R then e % (R) and S(DJ)Ff = ¢ * F .

we mean the space of bounded holomorphic

(ii) 1 < p € e+ 1If bsﬂm(s':) for some p > 0, and

IB(e)-bo [S el ®, 1d <1

Ib2) Iseld ®, 1ed 21,

for some b, ¢, s> 0, then b e % (R).
(iii) p=2. If bel , then b e H2 (R).
{(iv) 1 ( p o . If.beLwand, for all a > 0,
j:aldb(e)l < const ,
then b ¢ % (R).
(v) 1<p<w. IfbeHw(Sp) for some p > O, _then.belﬁ»(!k) .

(vi) 1 ¢ p . If b = X% , the characteristic function of an
interval J, then b ¢ % (R).
(vii) 1 < p<w. If be Loo and there exists ¢: R ~/0} » € and
o > 0 such that
l¢(x)| £ const. |x|-?

|¢(x+h) - ¢(x)] < const. |h|%1x1" 9, |nlxl ],
and
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p.v. [o(x) ¥ix) dx= 5 [ ble)wi-g)ds , wes,
=00

R
then b(D)f(x) = p.v. £¢(x—y) f(y) dy , f e Ip R).

To prove (ii), apply the Cauchy formula for b(z) + ibo(z—.i)'1 on the
boundary of s;/z . f(c.f. [5] and [4].) Parts (v) and (vi) are both

corollaries of (iv) which is due to Marcinkiewicz. See, e.g., [7].
The operators X5 (D) are spectral projections for D. Part (vii) is
essentialy proved in [7]. (c.£.[2].)

Example: 1f b(g) = sgn(¢-a) for a e R , then ¢(x) = (nix)-texp(ixa),
so

_ 1 1 _ia(x-y)
sgn(D-a) f(x) - D.V I e e f(y) dy ,
R
and
_ 1 1 . ia(x-y)__ib(x-y)
(D)f(x) = 5= p.v jx_y {e e ] £(y) dy .
R
Henceforth ¢ denotes a real-valued Lipschitz function with

"g'"oos N (oo,

X[a,bJ

L]

7= 1x +ig(x) eC | x e R}
and

r
Note that

rc SN ={zecC | |[Inz] < N|Rez| } .

lz¢ | zer. el .

Our aim is to see what happens when R is replaced by 7 in the
results of (I). We work in the spaces ILp(y) £for which

z
I£ll» = Ij'/f(z) [P 1dz [} ¢
T

(wvhere the integral is with respect to arc-length) and in Co (r)-
Let us first consider convolution on 7 -

If felp(y) and ¢ is defined on I , then (¢ * £)(z) is
defined by
(¢ * £)(z) = [p(z%) £€) d&
7
whenever the right hand side makes sense. The ineguality in (5) is

no longer correct, but the proof goes through except for the final
equality. So we have, for I < p (o,

1 1
e * £, <isup l [(z5) | [d /P {gup l [p(z)] az[P £,

if ¢(z-.) and ¢(.<¢) e Li(r} for all z and ¢ e7v .

Example: Define ? ¢ Sv » € vwhen Imn > 0 by
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. Iz
_J 1ie , Rez >0
¢(Z)—{0 ., Rezso0 ,

and, when Im XA ¢ 0, by

0 R 0
$y(2) = iz =l
-i e , Rez <0 »
Write z =x+ iy and X = u + iv . When vx > 0,

/¢)\ (z) | = exp (Re(ilz)) = exp (-vx-uy)
< exp (~wx(1-Nfuwv/))

which tends to zero exponentially as |[x]| 2o i1if A g Sv .
Computation gives, for A€ Sv o,

* 1 -1
e, fIIp < fdist (h , Sw)j Ilfllp . fe Lp(’)’) .
Let 1 £ p (o . Define the closed linear operator DY with

1
domain Lp (y) dense in Lp (y) as follows.
If u: vy > Ccand z € v , define u’(z) by

o (z) = %o {u(z + h) - u(z)}

provided the limit exists. Let Cé(r) be the space of continuous
functions u with compact support for which u’ exists and is continuous

on 7 . Then Cs(y) is dense in Lp (y) . Let

b y) = {f elfy) [3helnfr) » [ f(z)ui(z)dz =- [ h(z)u(z)dz
T T
for all o e Ct(y) } .
and define D‘)’ by DTf = i-1p for f e L; (r) and h as above.

So D == 4 /. in the weak sense.
T i dz 'y

It is straightforward to show that when A g S, ,
then (DT - AI)-1f = ¢7\ * f for all f e Lp (R) .

so
I (0 -A1)-* || s { dist (», S,)1°1
T

and a(DT) c S, -
These results also hold when ILp (R) is replaced by Co (R) .

Example:
T
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If v is the curve defined by the function
0 , x50
glx) =

ax , x20 .
then a(Dr) is as shown in the right-hand sketch. 1In particular,

if A =pu +3iv where -au (v ¢ 0, then exp(irz) € Lp(y) and
Co (T) s and

(0, - AI) M - o,

which means that such a number A is a eigenvalue of DT (acting in
Lp (¥) or in Cofy)) .
This example shows in particular that c(DT) is not necessarily contained

in R ., so it is not reasonable to try to define b(nr) for b e Qm(~w,w).

Of the results listed in (Id), there are however natural ways to define

b(Qr) in the following cases.
(i') 1 spsew. If V¥ eLi(0,0) where

¥(r) = suwp ([p(z)] | zel. [z] = r}, and By =91,

then $(DT) is bounded in ILp (y) .
(ii') 1 £ p £ew - If b e qw(S;} for some o > N , and

Ib(z) - b | S clz/® . lzl 51
Ib(z)] < clz]s . 1zl 2 1, ,

for some bo , ¢ and s > o, then b(Dr) can be defined as a

bounded operator in Lp () (or Co (y)) wusing contour integration

on the boundary of S; , where N (o ¢(p . (c.f. [5] and [4].)
(v') I1¢(p<Cw . If b e q”(s;) for some p > N , then b(D7)

can be defined as a bounded operator in Lp (7).

This can be achieved when p = 2 using quadratic estimates.

T" tDrfI + t2D7?)-1f 12 t-1dt < const.||f}j2 . £ e Lz(y)

o

(c.f.[5]), or using singular integrals as in [3]. Both methods
depend on the type of estimates first proved in [1]. The methods
can be adapted to work when p = 2. See [4] and [3].

To proceed further we make an additional assumption, namely that the
function g defining 7 satisfies

sup Jg(x)]| £ M ¢ o0 .

Then
FrcizesSv [ |[Imz|] <K} .

The functions ¢A defined in (IIb) now satisfy an additional estimate,
namely

ﬁgk(z)/ = exp(-vx - py) < exp([u[M) exp(-vx)

when vx > 0 . We find that, whenever v = Imx = 0 ,
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ey £ll, < M/t exp(2/u/H) J1+¢ £, -

So a(Dr) cR . (Rctually a(DT) = R) and we now have the

possibility of defining Fourier multipliers. Let us start with
Fourier transforms.

Define, for -o ¢ a ¢ o , Ey to be the space of measurable
functions w on (-w,o) for which

gy =1 [ hweriz ar® cw,
o -0

and

Eﬁ = {w ¢ %1 | w', v e qm .

{The space ag&ﬁ; was used in [3].)

The Fourier transform

e = I e 1% 2(z) dz

a
defines a mapping
Ly () = E_B
provided B > M. It can be shown that the material in (Ia) goes
through provided § is replaced by E; and &’ by (E;)"

To be precise consider the inverse Fourier transform
v _ 1 * ize
W(z) = o> L e wig) dg

as a mapping o
Lo (7) <——EZ
again with 8 > M. Then
v 1 &2
lf(z) Wi(z) dz = = j_mf(e) w (-¢) dg

for all £ ¢ Li(y) and w ¢ E; , 80 it is consistent with the case
p =1 to define

Lp {7) -2 (E; )
by

~

¢ f,u- > = 2m I £(z)¥(z) dz , Woe E;
T

for 1 ( p £ » . BAgain we can show that the mapping Lp(y) = (E% )’
is one-one, and that, whenever £ e Li:(y) and w e E: , then £ = w if
and only if £ = ¥ , but first we need some density results, in
particular that (¥ | w e E:} is dense in Lp(y) for 1 < p ¢ w and

in Co(y). When 1 ¢ p ¢ » , this follows from the results of [3] ,
but we need density in Li (y) . (Actually we need it in Li nLp (7).

To see this, proceed as follows. Let
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halg) = {exp (-(e/m® ) , Reg> 0
exp (-(-¢/m)™) , Re ez <O
where « is a little larger than 1, and define hn(DT) as in (ii').
For £ e Lp (1) or Co (7,
let fn = hn (DT) f and fo,mlz) = (1 + z2/m2)-t fu (2).

Then fau,m e E; , and fn » £ and fo,m » fu in the appropriate
topologies.

A different argument will be presented in [61.

(IITId) Let fe Lm(‘oo,eo ) . Then b is an ILp (y) - Fourier multiplier means

there exists a bounded linear operator b(Dy) in ILp (y) such that
(.b(DT)f)A = bf , Felonl () .

If p=ow, Ip(7) is replaced by G (y) .

The set of ILp (y) - Fourier multipliers is denoted by % (7).

The following theorem is useful in studying % () .

Theorem: Let 1<p < o . Suppose weEé and the support of w is
contained in [-L, L]. Then

"W"Lp(')’) < ¢ JI+HE exp( 2ML) "”"Lp(lR)
and

It R <€ JI+HWE exp(2ML) ||W| Lo (r)

for some universal constant ¢ .
Proof: Let & be a C2 function with support in [-2,2] such that

efg) =1 if |g| s 1, and let o () = o(g/L). Then § is an
entire function which

satisfies |5L (z)| < £,(lz|) for all =z such that |Imz| <X,
where ||le|1 < Cexp(2LN) .

Now W =6,W, SO

w(z) =L§L (z-x)w(x) dx , zer .

and
w(x) = FL (x-z)W(z)dz , X e€R .
T
On proceeding as in (Ib) we obtain the required estimates.
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Corollary: If b e Mp(R) and sppt(b)cl-L,L] , then b e Mp(y) .
More generally we can show that if b(&)exp(28|£|) eMp (R) for some
B>M , then belMp(y) . Using this, we obtain the following results.

(iii') p =2 . 1f |[b(g)|<cexp(-28J¢]) . then belM(y) .

(iv") 1 (p (e . If |[b(g)] < c exp(-28/¢/) and, for all a>0 ,

2a
I ldg(e)]| < const. ,

where g(¢) = b(¢)exp(28l€l) , then b e Mp () .

(vi') 1 <¢(p (. If b = Xr , the characteristic function of an
interval J , then beMp(y) .

(vii') 1 ¢ p <o . If beM(y) and there exists ¢:T~{0} > € and
o >0 such that
|¢(z)| < const.|z|-1
|¢(z + b) - ¢{z)|< const.|h||z]" " ,  |n| <¥lz|

and

00
p.v. J¢(z) wiz)dz = % Ib(e) w(-£) ds . weE: .
=< =00

for all ¢ e7r (where r-¢ = {z-¢|ze7r}) , ‘then
b e Mp(y) and '

b(DT) F(z) = p.v. Jda(z -¢) f) d . felp(y) .
T

Part (vi') is a consequence of the preceding theorem when
J is a bounded interval, of (v') when J = (-, 0] or [0,e), and
of a combination of the two when J 1is an unbounded interval.

The operators XJ(DT) are spectral projections for DT .

An alternative approach to (vi') if via the Lp-boundedness
of sgn (D_r-a) for aeR . Use (vii') to write

ela(z—r)

=1 1
sgn (D_-a)f(z) = I p.v. JT' 5 £(2) de .

i.e. sgn (DT—a) = Ga sgn (DT) G-a .
where Ga denotes multiplication by exp(iaz). Now

NG fllp < exp(lalM £l . felp(y)
so

I sgn (D_-a) [ < exp(2]alM) || sgn(d_) || .
and sgn (DT) is bounded by (v'). Indeed sgn (DT) is the Cauchy
operator, the boundedness of which was first shown in [1].
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