JACKSON'S THEOREM FOR

COMPACT CONNECTED LIE GROUPS

Donald I. Cartwright and Krzysztof Kucharski

This is an announcement of results which will appear in detail in the J. Approx. Theory.

Let E be a Banach space of periodic functions on R, let $f \in E$ and let $n \ge 1$ be an integer. A basic problem in approximation theory is to estimate the quantity

$$\mathcal{E}_n(f) = \inf_t \{ \|f - t\|_E \},\,$$

the infimum being taken over all trigonometric polynomials t of degree at most n. Jackson's Theorem is the fundamental "direct theorem" here; it asserts that if the r-th derivative $f^{(r)}$ exists in E (in the appropriate sense) and if E is suitable, then $\mathcal{E}_n(f) \leq C_r n^{-r} \omega_1(n^{-1}, f^{(r)}) = o(n^{-r})$ (see [6]). More precise versions of Jackson's Theorem provide estimates $\mathcal{E}_n(f) \leq C_r \omega_r(n^{-1}, f)$ for any $f \in E$, where $\omega_r(t, f)$ is the r-th modulus of continuity of f.

Jackson's Theorem extends in a straightforward way to periodic functions of k variables (i.e. functions on the group \mathbf{T}^k), and it is natural to ask whether it also applies to functions on nonabelian groups. We can prove that Jackson's Theorem is true for any compact connected Lie group:

THEOREM Let $G \neq \{1\}$ be any compact connected Lie group. Let E denote one of the spaces C(G) or $L^p(G)$, $1 \leq p < \infty$, and let $r \geq 1$ be an integer. Then there is a constant C_r and for each integer $n \geq 1$ there is a central trigonometric polynomial K_n of degree $\leq n$ such that

$$||f - K_n * f||_E \le C_r \omega_r(\frac{1}{n}, f)$$

for each $f \in E$.

Here a central trigonometric polynomial of degree $\leq n$ is a linear combination of the characters χ_{γ} , where $\gamma \in \bar{K} \cap I^*$ and $||\gamma|| \leq n$ (The dual object \hat{G} of G may be identified with a semilattice $\bar{K} \cap I^*$ as in [1, p. 242], and ||.|| is a norm

obtained from an inner product on g which is invariant under the adjoint action of G on g.) Let $f \in E$, where E = C(G) or $L^p(G)$, $1 \le p < \infty$. The r-th modulus of continuity $\omega_r(t,f)$ of f is defined as follows: For any integer $r \ge 1$ and for t > 0, let

$$\omega_r(t,f) = \sup\{\|\Delta^r_{\exp X} f\|_E : X \in \mathbf{g} \text{ and } \|X\| \le t\}.$$

Here

$$(\Delta_h^r f)(x) = \sum_{j=0}^r (-1)^{r-j} \binom{r}{j} f(h^{-j}x)$$

for $x, h \in G$.

Johnen [5] proved this theorem in the special case r=2, but our method is quite different from his. The kernels K_n are related to the $\tilde{\Phi}_n$ of [3], but even more to those used in [6] and [7] in proving the \mathbf{T}^k case.

As an application of our theorem, we use the sharp estimates for the Lebesgue constants recently obtained by Giulini and Travaglini [4] to give "best possible" criteria for the norm convergence of Fourier series of functions on G. Let E=C(G) or $L^1(G)$. For $f\in E$ and $n\geq 1$, $s_nf=\sum_{\gamma\in C_n}d_{\gamma}\chi_{\gamma}*f$ is called the n-th spherical [resp. polyhedral] partial sum of the Fourier series $\sum_{\gamma\in \bar{K}\cap I^*}d_{\gamma}\chi_{\gamma}*f$ of f if $C_n=\{\gamma\in \bar{K}\cap I^*: \|\gamma+\varrho\|\leq n\}$ [resp. $C_n=\{\gamma\in \bar{K}\cap I^*: \gamma\leq n\omega\}$, where $\omega\in K\cap I^*$ is fixed]. Giulini and Travaglini [4] showed that the Lebesgue constants $\sup\{\|s_nf\|_E: \|f\|_E\leq 1\}=\|\sum_{\gamma\in C_n}d_{\gamma}\chi_{\gamma}\|_1$ for spherical partial sums satisfy

$$c_1 n^{(d-1)/2} \le \| \sum_{\gamma \in C_2} d_{\gamma} \chi_{\gamma} \|_1 \le c_2 n^{(d-1)/2}$$

for $d = \dim G$ and for suitable constants $c_1, c_2 > 0$, while for polyhedral sums similar inequalities hold, but with (d-1)/2 replaced by $|R_+|$. We can now state a refinement of the Proposition in [4].

PROPOSITION Let G be a semisimple compact connected Lie group and let E = C(G) or $L^1(G)$.

- (a) If $f \in E$ and $\omega_r(t, f) = o(t^{(d-1)/2})$ as $t \to 0$ for some integer $r \ge (d-1)/2$, then the spherical partial sums $s_n f$ converge to f in E.
- (b) There exists $F \in E$ such that $\omega_r(t, F) = O(t^{(d-1)/2})$ as $t \to 0$ but for which $s_n F$ does not converge to F in E. In fact, if $0 \le s < (d-1)/2$ is an integer, we may choose $F \in E^{(s)}$ with $\omega_{r-s}(t, F^{(s)}) = O(t^{(d-1)/2-s})$ for all $r \ge (d-1)/2$.

The corresponding result holds for polyhedral partial sums with (d-1)/2 replaced by $|R_+|$ throughout.

REFERENCES

- [1] Theodor Bröcker and Tammo tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, NewYork, Berlin, Heidelberg, Tokyo, Graduate Texts in Mathematics 98, 1985.
- [2] Donald I. Cartwright and Paolo M. Soardi, Best conditions for the norm convergence of Fourier series, J. Approx. Theory, 38 (1983), 344-353.
- [3] Garth I. Gaudry and Rita Pini, Bernstein's theorem for compact connected Lie groups, Math. Proc. Camb. Phil. Soc., 99 (1986), 297-305.
- [4] Saverio Giulini and Giancarlo Travaglini, Sharp estimates for Lebesgue constants on compact Lie groups, J. Funct. Anal., 68 (1986), 106-116.
- [5] Hans Johnen, Sätze vom Jackson-Typ auf Darstellungsräumen kompakter, zusammenhängender Liegruppen, in Linear operators and approximation (Proc. Conf., Oberwolfach, 1971), 254-272, Internat. Ser. Numer. Math., Vol. 20, Birkhäuser-Verlag, Basel, 1972.
- [6] S.M. Nikol'skiĭ, Approximation of Functions of Several variables and Imbedding Theorems, Die Grundlehren der mathematischen Wissenschaften, Band 205, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [7] P.M. Soardi, Serie di Fourier in più variabili, Quaderni dell'Unione Matematica Italiana 26, Pitagora Editrice, Bologna, 1984.