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Harmonic Analysis and Exceptional
Representations of Semisimple Groups

K.M. Davis, J.E. GILBERT, R.A. KUNZE

Introduction.

The purpose of this paper is to extend the results announced in the paper of
Gilbert et.al. [3]. The authors showed that the concepts and techniques of Euclidean
HP theory can be applied to give realizations of ladder representations of S 0(4,1).
(cf. Dixmier [2]). They single out for study a first-order differential operator 8,
which has the same principal symbol as the Calderon-Zygmund higher gradients
operator on R*. The operator § acts on functions with values in the space of
spherical harmonics, which transform on the left according to the spherical harmonic
representation (m, 0) of SO(4). The authors showed:

1) 8 is an elliptic differential operator.
2) The kernel of 8, decomposed under the right-action of SO(4), has a lowest

K-type (m,0), and the remaining K types are of the form (m+3,0),5>0.

3) There is an embedding of limits of complementary series into the kernel of 8,
showing ker 8 is non-trivial.

4) Under the right action of SO(4,1), the kernel of 8 is irreducible and unitariz-
able.

The authors of [3] defined ker8 as the intersection of the kernels of two Schmid

operators (cf. Schmid [7]), and all the results of that paper followed from known
. results for discrete series. The ellipticity of & followed from known embeddings
of Schmid kernels into twisted Dirac operators; K-type information could be ob-
tained from the Blattner multiplicity formule of Hotta and Parthasarathy ([4]);
embeddings followed from known émbeddings of discrete series into non-unitary

principal series given by Knapp and Wallach [6]. Finally, unitarizability followed
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from known unitarizability results for limits of complementary series, established
by Knapp-Stein [5)].

The authors then claimed that their results extended to SO(2n, 1), using the
same techniques. Unfortunately this is not the case; K-type analysis shows that the
situation for SO(4,1) does not extend to other Lorentz groups. Moreover, ladder
representations exist for the non-equirank Lorentz groups SO(2n + 1,1), and for
these the discrete series do not exist.

A theory of ladder representations for all Lorentz groups SO(k,1), was devel-
oped by Davis, Gilbert and Kunze [1]; it was necessary to develop entirely new
techniques to treat ellipticity, irreducibility, and unitarizability. We show that &
is elliptic by specifically identifying it with a twisted d,d* system; the kernel of
8 is shown to lie in an eigenspace of the Casimir, through a generalized Bochner-
Weitzenbock formula; K type information follows from the use of classical invariant
theory applied to differential forms with coefficients. The representations are iden-
tified with a subrepresentation of a non-unitary principal series, using the Szego
maps and further computations with invariant theory. Finally, we show an explicit
unitary structure for these representations, and give a explicit unitary equivalence
with the subrepresentation. The techniques of paper [1] are thus function-theoretic,
typically dealing with Hilbert spaces, while the results of [3] were largely infinitesi-
mal, valid for smooth or K-finite functions.

In this paper we shall develop the K-finite theory of exceptional representa-
tions, begun in [3]. We begin by defining a first order elliptic system, 8, and prove
ellipticity by an infinitesimal embedding of ker @ into the kernel of a twisted d,d*
system. We establish a map from a quotient of non-unitary principal series, into
the kernel of 8, using the Langlands embedding parameters given by Vogan [8].
We establish multiplicity formulee somewhat stronger than Blattner-type results,

and as we vary our lowest K-type, we exhaust the exceptional representations of
SO(2n,1).



60

Notation.

Let G be a noncompact connected semisimple Lie group with finite center; for
much of the paper we shall be concerned with the case G = SO(2n,1). We choose
a Cartan involution # determining maximal compact subgroup K; let g = k @ p be
the corresponding Cartan decomposition of the Lie algebra of G.

We shall assume that our Cartan subalgebra t maybe chosen with t C k; the
nonzero roots A of tg acting on gg may be divided into compact roots A(k) and
noncompact roots A(p). Fina]ly, we let B denote the Killing form and X - X
congugation fixing g in gg.

We choose a basis {Eq, Ha}aea for Gg, where the E, are root vectors nor-
malized so that Eq = E_q, and B(E,, E_,) = 2/(a,a), and H, = [Ea, E_o). We
chose a system of positive roots for k, A*(k), and a compatible system A+(p). For
a A% (k) dominant integral form X, let (7, V) = (), V3) denote the corresponding
irreducible representation of K with highest weight A. Then the tensor product

representation 7y ® Ad acting on V) ® pg decomposes into irreducible pieces

Vi®pe = Z mgVasp -

BeA(p)
Let
A.={aeA*(p): (\a) >0)
A# = A(p) \A.
and

Vo= )" mpVass
pea.

Ve= ) mpVaup
BELy

and let Py : V) ® Pg — Vi denote the K-equivariant projection.
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The Differential Operator.

Fix A & dominant integral form with corresponding K-module (7, V); smooth

sections of the homogeneous bundle G x x V can be identified with covariants
C=(G,V)={f:G - V: f(kg) ==(k)f(9)} -

The gradient operator Vf = 37 4y 2al?E.f @ E, maps
C>(G,V) into C*=(G,V ® pg); we define the operator § on C=(G,V) as

8f =(PgoV)f

and a subspace H* = {f € C®(G,V) : 8f = 0}. As defined, § is clearly a
homogeneous operator, and H* is a G-module under the right regular representation

of G on C*(G,V). We call this the Hardy module associated to A.
Remarks.

1.) K Xis A*(p) dominant, A, = A*(p) and the operator 8 is the same as
the operator introduced by Schmid in [7]. If G = SO(4,1) and A*(p) = {e1, ez},
let A = me;. Then & is the higher gradients operator introduced in [3].

2.) The case of greatest interest in this paper is for the so-called exceptional

A, that is, A which are not the lowest K-types of discrete series or limits of discrete

series. In the case of G = SO(2n,1), let
Atk)={e;tejri<j} , At(p)={e;:1<j<n}.

An exceptional A is of the form A = Ef;:l Aje; wherek <nand A\y > Ao > -+ 2>
Ar > 0. Then A, = {e1,€2,...,€x}.

LEMMA. Let p, = 33 ca.a. If \—2p, is A(k) dominant, then 8 is elliptic.

Proof. Ellipticity here means that the principal symbol of 8 is injective; this is the
condition necessary to prove regularity of solutions to 8f = 0 and to establish that
H* is a closed set in the Frechet topology on C*=(G, V).

Since 8 is a homogenéous differential operator, it is enough to compute the

symbol at the identity coset, e K. Moreover the Killing form gives an equivariant
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isomorphism of the cotangent bundle with p. Since the projection Py is just a
linear combination of components of V£, the symbol of 8 is Py o symbol V. But
the symbol of Vis 0 : V x p — V ® pg, o(v,£) = v ® . We must show that if
§ €p, £ #0, the map V — Py(v ® €) is injective.

KA, ={Ea,,...,Ea,} then X, = E,, A---AE,, has weight 2p., and Pr-2p. ®
X. has weight A. This gives an equivariant embedding v : V) — Va-2,. ® A¥(p),
which is non-zero, so an injection.

Now if e(X) : A* — At §(X) : A® — A®? denote exterior and interior
multiplication, then both are equivariant maps, and i(¢)e(€) + e(€)i(€) = B(¢,6)Id.
Define

E:V@p— Vi, @A (p)
I:V®p— Vaz, ®A°7(p)
by E(v ® £) = e(£)¥(v); I(v ® €) = i(€)3(v); these are equivariant.

Now assume that Pg(v®¢£) = 0. It follows that v®¢ € V., and by equivariance
that E(v®¢) € EY(V,); I(v®€) € I(V.). But the irreducible components of V, are
all of the form Vj44 for Be A,; we shall show that no weight in Vy_z,, ® A**(p)

can be of this form. It follows that E(v ® £) = 0, and a similar argument shows
that I(v ® ¢€) = 0. Then

0=3()E(v@&) +e(£)I(v®¢)
= i(€)e(€)p(v) + e(€)i(€)(v)
= B(£,€)%(v) = B(£,€)p(v) .

Since £ € p, B(£,€) # 0, so ¢(v) = 0. Since ¢ is injective, v = 0. So the symbol of
8 is injective.

The weights in Va-2,, ® A**(p) are all of the form A — 2p, + Z;g v; where
¥; € A(p), and it follows that A + 8 = XA — 2p, + Y v;. We may cancel common
terms between 2p, and }°v;, noting however that 2p, has s terms, so some Y5
remain. Then 8 = — 57 f; + 3~ y& where 8; € A, and v; ¢ A.. Thus, (\B) =
=22(X, B5) + (A, 7). Since B, B;i € A., 1 € Ay,

AB+D (08>0 . Yy <o
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and this is & contradiction. Thus A + 8 does not occur, so no weights of V, occur,

so E(v®§) = 0. Similarly, I(v® £) = 0.
Remarks.

1.) In the case that ) is an exceptional representation of SO(2n,1),

k
A= Z'\jej for A;>21,
=1
and

k
2p, = Ze,- , 80 A—2p, is always A*(k) dominant.
Jj=1
2.) When 8 is elliptic, H* is necessarily closed in the Frechet topology on

C*=(G,V), and the right regular representation on H* gives a continuous action.
Szego Map.

The purpose of this section is to prove that the kernel of 8 is non-trivial, which
we do by constructing a map from non-unitary principal series into the kernel of
8. We wish to find a map from the principal series representation U(c,v) into co-
variants C*°(G, V). Technically, we must go from lowest K-type information, that
is, knowledge of A, to Langlands data, that is, a parabolic P, an Iwasawa decom-
position G = K AN, and representations ¢ of M and v of A. For the construction
of P,M and A, we follow Vogan [8] in Proposition 4.1. The parameter v we must
determine ourselves. Qur construction is special to $O(2n,1).

The Harish-Chandra parameter is defined as follows. With the given orders on

compact and non-compact roots for SO(2n,1), let

Then

A=At pe=pa=3 (4 +(m=3)=Pes
=1

When ) is exceptional, A is not dominant, and the simple non-compact root v = €,

satisfies
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We take Z, = L(en +&x), and define A = €2,. M is the centralizer of A in K; the
maximal torus t; of M contains those X in t with v(X) = 0. The roots of (t1,m)
then are (e, e2,...,e,—1) and we may form A|h = Z;';ll Aje;. This is a dominant
integral form for M, and determines an irreducible representation (o, W )of M.

We now introduce the notation for our non-unitary principal series. We let
G = ANK be an Iwasawa decomposition with co-ordinate functions given by ¢g =
exp H(g)nK(g). If v' is in the dual of A, we look at covariants f : G — W
satisfying f(manz) = e"'“°8")a(m)f(x), and the action of G is the right regular
representation. This is the non-compact picture; the compact picture starts with
f € C®(K,W) a covariant under M, and extends f to G by covariance.

In the compact picture the Szego map is the obvious intertwining of C*°(K, W)
with C*(G, V), i.e.,

(Sf)(z) = /K (k)" f(kz) dk

In the non-compact version,

Sf(z) = / B (1C(0271)) T £(0) e ;
K
here v = 2p* — v and p* is half the sum of the restricted positive roots.
PROPOSITION. If 1(Z,) = |A,]| then S : C°(K,W) — H* .

Proof. We must show that for f € C°(K,W), (85f)(z) = 0. Since the maps
are equivariant, it is enough to show that (8Sf)(e) = 0. If ¢ is the highest weight

vector of (m,v), every covariant f in C*°(G, W) can be written as
f(k) = / o(m™Y)F(m, h)¢ dm
M

where F is scalar valued. Then

(85£)(e) = /A 5{eXp(uH(kz—l))7.—(1C(kz-’))"¢}F(k)dk

and it is enough to show 8{ } = 0.
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Now 8 = Py oV and in the orthonormal basis {1|8|?Es} sea(p) for pc, Es =
E_ pandso Vf =33 geca(p) Bl’Esf ® E_p. Now our choice was Eg = Xp +iY}
with Xgf(e) = & f(exptXp)|,_,, and it follows that

d - 8

=1 2 vH(exptXg) 1 i

8 } =3Py Eﬁ 18] W [e n(K(exp tXg)) ¢]'=0®E_p + 3
times a similar term in Yp. Using the product rule

d . d -
Et- [evH(exptlp)] t=o1r(K(e))¢+ evH(c)E [W(K(eXthﬂ)) 1¢] .

=v(PaXp)¢ — (PXp)d
where Py, Py are projections of g onto the Iwasawa components in the decomposi-
tion g =k @ A & N. Thus,
8{ } =3P ) |BI* {(v(PaEs) — n(PEp)} 4 @ E—p .
B

Although these projections are very easy to compute for SO(2n, 1), we shall use the
computations in Knapp-Wallach [6] which apply in general:

Pa(Eg)=2., if B=vy

=0 otherwise

RA(Eg) = }Hiy if B=1y
2
p+q

[Z,,Eg] otherwise.

Here p, g refer to the v string containing 8, f# + ny, —p < n < q. Using this, and

dropping the common factor of 1, 28{ } is
Py {Iv*v(Z,)¢ @ E_ + WI*v(Z,)¢ ® E,}
- 'lih’li'P# {m(Hy)6 @ E_y + m(H_4)¢ ® E,}

2
+ Y pIﬂTIqP# {72, El¢ ® E_p}
pEn
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First, our choice of 4 as orthogonal to A guarantees that #(Hi4)¢ = 0; we also
claim that if 8 > 0, 7([Z,, Es])¢ = 0. This follows since for # > 0, 8 # 7, 8 & v

is & positive root, hence the root vector annihilates the highest weight vector. The

remaining terms are

2
hiPe iz )02+ S Ll p iz, Eee By .
B<0 p+g
B# -
There are three types of f < 0 with 8 # —~:
i) (=B,A) >0 e -—-BeA,
i) (—8,2) <0
For exceptional A in SO(2n, 1), case iii) cannot occur. If (8,2) =0, (,8) =0,
so that #[Z,, Egl¢ = 0. Thus, only terms involving —f € A, contribute, and,
replacing 8 by —f, we have

2
b Pe iz 9@ 22} + 3 Ll py (r12, B lg @ B} .
BeA,

To simplify the second term, we claim that for 8 € A., ¢ ® Eg € V,. Otherwise,

#® Eg occurs in Vi, and the weights in Vg are of the form A+ 6+ S nia;, b€ Ay,
n; <0, o € A*(k). Thus

A+ﬂ=)‘+5+2n,~cw,- and
(A, B) = (1,8) + En.-(z\, a;) or
(B =Y nildai) = (A,8) .

But (,8) > 0; —n;()\, ;) > 0 and (), 6) < 0. This is a contradition.
Since ¢ ® Eg € V., Py(¢ ® Eg) =0, so

0=y ((25, E_p]) Py {¢ ® Ep}
= Py {(7r ® Ad)[Z,, E_p)(¢ ® Eﬂ)}

= Py{(x12,. E_}¢) ® Es + ¢ @ (2, E_s). E] } .
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Simple computations show that the triple bracket is 2Z., whence

Py{n(Z,,E_pl¢ ® Ep} = —2P4{$ ® Z,} ,

and the sum collapses to

2Py {u(zv)os@z, -(Z 2se zv} .

pea. P11

For SO(2n,1), p= ¢ =1 and |B| = |y|, whence we obtain
/ 1 {4(25) ~ 18,1} Py($ © Z7) = 0 .

Remark. We relate these to non-unitary principal series parameters as follows.
v =2p% — v = p* +ipsothat ip = p* —v. But p*(Z,) = 221, »(Z,) = |A.],
so that ip(Z,) = (1 — %%)p"’(Z.,). For exceptional ), 2|A,.| < 2n so iy is real

and in the positive chamber. Comparison with Knapp and Stein [5] shows that this

parameter is a non-unitary principal series at the limit of complementary series.

LEMMA. H* is nontriviel.

Proof. 1t is enough to prove that there is an f € C®°(K,W) with Sf = 0, in
particular, Sf(e) # 0. Let P : V — W be the M-equivariant projection, and let
f(£) = P(x(£)¢). Then f is in C=°(K,W), and f is not identically zero since, by
our construction, P(¢) # 0. But

(S(e 8 = [ 7O (n((0) " Pr(0)6,9) , e
= [ (Pr()8,7(0)9), e
K

= / |Pr(£)¢2df >0 .
.
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Multiplicity.

In this section we generalize the classical result that if f is holomorphic in
the unit disc, f has Fourier coefficients supported on the cone Z*. The analogous
result for Hardy modules concerns those representations which occur when H*® is
restricted to K. We obtain estimates on the K-types which occur in this restriction.
These follow because the operator 8 is designed to incorporate K-type information.
Intuitively, if a K-type 7, occurs in f € C*°(G, V) then f transforms on the right
by m,. This means that right invariant vector fields X € kg map f into a function
transforming by 7, again. But for X € pg, Xf can have values anywhere in
Ve ® pe. The gradient operator Vf =3 sea(p) Esf ® E_p incorporates all these
Pe actions. The condition that §f = 0 is equivalent to Vf € V,, and this restricts
the possible K-types which can occur in the right regular representation acting on f.

Specifically, the condition is that Vf can contain only those K-types with highest
weights of the form A + 8, B € A..

For functions which can be recovered from their Taylor series, that is, from
repeated applications of V, we would expect that 8f = 0 means the only K-types
which may occur on H* are those of the form A+ n;B; where n; > 0 and §; € A..

That is, the K-types lie in a cone based at A, having generators consisting of the

roots in A,.

Multiplicity formulee make this intuition precise. Our arguments follow the
work of Hétta—Pa.rthasarathy [4], and proceed as follows. A linear differential op-
erator on scalar functions has Taylor coefficients which are symmetric tensors, or
they may be viewed as symmetric polynomials on p. Functions in C*=(G,V) have
2% Taylor coefficients with values in SY(p) ® V. The operator 8 extends to a map
8 : S‘(P)®V — S (p)@V, called the polynomialization. Ellipticity implies that
we can recover information on H* from information about the kernels of the 8,.

The major idea in establishing multiplicity estimates for ker &, is that the de-
sired estimates are true by definition at the level of B-modules. To go from B-
modules to K-modules, we use the Borel-Weil-Bott theorem; the various tensor
products can be handled through standard arguments from algebraic geometry and

cohomology. The only caveat is that 8; must be embedded into an exact sequence.
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We introduce an auxiliary operator which is a combination of a de-Rham and a
Dobeault operator, and exactness follows. Qur multiplicity results then follow after

an analysis of the long exact sequence.

We begin with notation. Let B denote the Borel subalgebra te®3 ¢ a+x) CEa,
with corresponding Borel subgroup B. Let § = K®/B, s = dimS. For any
holomorphic B-module M, we form the homogeneous bundle vy = K€ xg M,
and the sheaf of germs of holomorphic sections O(vq). The sheaf cohomology
HY(S,0(vpm)) is written H'(M). If u is a dominant integral form, p extends to a
line bundle £,,.

The Borel-Weil-Bott theorem states:

1) ¥ u — p, is singular, H*(£,) = 0 for all 4,

2) If p — p. is non-singular, there is a unique w € W(X,T) for which w(y — p.) is
dominant. Let

in=|{aeAt(k): (p—pca) >0} .

Then H'(£,) = 0if i # i,. H'(¢,) is an irreducible K-module of highest weight
w(p — pe) — pc if i =1,

It follows then that V,, = H*(£u42,,) if ¢ is dominant. We will also need the result
that for a K-module M, M ® H'(N) = H'(M ® N).

We now define the action of 8 on Taylor coefficients. Let p., = Zﬁe a. CEg,
P# = Pc/P-; let pyu : pg — py denote the projection. Define

8e: Spe)®V — S po)®@Vy by (1®pg)o(d®1);
d®1: S'(pg) ®YV - S (pe)®pc ®V
1@pg: S (po)Qpc®V — S (pe) @ Vi .
To define the Taylor coefficient, set

I’:{feC°°(G,V):(D"f)(eK)=O for la|<f€—-1}

and let F denote the K-finite vectors in H* N IY; F! = H*(K)N I’
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PROPOSITION. If A — 2p, is A*(k) dominant, there are snjections which are K-

equsvarient, mapping
H*(K) — @(F'/F'') — @ker8, .

Proof. We can easily map a K-finite vector into @F¢ /F*! by taking its Taylor
series. If this is not an injection on H*(K), the image of f is in F* for all £, that
is, all derivatives at eK vanish. But f is in the kernel of 8, and the dominance
condition on A guarantees that 8 is elliptic. Thus f is real analytic, hence f is zero
identically.

For the next stage, we construct equivariant injections i : F* JF = ker8,.
We choose local co-ordinate functions z = (z,...,z,) satisfying z(eK) = 0. In

local co-ordinates,

8= Zaj(z)aizj +b(z) , where b(eK)=10

and aj(eK) = (1 ® pg)(dz’ ® —) is the projection. The map i : F! = S(p)QV
is defined as .

. 1 ot

o) = 3 S0 © (32 ) (k)
Jal=¢

Notice that kerio N I = I**! so that iy descends to an injection ¢ on F¢/F!+1,

To finish, we need to show that if s € kierﬁ NI i(s) € ker8,. But for s € I,
22 )(eK) =0 for |a| < € — 1, and therefore

i06) = i( L aie) o + s

=y Z (d:r) ®a_,(eK)a ﬂa (eK) |

1Bl=t-1 j=1
+ terms of lower order derivatives on s
+ b(eK) [derivatives on s].

The terms with lower order derivatives on the s are zero since s € I ; b(eK) =0,
so in all,

=3 3 B e aer)| 22 ex.

J=1 |a|=¢
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Here a(j) indicates that the exponent of a has been decreased by 1 in the j**

position.

We now compare this with 8,(i(s)) = (1® pg)(d ® 1)(i(s)).

e 1)(i(s))=d®1[z !(d:.:y'@[ ](eK)]

laj=t¢
= ¥ e o[22 k)
laj=¢
= Z ) -——-(d:r)"(’) ®@dzl @ [—-—]( K).
Jj=1 Ial—l

But 1 ® p4 maps dz’ ® v into a;(eK )v, so that 8.(3(s)) is just

Z 3 {(dz)am ® a;(eK) [ &s ](cK) = i(Bs) .

J=1 |a|=t

Our next task is to construct the exact sequence into which 8, can be embedded.

We proceed by constructing the B-module maps first, and then follow through the
effects of taking cohomology.

We order the basis {Eg} of pg by

At = {0],..-,0'n}
-At = {ﬂ]y""ﬂﬂ}
A \ {A‘U _A#} = {71,""7p}

Then pg is co-ordinatized as
X =Y zEs+Y ZEg+) LE., .
Let
E* = spanof {a(z,t)dz; A---AdZ; A---Adt; :q+r=Fk)}.
Then A¥(pg) = £F. The Dobeault-deRham operator 8+d vields the exact sequence:

0——»80—481——4---—45"——)0;
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the sequence with polynomial coefficients is also exact:
0 — S(p) — S (P) ® A'(py) — - — 0.

Finally, S*(p.) embeds into this sequence from the obvious injection of S%(p. ) into
S(p):

0 — S%(p.) — S‘(p) — S P) @ A (py) — ---
These sequences are defined by maps
B : 5°7F(p) ® A¥(pg) — S7F1(p) @AM (py)
defined by the composition of maps

Vel: S p)®At(py) — S p)ep® A¥(pg)
1@Eopy: SF(p)@p @ A*(pg) — S™H1(p) @ A¥H(py) .

Since p#(Ea-') =0, p#(Eﬂe) = Eﬂi’ P#(E'y.') = E‘y."
18 ep)Y 1 ow) =18 22) (T 2L i 0w
7] = 7]
=Zb—j—‘_®EﬂiA w+za_xf.~®E"A w

=0(f@w)+d(fRw).

Therefore the 0 complex is exact. Let £ denote the line bundle £ A42p.: tensoring

with £ preserves the exact sequence, so in all,

0— S‘(P)®L 5 Sp)BL 25 S (p) @ A (pg) ® L —> ---
is exact.

PROPOSITION.

0— H*(SYp.) @ L) 5 H*(S'p)®L) 2 H* (5 (p)® A(ps) & L)
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s ezacl.

Proof. Taking cohomology of a B-module exact sequence leads to a long exact
sequence; exactness at the top degree follows from standard arguments if we can
show vanishing of low degree cohomology. This basically involves a computation of
what representations may occur in decomposing a tensor product. We shall show
that H* (S 9(p) ® A¥(px) ® L) = 0 and H*(S%(p.)® L) =0ifi < s.

. For the first result, $‘~9(p) is already a K-module, so that

H(S"™(p) @A (py)® L) = S"IQH'(A'® L) .

It is enough then to show that H'(A? ® L) = 0. We use a technical device that

reduces the computation to B-modules.

Since B is solvable, there is a chain of B-modules V; satisfying 0 = Vo, C V; C
- C Ve = Al(py)®L, with 0 —» Vj_; — V; — €43,.4p — 0, where § runs
through all the weights of A?(py). Such B are of the form ) §; for 8; € Ay, and
since ) is exceptional, (A + 2p. + B) — p. is already A*(k) dominant for every such

B. It follows that H*(£y42,,45) = O for i < s, and the long-exact sequence now
gives

— Hi(Vj1) — HY(V;) — H'(briaprs) — - -
Since H(Vp) = 0, an induction gives 0 — H*(V;) — 0, so that
0=H'(V,)=H(A'QL).
We also need vanishing for H}(S!(p.) ® L); this is less simple, since S¢(p.)

has more complicated weights 8 and A + p. +  need not be dominant. Let F? =
S=9(p) ® AY(px) and let W9 = image at the ¢ — 1 place in the sequence

0 — S(p.) — S'(p) — S (P)® A'(Py) — -+

We want to prove H{(W® @ £) = 0, and of course we proceed backwards through

the long exact sequence, inductively.
 We have B-module exact sequences 0 — W9 — F7 — W9t — 0. yielding

0-WIQRL—- FI@L— Wit g L — 0, and yielding a long exact sequence.

— H(WIQL)— H(F'QL) — H W 5 £) — HF1 ... |
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At the last position, (m = dimpy) W™ = image Om-1 = kerd, = S""™(p) ®
A™(pg) so that for i < s,

HW™®L)=5""(p)® H'(A™(py)® L) = 0

by the above computation. Now, inductively assume that for all § < s,

Hi(W+! @ £) = 0. We claim that Hi(W? ® £) = 0. This occurs because
HT (W QL) — H(WIR L) — HY(FIQL) — (Wit @ L)
or0 — H(WI®L)— H{(F1Q L) — 0, that is,
H(WIQL)= H(FI®L) = S=(p)® H'(A'(pg)® L) =0.
Inductively, H{(W° ® £) = 0, but W° = image i = S%(p.).
COROLLARY. kerd; = H*(S'(p.)® L) .

Proof. This is the meaning of the exactness of the sequence in the first place.

To finish the proof, we need to show that ker 8, C ker 8;. We begin by remark-
ing that 8; has domain H*(§'(p) ® £) = S‘(p) ® H*(L) = S*(p) ® V = domain
8,. Now 0] is the lift from B-modules of the composition (1®pp®1)o(d®1),
whilst 8, is the composition (1 ® Pg) o (d ® 1). It is enough then to see that
ker Py C ker(1 ® p)*. Since the maps are equivariant, and Py is a projection, it
is enough to prove that the multiplicity of V, in H *(pg ® L) is zero.

LEMMA. Let § = {weights of S'(p.)}, and choose any B € S. Assume there is a
- w € W(K,T) such that w(A +2p. + B) is dominant. Let ig be the parity of

{ a€A+(k):(w(/\+pc+ﬂ)——pc,a) >0 } .
Then

H*(S(p)® L) = (1) ) igVurtpt)=p -
BES



75,

Proof. As always, there is a chain of B-modules
0=VocVic---CV,=S5p.)®CL

with 0 — Vj_; — V; — 425,48 — 0 . Here B is a weight of S(p.), and as
Jj varies, B runs through all S. Since the Euler characteristic is additive on short

exact sequences, and X(Vp) = 0,
X(Ve) =) (-1)'H(S'(p.) ® £)

= (“1)°H*(5°(p) ® £) = X(Ve1) + X(Er2p.45)
== Z X(€x+2p.+8)

Bes

= E Z(—l)‘H‘(2A+2,,+ﬁ)

ges

= Z 15V(A+p.4+8)—p. bY the Borel-Weil-Bott theorem.
pes

LEMMA. IfV, is a K-module of non-zero multiplicity in V,, it has zero multiplicity

in H*(py ® £).

Proof. Because of the cohomology vanishing results we have proved for H*(p#®L),

the Euler characteristic computations above apply, and

H'(p# ® L) = (=1)" ) igVurspetp)—s. -
BES

But for our exceptional A, A+2p. + 3 is already dominant for 8 € P, hence w = id
and ig = (—1)°. Thus, H'(p# ® C) = EﬁeA# Va4, Since V, = EﬁeA. mgVais
and A, N Ay = ¢, V, has no components in H*(pg ® L).

COROLLARY. ker8; C H*(S%(p.)® L).
COROLLARY. H*(K) C [Z: 2 ses(=1)°18Vart pet p)—p. -
=0 )

Proof. H*(K) injects equivariantly into @,- , ker 8;, whose K-module components

are as written.
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COROLLARY. The K -types in H*(K) are all of the form

A+ Z niB; ,
where ni 2 0 and B; € A.. Moreover, X occurs with multiplicity 1 in H*(K).

Proof. Every K-type in H*(K) is of the form w(\ + p. + 8) — p., where w(A +
2pc + B) is dominant, and § € S. Since B is necessarily a sum of roots in A,
the w € W(K,T) which occur necessarily only permute the A, roots. It follows
that w(A + pc + B) — (A + pc + B) = Y_n;B; where n; > 0 and B; € A.. Then
WA+ pc+ B)— pc = A+ B+ n;Bi, as claimed.

To prove that Vi occurs with multiplicity one, we remark that we may only
obtain A if w(A+ pc+ B) — pc = A. But w(A+ p. + B) — p. is A+ n:B;, s0n; =0.
Thus w(A + pc + B) = A+ pc. Now w(X + pc + B) — (A + p. + B) is of the form
2_m;v; where m; > 0 and v; € A*(k), but is is also equal to —3. The only way
this can occur is § = 0. But A + p, is already dominant, so w = id. But the only
time 8 = 0 occurs in S(p.) is for £ = 0. Thus, A occurs with multiplicity one.

Irreducibility.

The purpose of this section is to prove that H* contains a unique irreducible
subrepresentation Hy, which may be characterized either as the space generated by

the K-type m,, or as the image of the Szego map. This latter identifies it as a limit

of complimentary series.
LEMMA. The multiplicity of = in H* is one.

Proof. Since 8 is elliptic, H* is admissible, and, the multiplicity of r is given by
the computations in the previous section; it is at most 1. To complete the proof, we
must find a vector which transforms on the right by n. Recalling the construction
of the Szego map, let P: V — W denote the M-equivariant projection, and ¢ the
highest weight vector of =.

Now the projection onto the subspace of H* which transforms on the right by

m is given by convolution on the right with dX,; here X, = trace r and d,, = X(€).
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Then a change of variables shows that

dxS(P(n4)) * Xz = dx S(P(7 * X4 )$)
= d,,S(P(El;mﬁ)) = S(P(n¢)) ,

so that S(P(7¢)) is invariant under the projection.

We shall next show that H* contains a unique irreducible closed invariant

subspace, that generated by the lowest K-type.

LEMMA. Let F be a closed invariant subspace of H* which is non-iriviel. Then the

multiplicity of 7 in F is one.

Proof. The multiplicity can be at most one. Since F is non-trivial, there is an
f € F andag e G with f(g) # 0. Since F is invariant, there is an h € F with
h(e) # 0. Since F is closed, dzh * X, in in F again, and this is the K-isotypic

component of h. We wish to show it is non-zero. But
dxh % Xz(e) =dn / h(k™1)X (k) dk

= d,/w(k—l)x,,(k)h(e) dk
=h(e)#0.

COROLLARY. There is a unique srreducible subrepresentation of H*, generaled by
the lowest K -type.

Proof. The intersection of all non-trivial closed invariant subspaces of H* is irre-
ducible. But it contains the lowest K-type, so contains the closure of the span.
We denote the unique irreducible subrepresentation of H* as H,. Our next
task is to identify H) as a known representation of G. We have shown that
S :U(o,v") — ker, and that the image of S contains the K-type m. It follows then
that H) is a quotient representation of the non-unitary principal series U(a,7').

But this has a unique irreducible quotient, by Langlands, so Hy is isomorphic to

the limits of complementary series.
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