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1 . INTRODUCTION 

consider the problem of estimating the mth derivative of a data function 

g(x), given only N sampled values 

n 0, ... , N-1, ( 1) 

where s are uncorrelated random errors with mean zero and common variance a2 
n 

(possibly unknown). For simplicity consider equally-spaced sampling points 

xn = n/N on the interval [0,1). Let m be a strictly positive integer, and 

denote the mth derivative by f (x) = g (m) (x), which is to be estimated on the 

interval 0 :;;; x ::; 1. 

If K denotes an integral operator such that Kf = g, then a stabilized 

derivative can be constructed using pth-order Tikhonov regularization: 

{ 
l N-1 

min - \ 
N L 

f c F n=O 
p 

[ (Kf)x ) 
n 

(2) 

where F is a suitably chosen Hilbert space with norm II· II parametrized by the 
p p 

order of regularization p > 0, and the constant A ~ 0 is the regularization 

parameter. Let fN;a denote the minimizer of (2), where Z is the par&~eter pair 
'\, 

a = (p, A). 
'\, 

In theory we may define an absolutely optimal parameter set a as that which 
'\, 

minimizes (with respect to a) the error 
'\, 

where 11. IIF denotes the strongest norm consistent with the smoothness of the 

(3) 

exact derivative f. In the data space there will exist a norm If.[[ such that 
G 

(3) and 

IIK£N;a- g[[G (4) 
'\, 
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are equal; however, in the absolute sense the G-norm is necessarily stronger 

than the F-norm since K is a smoothing operator. Thus, if we seek an a which 
'\, 

is optimal with respect to the L2-error in the space of the derivative, it is 

not sufficient to minimize the L 2-error in the data space. This is one reason 

why absolute optimality is difficult to achieve in practice. Another reason is 

that the smoothness of f is usually unknown. 

It is not our intention in this report to address the quest for an absolut-

ely optimal parameter set a; indeed, the author knows of no practical method 
'\, 

which can achieve this. Instead we discuss the weaker concept of D-optimality 

and the even weaker concept of S-optimality, which we define below. 

First consider the predictive mean-square signal error 

S(a) 
"' 

N-1 
1 ~ . 2 
-N L [ (Kf ) r.x ) - g (x ) ] • 

0 N;a n n 
n= co 

(5) 

The minimizer of S (a) is estima·ted quite closely by several practical statist­
co 

ical me·thods, at leas·t when p, the order of regularization, is fixed. For the 

present let p be fixed. We emphasize this by writing A where previously we 

have used a. 
'\, 

Let A0 deno·te the minimizer of S (A) with respect to A. Following 

[1] we say that a value of A is 

(i) 
-a strongly S-optimal if S(:\)/S(:\ 0 ) = 1 + O(N ) , a ~ a 0 > Q, as N + oo; 

(6a) 

(ii) S-optimal if S(A)/S(A 0 ) 1 + o(l) as N + oo, where o(l) + 0 as N + oo; 
(6b) 

(iii) weakly S-optimal if S(A)/S(A 0 ) = 0(1) as N + oo; (6c) 

(iv) S-suboptimal if S(:\)/S(A 0 ) + oo as N + (6d) 

Since f is determined from the data yhl, S(:\) is a random variable. 
N; A cv-• 

Its 

analysis as such is difficult, and it is easier to study ES(:\) instead, where 

E denotes expectation with respect to the error distribution. With this in 

"' mind let A0 denote the minimizer of ES(A) We maintain the definitions (6) if 
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S(A) is replaced by ES(A) and A0 by ~ 0 

The predictive mean-square derivative error is defined by 

(7) 

When p is fixed we can define a D-optimal value of A in the same way as (6), 

simply replacing s by D. Unfortunately, for the same value of p, a value of A 

which is s-optimal is not D-optimal, nor is a D-optimal value of A absolutely 

optimal unless the natural smoothness off is no greater than L 2 • 

Certain practical methods for determining A are known to yield values which 

vary from S-suboptimal to strongly S-optimal. (This depends on the method and 

the regularity of the data; see §2 below). For example, when the noise variance 

cr 2 is known, the unbiased risk method always yields strongly S-optimal values 

of A; when cr 2 is unknown, the unbiased risk method cannot be used, but the method 

of cross-validation can yield S-optim~l (sometimes strongly S-optimal) values 

of A· It is therefore natural to pose the question: can practical methods be 

devised for determining values of A which are D-optimal (preferably strongly D-

optimal)? This report presents some background information which may be of 

value in answering this question. 

2. S-OPTIMALITY. 

Data regularity Let v 

A 

m + p, and S > 0 be a constant such that 

w 
q 

(8) 

where gq are the Fourier coefficients of the underlying data function g, i.e. 

g(wq), where g(w) = J1 g(x)exp(-iwx)dx. (9) 
0 

Clearly, r Sv is a measure of the smoothness of g. If there is a natural 
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limit on this smoothness, i.e. r ~ r 0 , say, then asp is increased the value of 

Sin (8) is reduced so that Sv ~ r 0 • On the other hand, when pis fixed, Sis 

a measure of ·the smoothness of g. 

'V 'V 
As has been shown by Lukas [2] , the asympto-tic proper.ties of \ 0 and ES ( \ 0 ) 

depend quite crucially on whether 0 < S < 2, or whether S ~ 2. Let us consider 

the case of Fourier differentiatj_on where F in (2) is the space of trigonom­
p 

1 
etric polynomials of degree at most 2 N, and 11£11 = llf(p)ll 2· 

p L 
The associated 

operator K is defined in [1]. We state the follm,ring ;vi-thout proof: 

Theorem 1. Under the reg-ulari'cy assumption (8), 'che value of A which minimizes 

ES(\) may be written 

(i) when [3 :;; 2: 

[:: l2v/(4v+l) 

---- [1 + o(l)] as N-+ oo, 

N 

where K is the constant 
v 

K 
v 

lllc;lll 2v J 

lllglllr = ~ rw2rlg(w) l 2dw, r > 0, 
0 

and o(l)-+ 0 as N-+ oo. The minimizinc; value of ES(\) as N-+ oo is 

IK 0 z]4v/(4v+1) 

(4v+ 1)[4~. N lllglll~~(4v+l) [l+o(l)]. 

(ii) When 0 < [3 < 2, we have instead 

N 

1 ]2v/(2i3v+1) 

lilgiiiSv [l+o(l)] asN-+oo, 

(10) 

( 11) 

( 12) 

(13) 

( 14) 
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and 

::: (2Sv+ilrKv. 02} 
t2sv N 

2S·v I ( 2Sv+1) 

Ill g Ill ~ ~ ( 2 Sv + 1 ) [ 1 + 0 (1 l l · (15) 

Corollary. If i3 ~ 3, the o(1) terms [ -2v/(4v+l)J 
in (10) and (13) become 0 n . 

(For a proof see [1].) 

'\, 
From (13) and (15) we see that ES(A 0 ) is a function of p. As N + oo we can 

seek to optimize p by maximizing the exponents of (o 2 /N) in (13) and (15). 

This demands that 

1 
p > 2 ( Sv - 2m) ( 16) 

and in particular that p must be sufficiently large to bring i3 into the range 

0 < i3 < 2. Of course this is an asymptotic result, and in practice it need not 

necessarily be consistent with the minimization of S (ci.) when N is finite. 
'\, 

Practical methods. In practice S(a) cannot be computed directly without 

"' 
knov<ing the exact data function and so alternative means of estimating its 

minimizer (with respect to a) is needed. Practical methods fall into two 
'\, 

classes: 

Class I. Those which require a kno•Jledge of the noise variance 0 2 • 

Class IL Those which do no'c. 

Most methods can be implemented in terms of an influence matrix A(a). If 

"' 
g denotes the N-vector whose elements are the values of the function 
"-N; a 

'\, 

(Kf ) (x) at x = x , then the influence matrix is such ·that 
N;a n 

For Fourier differentiation, A(a) is the circulant matrix whose eigenvalues 
'\, 

constitute the discrete regularization filter imposed by the regularization 

process [1]. Class I me·thods invariably involve the mean-square error or 

discrepancy : 

(1 7) 



6 

(18) 

or modifications thereof" It may be shown that 

(19) 

. 1 I (2v) 
provlded N>. ->- as N ->- oo" Notable among Class I methods are the 

discrepancy principles of Arcangeli [3], Morozov [4], and their generalizations 

[5,6]; the Bayesian method of Turchin [7,8]; the unbiased risk method [9]; and 

the Bayesian method of Turchin-Klein [10]. Class II methods involve the 

optimization of certain functions in lieu of S(a)" Among these are cross­
'" 

calidation [11] and maximum likelihood [12]" We summarize in the adjoining 

table the practical implementation and classification (with respec·t ·to S-

optimality) of the main methods in each class" 

We see from the table that only unbiased risk minimiza'cion, cross-validation, 

and maximum-likelihood enable the optliaization of p as well as Ao Of the Class 

I methods tabulated, unbiased risk minimiza·tion is clearly the most powerful" 

This is because of the identi·ty 

ER(a) ES(a) (20) 

which immediately yields strong S-optimality in the expectational sense with 

a = co. Of the Class II me·thods tabulated, cross-validation is the most powerfuL 

3" D-OPTIMALITY. 

Le'c p be fixed, 
·c(m) 

and let A0- denote the minimizer of ED (A). 'To obtain 

similar results for 
~(m) -v(m) 
A0 ' and ED (A 0 ) to those given 

Theorem 1, when the data regularity condition (8) is replaced by 

~ w2 ( 13\!+m) I ~ I 2 < 
L q gq oo, 

q=O 
( 21) 



Method Practical Im!!lementation Classification 

o < B < 2 i a ;;;; 2 
Morozov Fix p, Solve (T1) for .A: Weakly S-optirnai Weakly S-optimal 
discrepancy ~lin- A(><)>~~ll 2 "" 02 (T1) 

[4] 
c --
L Turchin Fix p. Solve (T2) for >..: Weakly S-optimal Weakly S-optimal 
A [1 ,8] 0 2 1 02 s N TrA()1) + N II (I - A( ><))J.w IF= (T2) 

s 
Unbiased Minimize R(a) w.r.t. ~ = (p,A.) : Strongly Strongly I risk 

= ~II<~ - 2o2 

minimization R(~) - A(~))~ W+ N Td(~) +o2 S-optimal S-optimal 

[9] 
(a = oo) (a "'"') 

Cross- Minimize (T3) w.r.t. §! : S-optirnal S-optimal 
validation 1 (Strongly if 
[10] N II (I - A(~)-41 11 2 

(T3) 13 ~ 3) 
c 1 

L 
[ NTr(I - A(~)) F 

--
A Maximum Minimize (T4) w.r.t. 0! : Weakly S-optimal S-suboptimal s likelihood T 
s [12] 1. (I - A(~) )y 

+ _ A(~)))l/(N-1) 
(T4) 

II ! det (I 

1r (det denotes om1ss1on of zero e1genvalues). 
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it can be shown thai: 

s ~ 2, (22) 

and 

r1' !m) J ([0 2.] 2Sv/ (2Sv+2m+1) J 
ED l"o :> 0 [N , 0 < s < 2. (23) 

From these rates we may deduce that an S-optimal value of X is D-suboptimal. 

To achieve weak D-optimaZity is not difficult in principle. For example if 

a2 is known then for a fixed p satisfying (21) we can choose 

and 

[
2v/ (4v+2m+1) , 

)l -

2v/ (2Sv+2m+1) , 

s ~ 2 

0 < s < 2. 

(24) 

This guarantees the correct convergence rates in (22)-(23), although the choice 

of constant of proportionality in (24) will greatly affect the quality of the 

solution. 

Weak D-optimality can sometimes be achieved by cross-validation also. Let 

p,p' and S ~ 2 be such that 

p' (2m+1)p + 2m 2 (25) 

and (21) is satisfied with v replaced by v' = m+p'. Clearly (8) is also 

satisfied. Using cross-validation with order of regularization p netermines an 

S-optimal value of XCV with the associated expectational property 

"' [[a2.]2v/(4v+1)] 
XCV = 0 L"NJ as N + ""· 
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The choice of p' in (25), hov;ever, is such that 

2\! 
4v + 1 

2v' 
4v' +2m+ 1 

and so A.CV is also weakly D-optimal for the order of regularization p' higher 

than p, 

To achieve stronger levels of D-optimality for a. given p appears to be a 

greater challenge in practice. This challenge arises from the fundamental 

nature of ill-posed inverse problems and is illustrated by the follolf:ing 

observations. 

In the degenerate case m = 0, which is the case of data smoothing, there is 

clearly no difference between s- and D-optimali ty. Thus Cl"Oss~validation 

applied to a smoothing problem achieves exactly the right level of optimality 

in the present cont.exL (We are not discussing absolute optimality, which is 

not achieved.) What then if the problem of differentiating inexac·t data is 

first converted to a smoothing problem, and then an S-optimal method for 

choosing a regularization parameter for ·the smoothing problem is used? Does 

this do better than S-optimality for the original problem? 

Consider first the direct approach of pth-order regularization applied to 

mth-order Fourier differentiation, i.e. 

. {1 m:t.n N 
f STN 

L [(Kf){x)- y ] 2 

n=O n n 
(26) 

where TN deno·tes the space of trigonometric polynomials on [0, 1] of degree at 

1 
most 2 N. The minimizer fN; A of (.26) has discrete Fourier coefficients 

m+p, (27) 
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where {y } denotes the discrete fourier transform (DFT) of the data {y }. 
N,q n 

The factor (iw )m in (27) appears as the result of mth-order differentiation 
q 

2 -1 
whereas the factor (1+ Aw v) is the regularization filter acting on the qth 

q 

coefficient. 

Now consider the a-posteriori smoothing approach where we first compute 

inexact derivative data {d } which we subsequently smooth using pth-order 
n 

regularization. The DFT of the derivative data will always have the form 

m A 

(iw ) TN YN q ,q ,q 

where TN is an attenuation factor determined by vrha·tever method we use to 
,q 

generate the derivative data {d }. 
n 

For example if {d } is obtained from 
n 

by mth-order central differencing, we have 

Alternatively if {dn} is obtained by direct regularization then 'N,q is the 

associated regularization filter (cf. (27)). 

The variance-covariance matrix of the Fourier data {dN } is 
,q 

(28) 

} 

where V diag(w2m,z J. The associated matrix V for the data {d } is given by 
q N,q n 

where ~ is the DFT matrix. Both V and V have rank < N. In teL~s of the 

generalized inverse of V, the a posteriori smoothing problem may be stated: 

(29) 
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where ~ denotes the N-vector sampling ~ at x . It is easily shown that the 
"' n 

minimizer ~N;A of (29) has discrete Fourier coefficients 

m A 

(iw ) TN YN q ,q- ,q 

1 , 2 2v ' 
+AT w N,q q 

(30) 

For finite N there will be a difference, therefore, in the derivatives 

fN;A obtained through (27) by the direct approach and ~N;A obtained through (30) 

by the a posteriori smoothing approach. As N + oo, however, it transpires that 

~N;A + fN;A since TN,q + 1 for all q. What then if we choose an S-optimal 

value of A for the smoothing problem (29)? It is not difficult to prove the 

following: 

Theorem 2. Let 0 < T ~ /T / ~ 1 < oo for all q. N N,q Then the value of A which 

minimizes 

under the regularity condition (8), may be written 

}:(aps) = 8 '3: 
0 0 0 

as N + oo, 

where 8 0 satisfies 

4v/(4v+1) 
TN 

-2(6v+1)/(4v+1) 
~ 8 0 ~ TN when S ~ 2, 

-2 (6v+1) 
~ TN , when 0 < S < 2. 

Corollary. }:(aps) + '3: as N + oo, whichever way the derivative data {d } are o o n 

derived. This follows immediately from the fact that TN + 1 as N + oo, and so 

Thus,in the limit N + oo,S-optimal a posteriori smoothing (whatever method 
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is used to provide derivative data) is equivalent to S-optimal regularization 

of the original differentiation problem. The reason for the lack of improve-

ment is clear. The variance-covariance matrix of the differentiated data 

reflects the instability of differentia'cion, and the weighting thus introduced 

into ·the a posteriori smoothing problem makes it equivalent to the different-

iation problem as N -+ co. Of course there is a difference when N is finite, and 

improvements in the quality of the derivative may be possible in practice (cf., 

for example, [13]) using a posteriori smoothing. 

REFERENCES 

1. A R Davies and R S Anderssen. Numer. Math. 48 (1986) 671-697. 

2. M A Lukas. Research Report CMA-R15-87, Centre for Mathematical Analysis, 
The Australian National University. 

3. R Arcangeli. C R Acad. Sci. Paris, Ser. A263 (1966) 282-285. 

4. V A Morozov. USSR Comput. Math. and Math. Phys. ~ (1968) 63-67. 

5. H Engl and A Neubauer. In "Constructive Methods for the Practical 
Treatment of Integral Equations" (Eds. G Hii."'ll!l1erlin and K H Hoffmann). 
pp 120-141. Birkhauser, Berlin (1985). 

6. E Schock. Integral Equations and Operator Theory 7 ( 1984) 894-898. 
-

7. v F Turchin. USSR Com put. Math. and Math. Phys. 7 (1967) 79-96. 

8. v F Turchin. USSR Comput. Math. and Math. Phys. 8 (1968) 328-339. 

9. p Craven and G Wahba. Numer. Math. 31 (1979) 377-403. 

10. G Wahba. SIAM J. Numer. Anal. 14 (1977) 651-667. 

11. G. Glein. J. Comput. Appl. Math. ~ (1979) 259-263. 

12. R S ~~derssen and P Bloomfield. Numer. Math. ~ (1974) 157-182. 

13. I Koch and R S Anderssen. In "Computational Techniques and Applications: 
CTAC-85". Conference proceedings to be published by North Holland. 

Department of Mathematics 
University College of Wales 
Aberys twyth 
SY23 3BZ 
United Kingdom 




