
4, SET FUNCTIONS 

Given an additive set function, fJ, on a semiring of sets, Q, the problem 

arises naturally of finding a gauge which integrates for tt. (See Section 3A.) If there 

exists a finite non-negative O"-additive set function, [ , on Q such that 

I fJ(X) I :s [(X), for every X E Q, then fJ is said to have finite variation. In that 

case, [ is a gauge integrating for fJ. This situation is classicaL 

The of this chapter is that, even when fJ does not have finite variation, 

there may exist gauges integrating for fJ. For, there may exist a continuous, convex 

and increasing function, ij), on such that ij) (0) = 0 and a O"-additive set 

function L : Q -j [0,(0) such that iP( I I) :s [(X), for every X E Q. Then 

I fJ(X) I :s p(X) , where p(X) = cp(l(X)), for every X E Q, and cp is the inverse 

function to iP. By Proposition 2.26, the gauge p is integrating. 

So, we are led to the consideration of higher variations introduced by N. Wiener 

and L.C. Young. (See Example 4.1 in Section A below.) 

A, Let Q be a multiplicative quasi ring of sets in a space n. Recall that, 

by :E = :E(Q) is denoted the set of all families of pair-wise disjoint sets belonging to 

Q. (See Section ID.l An element, 1', of :E such that its unjon is equal to nand, 

for every X E Q, the sub-family {Y E l' : YnX f- 0} of '1' is finite, is called a 

partition. The set of all partitions is denoted by II = mQ) . 

Let E be a Banach space and tt: Q -j E an additive set function. 

Given a Young function q, (see Section IG), a set X from Q and a partition 

1', let 

(A.I) 

Then, for the given q" X and a set of partitions .6. cIT, let 

(A,2) 

107 
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The possibility of v<I>(/.l,2l.;X) = 00 is admitted. We write v<I>(/.l;X) = v<1>(/.l,IT;X), for 

every X E Q. 

The set function v<1>(/.l,2l.), that is, X H V<1>(/.l,2l.;X) , X E Q, is called the 

<1>-variation of the set function /.l with respect to the family of partitions !':!... The set 

function v<I>(/.l) = v<I>(/.l,IT) is called simply the <1>-variation of /.l. If V<I>(/.l,LliX) < 00 

for every X E Q, the set function /.l is said to have finite <1>-variation with respect to 

the set of partitions 2l.. 

In the case when <1>(s) = sP, or even when <1>(s) = esP, for some constants 

c > 0 and p:::: 1 and every S E [0,00), we shall write simply v (/.l,2l.) instead of 
p 

v<1>(/.l,2l.) and speak of the p-variation instead of the <1>-variation. Similar conventions 

are used without explicit mention in other symbols denoting objects depending on <I>, 

and in the corresponding terminology. The I-variation, V1(/.l,Ll), of the set function 

p, with respect to the family of partitions 2l. is called simply the variation of p, with 

respect to Ll and denoted by v(p"Ll). 

Formulas (A.I) and (A.2) have meaning as they stand for arbitrary quasirings, 

not only multiplicative ones. For, XnZ = XZ E sim(Q), whenever X E Q and Z E Q, 

and so, by the convention introduced in Section IB, p,(XnZ) is well-defined. 

However, in such wider context, useful pronouncements would require more 

complicated formulations and the gained generality would be of little value. 

On the other hand, it is sometimes advantageous to define v<I>(J.l,1';X) and 

v<1>(/.l,Ll;X) by (A.I) and (A.2), respectively, for any set X belonging to the ring, 

1l = ll(Q), generated by Q, not only for X E Q. This represents no difficulty because 

every set belonging to 1l is equal to the union of a finite family of pair-wise disjoint 

sets belonging to Q. 

EXAMPLE 4.1. Let a and b be real numbers such that a < b. Let n = (a, b) and 

Q = {(s,t) : a:::: s:::: t:::: b}. Let d be a function on the interval [a,b] and let 

p,( (s, tj) = d( t) - d( s) , 

for any sand t such that a:::: s:::: t:::: b. 
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Although not much attention seems to have been paid to (j}-variation of 

additive set functions in general, there is already considerable literature devoted to this 

case. To be sure, the {I)-variation of the set function jJ is discussed in terms of the 

function d. In fact, if the partition l' is determined by the points a = 30 < 31 < 

32 < .00 < 3n_ 1 < 3n = b, that is, l' = {(Sj_l's) : j = 1,2,.0.,n}, then 

Actually, often the function d itself is the centre of interest, because some 

convergence properties of the Fourier series of d can be studied using the notion of the 

(I)-variation; see e.g. [66]. 

Besides !1 = II, the set of all dyadic partitions is often taken for ~, 

especially when a = 0 and b = 1 . 

The variation (that is, 1-variation) is a classical concept dating back to 

C. Jordan. The notion of the p-variation was introduced in this case by N. Wiener in 

[67]. It was subsequently studied by several authors, notably by L.C. Young, who 

considered, in [69], Stieltjes integration with respect to functions of finite p-variation 

and introduced, in [70], the notion of a function of finite <1?-variation. Spaces of 

functions of finite (j}-variation were studied by W. Orlicz and his collaborators, [51], 

[42], and by M. Bruneau, [4]. 

The notation and terminology are not firmly established in the literature 

although they seem to converge to similar ones to those adopted here. 

The introduction of the set of partitions, ~, as an additional parameter on 

which the <P-variation, v<1?(jJ,~), depends, genuinely increases the generality of this 

notion. It is illustrated by the following classical 

EXAMPLE 4.2. In the situation of Example 4.1, let a = 0 and b = 1. For every 

m = 1,2, ... , let l' be a partition, determined by the points 
m 

O=S <8 1 < ... <8 =1, 
m,O m, m,nm 
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such that l' -< l' l' that is, every point So, £ == O,l, ... ,n , is among the points 
m m+ m,<- m 

determining the partition l' m+ l' and 

11m max{s r S £-1: £= 1,2, ... ,n } == O. 
m-loo m, m, m 

Let ~ == {1' : m == 1,2, ... }. By a classical result of P. Levy, [43], (see also [11], 
m 

Theorem VIIL2.3) the limit 

1 im v2(tt,1' min) 
m-loo 

exists for almost every, in the sense of the Wiener measure, continuous function d on 

[0,1] and, hence, v2(tt,~;S1) < 00. However, v2(tt,II;S1) == 00. See, e.g., [64]' §4. 

EXAMPLE 4.3. Let n == IR. Let Q be the family of all bounded Borel sets in n. 

Let t be the Lebesgue measure on IR. Let 1 < P < 00 and let E == LP(t). If X E Q, 

let 

(p(X))(f) == lim ~ [r-1l + r ] -;(:1 ds, 
1l-l0 + -00 t+1l 

for every t E IR for which this limit exists. Then p(X) represents an element of the 

space E. What is more, M. Riesz has proved, see [7], that there exists a constant, 

A, depending on p, such that 

for every f E sim(Q). Consequently, the resulting additive set function p: Q -l E has 

finite p-variation. 

The Riesz estimate was extended to a wide class of kernels in Euclidean spaces 

of arbitrary dimension by A.P. Calderon and A. Zygmund, [7]. Accordingly, such 

kernels give rise to similar vector valued set functions of finite p-variation on bounded 

Borel sets in IR n , n = 1,2, .... 
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EXAMPLE 4.4. Let n = IR and let Q be the family of all bounded intervals (of all 

kinds) in n. Let 

Sx!(s) = f v !(w)exp(27lisw)dw, 
-', 

for any S E \R, X E Q and any function f on IR integrable with respect to the 

Lebesgue measure, where 

j(w) = fIR !(s)exp(2msw)ds , 

for every WEn. J.L. Rubio de Francia, F.J. Ruiz and J.L. Torrea have proved, in 

[60], Corollary 2.4, that, for every p E [2,(0), there exists a constant C such that 
P 

for any such function f and every family of intervals l' E 2:;(Q) . 

Consequently, if E= LP(t} , f E .c1n.cP(t) , where l is the Lebesgue measure in 

IR, and if, for every X E Q, we define tt(X) to be the element of the space E 

determined by the function Sxf, we obtain an additive set function p,: Q --) E having 

finite p-variation. 

PROPOSITION 4.5. Let Ll c II, P E L1 and X E Q. Then 

for any additive set function tt: Q --l E and a Young function <P . 

Proof. It is obvious. 

It is worth-while to note explicitly that, if the Young function <P is not a 

multiple of the identity function on [0,(0), then the <P-variation is not necessarily 

additive. 

EXAMPLE 4.6. In the situation of Example 4.1, let a = 0, b = 1 and d(s) = s for 

every s E [0,1]. Then v2(tt;(s,t]) = (t-s)2, for every sand t such that 

o :::: s:::: i:::: 1 . 
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B. Let Qbe a multiplicative quasiring of sets in a space n. Let ill be a 

Young function. 

Recall that the set II = II(Q) of all partitions is directed by the relation of 

refinement. (See Section ID.) We refer to the same relation when we speak of 

directed subsets of II . 

some ffin:VilalJ:lJil€!S, we assume that, 

Let E be:a Banach spaee ;lJjnd,p,:: E ':aIDooditlve ,set function. 

PROPOSITION 4.7. The i'P-variation, viP(p,) , of the set funcif;i(!)np, cis ,¥f 

and only if 

(B.I) 

for every X E Q and 1'0 E II . 

Proof. For any XEQ and E H " 

L v<Iht;xn y) = , L. sup{ vq>(P,,1';XIl : l' E 
YEl'O YE1'o' 

= 'L sup{ 'V{j)(p,,1';Xn y) :7'0 -< l' E II} = 
YE1'O 

== 

= sup{ L viP(p"T;XnY): 1'0 -< l' E II} = sup{vq>(p,,1';X) : 1'0 -< l' E II}. 
VETo 

Therefore, 

if and only if (B.1) holds. 

Let t be a non-atomic measure in the space n such that every set X E Q is 

{-integrable. (See Section 3B.) 

For a partition l' E II, the [-mesh, IITII L , of l' is defined by 

111'111, = sup{/,(X) : X E 1'} . 
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Because the cardinal number of P may be infinite, the possibility that IIPll t = 00 may 

occur. 

A set of partitions D. c TI will be called t-fine if, 

inf{IIPll t : P ED.} = 0 . 

We say that the (i)-variation, v(i)(/1,D.), of fJ with respect to a set of 

partitions, D., is [-continuous if, for every (; > 0) there is a /j > 0 such that 

V(i)(tL,D.;X) < f, for every set X in the ring, 1, = 1,(Q) , generated by Q such that 

t(X) < 8. Recall that, by formula (A.2) in the previous section, v(i){fJ,D.;X) is indeed 

well-defined for any X E 1, . 

if D. c II is a directed set of partitions, then the family 

(B.2) Q" = {0} U U P 
U PED. 

of all sets, X) for which there exists a partition, P ED., such that X E P, 

augmented by 0, is a quasiring. 

PROPOSITION 4.8. Let D. be a directed set of partitions. If 

(B.3) 

for every X E Q, then the set function v~(/1,D.) is additive on the quasiring QD.. If, 

moreover, v~ (tJ,D.) is t- continuous then v.p (/1,D.) is (J- additive on the whole of 1,. 

Proof. The first statement is obvious. The second one follows from the fact that, for 

every set X E 1, and E > 0, there is a set Y, which is the union of a finite family of 

pair-wise disjoint sets from Q D.' such that i( IX - YI ) < t. 

In some cases of great interest, instead of (B.3), the formula 

(B.4) Vq-.(fJ,D.;X) = lim sup{v~(/1,P;X): IIPll t < r, 1'E D.} 
1',0+ 
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holds for every X EQ. It might be expected that this formula too would imply the 

additivity of vq>Cu,.6..). However, this is not necessarily the case. 

EXAMPLE 4.9. Let the set-up be as in Example 4.1 with a = 0 and b = 1. By a 

result of S.J. Taylor, [64], Theorem 1, if !J? is a Young function such that 

-2 ( ) -1 28 !J? 8 log log s -) 1 , 

as 8 -) 0+, then, for almost every (in the sense of the Wiener measure) continuous 

function d on [0,1], (B.4) holds with .6.. = II and with the Lebesgue measure in the 

role of t. On the other hand, M. Bruneau proved, [5], TMoreme 1, that the set of 

points t E [0,1] such that 

for almost every continuous function d, has empty interior. 

Because vq>(tt,.6..) indeed, also in interesting cases, fails to be (i-additive, it is 

desirable to find a (i-additive set function (i: Q -) [0,(0) such that vq>(tt,.6..;X):<::; 

(i( X) , for every X E Q. Such a set function (i can be used together with the inverse 

function, to q>, to produce a gauge integrating for jJ. 

EXAMPLE 4.10. Let the set-up be as in Example 4.1 with arbitrary a E IR and 

bE IR, a:<::; b. For some .6.. c II, assume that vq>(tt,.6..;n) < 00. Let 

for any sand t such that a:<::; s:<::; t :<::; b. 

Now, if .6.. is a directed set of partitions, then (J is a non-negative and 

additive set function on the quasiring Q.6.. such that vq>(I1,.6..;X):<::; dX), for every 

X E Q.6..' If, moreover, .6.. is t-fine, where t is the one-dimensional Lebesgue 

measure, and the function d is continuous, then ([ is ([-additive on the whole of Q 

and the inequality v~(jJ,b.;X):<::; ([(X) holds for every X E Q . 
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If 6. = II, then 0" is O"-additive on Q and vq>(/.l,6.;X):::: o-(X), for every 

X E Q. This observation is due to L.e. Young, [71]. 

PROPOSITION 4.11. Let' n E II be a partition such that 'n --< 'n+ l' for every 

n = 1,2, ... , and 

lim II' II = 0 . n t 
n-J 00 

Let 6. = {1n: n = 1,2, ... } and aSS1.lme that [(X) > 0 

XE Q6.' 

every no 7),- empty set 

Let qi be a Young function such that ,u has finite and [-continuous 

q>- variation with respect to the set of partitions 6. . 

Then there exists a (J-additive set function (J: Q -J [0,(0) such that 

(E.5) 

for every X E Q6. . 

Proof. Let 

for every [-measurable set X. Then 0"1 is a measure in n such that 

for every X E 'I . 

Now, if n 2': 1 is an integer and (J a measure in n such that 
n 

(B.6) 

for every X E 'n' for every set Y E 'n+ 1 U {0}, let w( Y) be a number such that 

w(0) = 0, vqi(/.l,6.; Y) :::: w( Y) and 

~ w(xn Y) = 0" (X) 
YE'11 n 

'- r n+ 1 

for every X E 'n' By (B.6) and Proposition 4.5, such numbers w( Y), Y E 'Pn+1 , do 
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exist. Then we put 

for every [-measurable set X. This defines a measure, (J n+ 1 ' in n such that 

(In+l( Y) , for every Y E l' l' and (J l(X) = (J (Xl, for every X E l' . n+ n+ n n 

So, by induction, a sequence of measures, , n = 1,2, ... , is constructed such 

that, if we define 

(J(X) = lim (J (X) , 
n 

n-+oo 

for every [-measurable set X, we obtain a measure in n such that (B.5) holds for 

every X E Qb. . 

C. Let t be a measure in a space n. Let 1l(l) be the family of all 

i-integrable sets. (See Section 3B.) Let Q be a multiplicative quasiring of sets such 

that Q c 1l(i). To avoid some trivialities, we assume that the measure t is generated 

by its restriction to Q. Let !.p be a real valued, continuous, concave and strictly 

increasing function on [0,00) such that !.p(0) = O. Let p(X) = !.p(l(X)) for every 

X E Q. By Proposition 2.26, p is an integrating gauge on Q. 

The reason why we are interested in this situation is clear: If E is a Banach 

space, J1: Q -+ E an additive set function, (I) a Young function and b. c n(Q) a set of 

partitions such that v<p(J1,b.;X):S for every X E Q, then, assuming that cp is 

the inverse function to <P, the gauge p integrates for the set function J1. (See 

Section 3A.) 

The purpose of this and the next section is to provide some information about 

the space C(p,Q) , namely to present workable sufficient conditions for a function to 

belong to C(p,Q). In this section, we discuss the relation of the spaces C(p,Q) and 

C<P(t) , where q, is the inverse function to cp. (See Section 3C.) 

PROPOSITION 4.12. Let P E [1,00) and !.p(t)::: t l / p for every t E [0,00). Then 

C(p,Q) cCP(t). 
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Pmo£' Let f E £(p,Q). Let c be numbers and X E Q sets, j::: 1,2,,,., such that 
j J 

(C.1 ) 

and 

(C.2) 

for every wEn for which 

( C.3) 

00 

L Iclp('X) < 00 

j=1 J J 

00 

f(w) = L cX(w) 
pI ) ) 

OJ 

I IcIX(w) < 00. 

pI J J 

4C 

Denote 1. = c.X, for every j::: 1,2, .... Then Ilill = I cl (/,(X))l/p::: I clp(X.) , for 
J J} J p,/' J J ) J 

every j = 1,2, .... (See Section 3C.) So, by (C.1), 

00 

I Ilf .11 /. < 00 • 
j=l J p, 

Consequently, f E [P(t) . 

The following proposition extends the above result to more general functions 

cp. (For the notion of a Young function, see Section 1 G; for the definition of the class 

[<1>(1.), see Section 3C.) 

PROPOSITION 4.13. Let cp be the inverse function to a Young function, (jJ. and 

f( a constant such that 0 < J( < cp(t)cp(t-l) for every t E (O,eo) . Then 

[(p,Q) C [<I>(/,) . 

Proof. First, let c be a number, X a set belonging to Q and 9::: eX. Assume that 

c * 0 and i(X) > O. Recall that the Luxemburg norm, Ilgll(J;l i' of the function !J is , 
defined by the formula 

11911<1> :::inf{k: k > o,J (J;l(k-1Ig(w)l)i(dw):s 1}. 
,i n 

Hence, Ilgll(J;l i = k, where k is the number that satisfies the condition , 
(J;l(k-11 cl )t(X) ::: 1. It follows that Ilgll<l>,t:S J( -11 cl )cp(i(X)) = Iell clp(X), where 

J( is the constant mentioned in the statement of this proposition. This estimate is. 
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obviously, true also if c = 0 or t{x) = 0 . 

The proof is now finished as that of Proposition 4.12. Namely, if f E £(p,Q) 

and c. are numbers and X. E Q sets, j= 1,2, ... , satisfying (C.I), such that (C.2) 
J J 

holds for every wEn for which (C.3) does, we denote Ij = CjXj , for every 

j = 1,2, .... Then we use the obtained estimate of the Luxemburg norm to deduce from 

(C.I) that 

which implies that f E £~(t) . 

In the following proposition, no additional conditions are imposed on cp. (For 

the concepts used in its statement, see Section ID.l 

PROPOSITION 4.14. If Q is an algebra of sets, then every bounded function 

measurable with respect to the (J-algebra generated by Q belongs to £(p,Q) . 

Proof. Let S be the O"-algebra of sets generated by Q. Because, for every set YES 

and f > 0, there is a set X E Q such that t( I Y-XI) < I: and the function cp is 

continuous, it is obvious that S c £(p,Q). Then, by Proposition 2.7, £( qp'S) = £(p,Q) 

and, by continuity, qp( y) = cp(t( Y)), for every YE S. Hence, without a loss of 

generality, we can assume that Q is a O"-algebra. 

Now, let f be a Q-measurable function such that O:s f( w) :s 1, for every 

WEn. Assuming that k:::: 1 

already constructed, let 

Then 

and 

for every WEn. 

is an integer and the sets X., j = 1,2, ... ,k-1, are 
J 
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PROPOSITION 4.15. Let Q be an algebra of sets. Let 1 < P < q and let 

I.p(t) = t l / p , for every t ~ 0 , so that p(X) = (t(X))l/p , for every X E Q. Then 

£q(t) c C(p,Q) . 

Proof. Without loss of generality, we shall assume, as in the proof of Proposition 4.14, 

that Q is the family of all t-measurable sets. 

Let f be a non-negative function belonging to Cq(i). Let X. = {w: f(w) ~ j} , 
J 

for every j = 1,2, .... Then 

so that 

00 -1 I l i( X.) < 00 • 

j=l J 

By the Holder inequality, 

because (q-l) / (p-l) > 1. So, if we let 

00 

g(w) = I x'(w) , 
]"=1 J 

for every WEn, then 9 E C(p,Q) . 

Now, let h = f - g. Then 0·::; h( w) ::; 1, for every wEn. By Proposition 

4.14, h belongs to £(p,Q) and, therefore, f = g+ h too belongs to £(p,Q) . 

The following examples settle some natural questions about the space £(p,Q). 

They were designed by Susumu 0 kada. 

EXAMPLES 4.16. Let i be the one-dimensional Lebesgue measure. Let n = (0,1] , 

Q = {(s,t] : 0 ::; s::; t::; I} and 1. be the algebra of sets generated by Q. Let 1 < P 

and let p(X) = (i(X))l/p , for every X E 1. Then, obviously C(p,Q) c f.(p,l) and, by 
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Proposition 4.12, £(p,ll) c £P(t}. We wish to show that C(p,Q):f: £(p,ll) and 

C(p,ll) :f: cPt t). Let us denote, for short, 0:' = P -1 . 

(i) Let us note first that there exists a constant C1 > 0 such that 

1 20:' -1 20:' -11 1 10:' t cost - s COSS :S C1 t-s , 

for every SEn and tEn. Indeed, let 0 < s < t < 1 . Let n::: 1 be the integer 

such that (n+lr1 < t:S n- 1 . Assume first that (n+2r1 :s s and put u = (n+2rl 

-1 and v = n ,so that v:S 3u. By the Lagrange theorem, 

If S < (n+2r 1 , then 

Integrating by parts, we then obtain that 

I It 20:'-2. -1· I 20:' -1 2a -1 It 2a-l u smu du. :S I t cost - S cost I + 2au ctu:S cl t-si 0:' , 
s s 

for some c > 0 and every s En and tEn. So, if we put d(O) = 0 and 

. Ji 201-2. -1 d( t) = 11 m u 8m u d u , 
s-+O+ s 

for every t E (0,1] , then d is a well-defined continuous function on [0,1] . 

Let fl((S,t]) = d(t) - d(s) , for every sand t such that O:s S:S t:S 1 . 

Furthermore, given a point SEn, let ,/(X) = j1(Xn(s,l]) , for every X E Q. We 

have noted that II/(X) I < c(/'(X))a = cp(X) , for some c > 0 and every X E Q . 

Therefore, by Proposition 3.1, 

for every f E C(p,Q) . 
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Let g( t) = tl - 2O:sinC 1 , for every tEn. Then the function 9 does not belong 

to £(p,Q) , because 

. JI 2&-2.-1 11m g( u)u smu du = 00 • 

S-10 + S 

None-the-less, 9 belongs to £(p,1l). Indeed, if p ::: 2, that is, &:S ~, this follows 

from Proposition 4.14. If p < 2, we choose a number q E (p,p/(2-p)). Then 

Proposition 4.15, 9 E £Q(p,ll) . 

Consequently, £(p,Q) 1 £(p,ll) . 

(ii) To show that £(p,1l)1rl(t) , let h(t)=fil'llogtl-1 , for tE(O,tj, 

and h(t) = 0, for t E (~,ll. Then hE £P(L). However, the function h does not 

belong to £(v,1l) = £(v) , where 

v(X) = il' J X uil'-ldu, 

for every X E Q. Using the fact that every set in 1l is the union of a finite collection 

of pair-wise disjoint intervals belonging to Q, we can prove that v(X):s p(X), for 

every X E 1. Therefore, the function h does not belong to £(p,1l) either. 

D. We maintain the notation of Section C. 

A function I on n will be called Q-locally i-integrable if it is integrable with 

respect to l on every set belonging to Q, that is, if XI E £(t) for every X E Q. 

Now, assuming that f is a Q-locally t-integrable function, let 

. 1 e 

l'vl)J,X) = t(Xj J X fdt 

for every set X E Q such that t(X) > 0, and Mj,(f,X) = 0 for every set X such that 

{(X) = o. If {(Xl> 0, then the number M/,(f,X) is the mean value of the function J 

on the set X with respect to the measure t. 

Furthermore, if l' E n(Q) is a partition, let 

lJ,(f,1') = L M (f,X)X . 
v XE'P i 
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So, M (/,P) is a function on n, constant on every set belonging to P, having the 
l 

same mean value as the function f on every set X E l' such that t(X) > 0 . 

Let ¢ be a real valued, continuous, and strictly increasing function on [0,(0) 

such that ¢(O) = 0 . 

We shall say that a function f on n satisfies the 1jJ-H61der condition with 

respect to the quasiring Q and the measure t if 

I f(w) - f( v) I :s ¢(t(X)) , 

for every set X E Q and any points w E X and v EX. 

PROPOSITION 4.17. Let f be a [-measurable function satisfying the 1jJ-HOlder 

condition with respect to Q and t. Then f is Q-Iocally L- integrable. 

Let l' E II(Q) be a partition such that P -< l' l' for every n = 0,1,2, ... , and 
n n n+ 

then f E C(p,Q) . 

Proof. The first statement is clear, because the function f is bounded on every set 

belonging to Q. 

Let 10:= MP,Po) and 

for every j = 1,2, .... Then 

for n = 0,1,2, .... Now, 

(See Section 2A.) Furthermore, for every j = 1,2, ... , 
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for any YEP., where Z is the set belonging to P. ~ such that Y c Z. Then 
J ;-1 

I f(w) - MP,Z) II :::; 1jJ(t(Z)) , for every wE Z, and, hence, 

Consequently, 

:::; I 1jJ( t( Z)) I 'P( [( Ynz)) , 
ZEP. 1 YEP. 

r J 

for every j = So, Proposition 2.1 applies. 

COROLLARY 4.18. Lei n E Q, Po =: {n}, Pj -< "j+1 ' 

every X E P. and j = 0,1,2, ... , and !:l = {P.: j = O,1,2, ... } . 
J J 

If f is an t- measurable function satisfying the 1jJ- Holder condition with respect 

to the quasi ring Q!:l and the measure t, and 

(D.l) JI IOU) 1/J( t) dt < 00 

o t2 ' 

then f E £(p,Q) . 

Proof. Let IY = t( n). Because the functions cp and 1jJ are increasing, 

COROLLARY 4.19. Let n =: (a,b] with a E IR, bE IR and a < b. Let Q = {(s,t] : 

a:::; s:::; t:::; b}. Lei d be a function on [a,b] such that 

I dU) - d(3) I :::; 'PU-s) , 

and let 

p;((s,tJ) = d(t) - d(s) and p((s,tJ) = !p(t-s) , 



4E 124 4.20 

for every sand t such that a::S s::s t::s b. Then p is a gauge integrating for the 

additive set function jt. 

If, moreover, f is a function on 51 such that 

I f( t) - f( s) I ::s ¢( I t-s I ) , 

for any SEn and tEn, and (D.l) holds, then f E C(p,Q) . 

Condition (D.l) is satisfied, in particular, when cpU) = c tIl P 
1 

and 

llq -1 -1 ¢( t) = c2t ,for every t 2: 0, where c1 > 0, c2 > 0 and p + q > 1 . 

E. In some sense the notion of an additive set function with finite 

p-variation is analogous to the notion of a (point) function locally belonging to an LP 

space. The analogy reverses the extension of these notions though, because, if p < q, 

to have finite p-variation is a more restrictive condition tha,n one to have finite 

q-variation. In this section, we introduce additive set functions which are analogous to 

functions locally belonging to an Loo space. 

Let Q be a multiplicative quasiring of sets in a space n. (See Section ID.) 

Let E be a Banach space. Let j.t: Q -l E be an additive set function. 

For any set X E Q, let 

(E.I) v (j.t;X) ::: sup{ I j.t(XnZ) I : Z E Q} . 
00 

The possibility v (j.tjX) ::: 00 is admitted. 
00 

The set function j.t will be called locally bounded if v (,ll;X) < 00, for every 
00 

A wealth of locally bounded additive set functions do not have finite 

q>-variation for any Young function q> is provided in Chapter 6. Here is a simple 

example of such a set function. 

EXAMPLE 4.20. Let nand Q be as in Corollary 4.19. Let E be the Banach space 

of all bounded Borel measurable functions on n with the sup-norm. For every 

X E Q, let j.t(X) be the characteristic function of X considered as an element of the 



4.21 125 4E 

space E. Then !J,: Q -l E is an additive set function such that v (/.L;X) = 1, but 
00 

V<J)(!J,;X) = 00, for every X E Q, X =f. 0, no Hl.atter what the Young function (j) . 

The set function tt will be called indeficient if it is locally bounded and the 

gauge, p, defined on Q by 

(E.2) p(X) = v (!J,;X) , 
00 

for every X E Q, is integrating. (See Section 2D.) 

So, if the set function !J, is indef1cient then this gauge integrates for it. (See 

Section 3A.) 

PROPOSITION 4.21. The set function !J, is indeficient if and only if it is locally 

bounded and 

00 

(E.3) I cp,(X) = 0 , 
j=l J J 

for any numbers c. and sets X. E Q, j = 1,2,.", such that 
J J 

00 

(E.4) I I c.1 v (p;XJ < 00 

1'=1 J 00 J 

and 

00 

(E.5) L c'x.(w) = 0 
j=l J J 

for every WEn such that 

00 

(E.6) Llc.1 X.( w) < 00 • 

j=l J J 

Proof. Let us show first that, if the condition is satisfied, then the gauge, p, defined 

by (E.2) is integrating. Let X E Q. Let c. be numbers and X. E Q sets, j = 1,2, ... , 
J J 

satisfying condition (E.4), such that 

00 

(E. 7) X(w) = I cX(w) 
j=1 J J 

for every w satisfying the inequality (E.6). Let f > 0 and let Z E Q be a set such 

that p (X) < I p(XnZ) I + (. Because p, 
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n 
lim 1/1(XnZ) - I cp(x.nz) I ::: 0, 
n-joo j:::l J J 

the inequality 

00 00 

p(X) - t < 1/1(XnZ) I :S I Ic.1 1/1(x.nz) I :S I Ic.lp(XJ 
j=l J J j:::l J J 

holds. So, by Proposition 2.7, the gauge p is integrating. 

Conversely, assume that /1 is indeficient. That is, v (/1;X) < 00 for each X E 
00 

Q and the gauge (E.2) integrates for Jt. So, if c. are numbers and X. E Q sets, 
J J 

j::: 1,2, ... , satisfying (E.4), such that (E.5) holds for every wE 0 for which (E.6) 

does, then, by Proposition 2.1, 

lim q[f CX]:::o. 
P j:::l J J n-j 00 

Because 

If cp(xJ! :S cqp[f c.x.] , 
i=l J J j=l J J 

for some number c ~ 0 and every n::: 1,2, ... , (E.3) follows. 

The following proposition is a simple means for producing examples: it helps us 

to prove the indeficiency of some additive set functions which arise in connection with 

classical improper integrals and are not (I-additive. 

PROPOSITION 4.22. Let the set function /1: Q -j E be locally bounded. Let n E Q 
n 

be sets such that n c n 1 and the restriction of Jt to the quasiring Q n On is 
n n+ 

indeficient, for every n::; 1,2,0", and that 

for every X E Q . 

lim I Jt(X) - Jt(XnO ) I = 0 , 
n 

n-joo 

Then the set function Jt is indeficient. 

Proof. Let c. be numbers and X. E Q sets, j = 1,2, ... , satisfying condition (E.4) 
J J 

such that the equality (E.5) holds for every wEn for which the inequality (E.6) does. 
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Let f > O. Let J be a positive integer such that 

00 

1: 
j=J+l 

le.lv CIi;X.) < f. 
J 00 J 

Let m be a positive integer such that 

J J 

1
1: e p,( X J - 1: e p( x. n n ) I < f. 
j=l J J j=l J J m 

Let IV be a positive integer such that 

for every n > IV. Such an integer IV exists because, by the assumption, the 

restriction of fJ, to Q n n is indeficient. Then 
m 

I f e p,( X) I :::: I f e p,( x. n n ) I + I f e p( x.) - f c p,( X n n ) I :::: 
j=l J J j=l J J m j=1 J J j=l J J m 

:::: E + I t e p( x.) - t c p,( X . n n ) I + I f e p( x.) - f c p( X . n n ) I :::: 
j=l J J j=1 J J m j=J+1 J J j=J+1 J J m 

00 

:::: 2£+2 L le.lv (It;X.) < 4£, 
j=J+1 J 00 J 

for every n > max{ J,N}. Hence, by Proposition 4.21, the set function It is 

indeficient. 

EXAMPLES 4.23. (i) A non-negative real valued additive set function on a 

quasiring of sets is indeficient if and only if it is O"-additive. This follows from 

Proposition 2.13 and Proposition 4.21. However, the argument establishing 

Proposition 2.13 can be simplified for the purpose of proving the indeficiency of such a 

set function directly. 

So, let t be a non-negative real valued additive set function on the quasiring 

Q. Then v (i,X) = [(X) , for every X E Q . 
00 
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If t is not d-additive, then, obviously, it is not an integrating gauge. Let us 

assume, therefore, that t is O"-additive. We want to prove that 

00 

(E.8) t(X)::; L I col t(X-l 
j=1 J J 

for any set X E Q, numbers c: and sets X. E Q, j = 1,2, ... , such that the equality 
J J 

(E.7) holds for every wEn for which the inequality (E.6) does. Let (" > 0 and, for 

every n::: 1,2, ... , let Z be the set of those points wE X for which 
n 

n 
L IColx'(w) > 1- f. 
j=l J J 

Then Zn E sim(Q), Zn C Zn+l and 

n n 
L I c.1 t(X,) ~ L I c.1 t(x.nz ) ~ (l-t:}t(Z ) , 
j=l J J j=l J J 11 n 

for every n::: 1,2, .... Because t is O"-additive on the ring of sets whose characteristic 

functions belong to sim(Q), and the union of the sets Z , n::: 1,2, ... , is equal to X, 
n 

there is an integer n ~ 1 such that t(Z) > t(X) - (:. Hence, 
n 

00 

L I col t(X,) ~ (l-t)(t(X)-t) 
pl J J 

for every t > 0, and the inequality (E.8) follows. By Proposition 2.7, the gauge 

XH v (t;X)::: [(X) is integrating and, hence, t is indeficient. 
00 

Oi) Let Q be a ring of sets and let /1 be a locally bounded real valued 

O"-additive set function on Ii. Then /1 is indeficient. 

In fact, let f-l::: /1+ - /1- be the Jordan decomposition of f-l. So p, + and p,- are 

non-negative O"-additive set functions on Q such that P/1(X)::; /1+(X) + /1-(X) and 

p,+(X):s:: pp,(X), /1-(X):s:: P/1(X) , for every XE Q. Hence, the indeficiency of /1 

follows from that of /1+ and /1- by Proposition 4.2l. 

(iii) Let Q be a ring of sets and let p, be a locally bounded complex valued 

O"-additive set function on Q. Then /1 is indeficient. This follows from (ii) by 
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considering the real and imaginary parts of fJ. 

(iv) Let n::: {1,2, ... } be the set of all positive integers. Let Q be the family 

of all intervals in n, that is, intersections of n with intervals of the real-line. Let 

E be a Banach space and let {a rJ_o1 be a conditionally summable sequence of its 
} }--

elements. Let 

n 
fJ( X) ::: 1 i m 1: X(j) a ° 

n--loo j:::l J 

for every X E Q . 

If we choose n ::: {1,2, ... ,n} , for n::: 1,2, ... , in Proposition 4.22, we deduce 
n 

easily that the set function fJ is indeficient. 

(v) Let n::: IR and let Q be the family of all (boUllded and unbounded) 

intervals of the real-line. Let sf. 0 be a real number and let 

fJ{X) ::: lim r X(t)exp(ist2)dt 
u--lco -u 

for every X E Q. Then fJ is an indeficient additive set function on Q. 

In fact, let nn::: (-n,n) , for every n::: 1,2, .... The restriction of fJ to Qnnn 

is indeficient for every n::: 1,2,.... This can be seen by considering the real and 

imaginary parts of fJ separately and noting that each n n can be divided into a finite 

number of intervals such that in each of them RefJ and ImJl are of constant sign. 

Proposition 4.22 then applies. 

If the set function Jl: Q --l E is indeficient then the gauge p, defined by (E.l) 

and (E.2), integrates for t!. However, this is not necessarily the only gauge which 

integrates for Jl. For example, if Jl has finite and (l-additive variation it might be 

convenient to let the variation integrate for Jl. But the resulting spaces of integrable 

functions could be very different even if E is just the space of scalars. 

EXAMPLE 4.24. Let nand Q be as in Example 4.23(iv). Let 

p(X)::: L (-1)jr2 

jEX 
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for every X E Q. Then J.L has finite and (J-additive variation, v{J.L), and, by 

Example 4.23(iO, it is indeficient. 

Let e{w} = w, for every WEn. Then 

00 

e{w) = 1 X(W) 
j=l J 

for every WEn, where X. = {j,j+l, ... } for every j = 1,2, .... Because 
J 

p(X.) = v (J.L;X,) := sup{ I J.L(x.nZ) I : Z E Q} := r2 , 
J 00 J J 

for every j:= 1,2, ... , the function e belongs to C(p,Q) . 

On the other hand, a function f belongs to C( v(J.L),Q) if and only if 

F. Roughly speaking, indeficiency is preserved by closed rather than 

continuous maps. 

Let Q be a multiplicative quasiring of sets in a space n. Let E be a Banach 

space. 

Let A be an index set and, for every a E A , let Fa be a Banach space and 

T a : E.., Faa continuous linear map. We say that the family of maps {T a : a E A} 

separates the points of the space E if the equality T a(x) := 0, for some x E E and 

every a E A, implies that x:= 0 . 

For every a E A, let v : Q.., F be a locally bounded additive set function. a a 
The family of set functions {1/ a : a E A} is said to be collectively indeficient if 

00 

(F.l) L C.l/ a(XJ := 0 , 
pI J J 

for every a E A, whenever c. are numbers and X. E Q sets, j = 1,2, .. 0' such that 
J J 

(F.2) 
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for every G: E A, and the equality (E.5) holds for every wEn for which the 

inequality (E.6) does. 

By Proposition 4.21, if each set function v G:' G: E A, is in deficient , then the 

family {v 0: : 0: E A} is collectively indeficient. 

PROPOSITION 4.25. Let Ii: Q --) E be a bounded additive set function. Let 

v 0: = To:o J1, for every G: EA. 

If the family of maps {T G: : 0: E 

family of set functions {v G: : 0: E A} is 

separates of the space E and the 

indeficient, then the set J1 

is 

Proof. Let us note first that the local boundedness of J1 and the boundedness of To: 

imply that each set function v G:' 0: E A , is locally bounded. 

Let c be numbers and 
j 

E Q sets, j = 1,2'00" satisfying condition (E.4), 

such that the equality (E.5) holds for every wEn for which the inequality (E.6) does. 

Let 

00 

x = L cp(X.). 
j=l J J 

Condition (EA) and the continuity of T imply that (F.2) holds for every 0: E A. 
0: 

Consequently, (F.1) holds for every 0: E A, because the family of set functions 

{ V : 0: E 
0: 

is collectively indeficient. So, by the continuity of T G:' the equality 

holds for every 0: EA. Then x = 0, that is, (E.3) holds, because the family of maps 

{T G: : G: E A} separates points of the space E. So, by Proposition 4.21, the set 

function J1 is indeficient. 

COROLLARY 4.26. Let jJ,: Q -) E be a locally bounded additive set function. 

If the functionals Xl E E', such that the scalaI' valued set function 

x' 0 J1 is indeficient, sepamtes points of the space E, then the set function Ii is 

indeficient. 
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EXAMPLE 4.27. Let E be a Banach space. Let Q be a ring of sets in a space n 

and let fl: Q --; E be a locally bounded additive set function. By Corollary 4.26 and 

Example 4.23(iii), if the set of functionals x' E E', such that the set function x' Ofl 

is LT-additive, separates the space E, then the set function fl is indeficient. In 

particular, a locally bounded LT-additive set function fl: Q --; E is indeficient. This 

fact opens another way to integration 'with respect to vector measures'. 

So, let fl: Q --; E be a locally bounded LT-additive set function. Let 

Pfl(X) == Voo(fl;X) , for every X E Q. Let P be the seminorm on sim(Q) defined by 

p(f) = sup{ v(x' °fl, If I ) : x' EE', I x'I :s I} , 

for every j E sim(Q). Then Pfl(X):S p(X) :s CPfl(X), for some C 2: 1 and every 

X E Q. (See Proposition 3.13.) Therefore, C(p,Q) = C(Pfl,Q). But of course C(p,Q) c 

C(p,sim(Q)) and the inclusion may be strict. 

In fact, let n = {1,2, ... } be the set of all positive integers and let E = Co be 

the space of all scalar valued sequences tending to 0 equipped with the usual sup 

norm. Let Q be the family of all subsets of n. For every X E Q, let 

\' -1 = L J e., 
jEX J 

where ej , j = 1,2, ... , are the elements of the standard base of the space co' Let 

00 

f = I j(logjr 1 {j} . 
j=2 

The function f is V(X'ofl)-integrable, for every x' E E'. (See Section 3F and/or 

Section A of this chapter.) Moreover, if 

for every X E Q, then 

(x'ov))(X) = In jXd(x'ott) , 
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for every Xl E E' and X E Q. Hence, by Proposition 3.13, the function f belongs to 

£(p,sim(Q)). 

On the other hand, the function f does not belong to C(P/I,Q) . 
I-" 

fact, let 

00 .-2 
/\(X) = L J 

jEX 

for every XE Q. Then for every XE Q. Therefore, 

£(p tt,Q) c £( .A,Q). Because f does not belong to £(A,Q) , it does not belong to 

£(p tt,Q) either. 

EXAMPLE 4.28. Let n = (0,1] and let Q be the semi ring of all intervals X = (s,t] 

such that 0::; s::; t::; 1. Let c be the space of all convergent sequences x = {x n} ~=1 

of scalars equipped with the standard sup norm. Let d be a continuous scalar valued 

function in the interval [0,1] and let lJ((s,t]) = d(t) - d(s) for every sand t such 

that 0 < s < t < 1. Let L be the one-dimensional Lebesgue measure. Given an 

integer n:::: 1, let Z. = ((j_l)n-1,jn-1j for every j = 1,2, ... ,n, and let 
J 

n 
tt (X) = L nl(XnZ.)lJ(z.) 

n j=l J} 

for every X E Q. Finally, let tl( X) = {tt n (X) } ~= 1 for every X E Q. This defines an 

additive set function tt: Q -l C • 

The set function tt is locally bounded. Furthermore, by Proposition 2.23, each 

component of /i is indeficient because it is the direct sum of a finite collection of 

multiples of the Lebesgue measure. Since the coordinate functionals separate the space 

c , Corollary 4.26, the set function tt is indeficient. 

If the set function tt: Q -l E is indeficient, then the set functions x' OIL) 

x' E E' , are not necessarily all indeficient. 

EXAMPLE 4.29. Let nand Q be as in Example 4.28. Let E hI" the closure of 

sim(Q) in the space of bounded functions on n equipped with the sup norm. For 

every X E Q, let tt(X) = X, interpreted as an element of the space E. 
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To see that tt is indeficient, let c. be numbers and X. E Q sets, j =: 1,2, ... , 
J J 

satisfying condition (EA), such that (E.5) holds for every WEn for which (E.6) does. 

Then of course 

in the space E. 

On the other hand, let 

00 00 

L cp(X.) =: L cX = 0 
pI J J j=l J J 

x/(x) = 1 im x(w) 
LJ-lO + 

for every X E E. Then Xl E E' and x' ott is scalar valued additive set function 

which is not indeficient. 

G. Proposition 4.25 and its consequence, Corollary 4.26, are only effective 

when the space E is infinite--dimensional. However, we describe now a device which 

makes it possible, at least in principle, to use these propositions also on scalar valued 

set functions. 

Let Q be a multiplicative quasiring of sets in a space n. We assume that Q 

is directed upwards by inclusion, That is, the union of any finite collection of sets from 

Q is contained in a set belonging to Q. 

Let E be a Banach space. Let Byoo(Q,E) be the set of all bounded additive 

set functions ~: Q -; E. Then BVOO(Q,E) is a vector space with respect to the natural 

(set-wise) operations. Let 

v ({) = sup{ I {(X) I : X E Q} 
00 

for every {E BVoo(Q,E). Then ~ H V ({), ~ E Byoo(Q,E) , is a norm which makes of 
00 

BVOO(Q,E) a Banach space. 

Let tt : Q -; E be a locally bounded additive set function. For every 

IE sim(Q), let 1fJ, be the element of Byoo(Q,E) such that (ffJ,)(X) = ttUX), for 

every X E Q. It is straightforward that the set function Itt so defined is indeed an 

element of BVOO(Q,E) . 
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PROPOSITION 4,3[t Let ,U: Q -t E be a bounded additive set Lei 

?~ : Q -t RVOO(Q,E) be the set 
A 

'/I'[U"I.'I.!!''I/ defined by /h(X) :::: Xtt , every X E Q. 
A 

Then J1 is indeficient if and only if f1. is indeficient. 

A 

Proof. The set function tt is obviously additive and locally bounded. 
A 

Now, if /h is indeficient then it follows easily from Proposition 4.21 that f1. is 

indeficient because 

A 

Y (tt(xnz)) : Z E Q} :::: sup{ IIt(XnZ) I : Z E Q} :::: v (/h;X) , 
00 00 

for every X E Q. The mUltiplicativity of Q is used. 
A 

Conversely, let J1 be indeficient. Again, Proposition 4.21 implies that /1 is 

indeficient. Indeed, let c. be some numbers and X. E Q sets, j:::: 1,2, ... , such that 
J J 

00 

(G.l) E I c.1 
pI J 

A 

ix') < 00 
J 

and the equality 

Then 

holds for every lU E n for which the inequality (E.6) does. 

1 im I f cp(x.nZ) I :::: 0 , 
n-too pI J J 

for every Z E Q, by the indeficiency of J1. But then 

1 i m V [. f c pun] :::: 0 . 
n-too 00 j::::l J J 

For a locally bounded additive set function It: Q -t E, let BVOO(tt,Q,E) be the 

closure of the space {fJ1: f E sim(Q)} in BVXl(Q,E) . 

PROPOSITION 4.31. Let 1 and Q be multiplicative quasirings sets in the space 

n such that Q c 1. Let E and F be Banach spaces and /l: Q --. E and I): 1--. F 

locally bounded additive set functions. Assume that v is and that there 

exists an injective continuous linear map T: BVOO(/.1,Q,E) -t BVOO(v,'P,F) such that 

T(X/l) :::: Xv, every X E Q. Then the set function J1 is indeficient. 
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Proof. Let c. be numbers and X. E Q sets, j = 1,2, ... , satisfying condition (G.l), 
J J 

such that the equality (E.5) holds for every WEn for which the inequality (E.6) does. 

Then the sequence {c.X J1} 00_1 is absolutely summable in the space ByOO(fl"Q,E); let 
J J J-

~ be its sum. Because the map T is linear and continuous and Xv::: T(X J1), for 
J J 

every j::: 1,2, ... , the sequence {cll}~=l is absolutely summable in the space 

nVOO(v,1',E). By the indeficiency of v and Proposition 4.30, the sum of the sequence 

{c.XvfYJ_ 1 is the zero-element of the space ByOO(v,1',E). Then T(e)::: 0, because 
J J ]-

the map T is continuous, and then ~::: 0, because T is injective. Hence, by 

Proposition 4.30, the set function fl, is indeficient. 

The use of Proposition 4.31 is mainly in that it gives a sufficient condition for 

the preservation of indeficiency in passing to a sub-quasiring. 

H. Let Q be a multiplicative quasiring of sets in a space 51. Let E be a 

normed space and fl,: Q --) E an indeficient additive set function. Let the gauge p be 

defined by (E.1) and (E.2), for every X E Q. Then of course the gauge p integrates 

for the set function p,. But the usefulness of p is thereby not exhausted; the gauge p 

integrates possibly for many other, not necessarily indeficient, additive set functions on 

Q 0 For instance, it does integrate for every set function of the form Tofl" where T 

is a continuous map from E into another Banach space. 

EXAMPLE 4.32. Let us adopt the notation of Example 4.28. Because 

v(X) ::: lim fl, (X) , 
n n--)oo 

for every X E Q, and the limit is a continuous linear functional on the space c, the 

gauge p integrates for the scalar valued set function v. 

Such a gauge integrating for the set function v is especially interesting if v 

does not have finite variation in any interval, 

EXAMPLE 4.33. Let E::: L2(1R). Let S(O)::: I be the identity operator on the space 

E. For t '* 0, let S( t) be the operator on E such that 



4.33 137 

2 
(S(tho)(x) = _1 r exp [- (2X~Yt) ] cp(y)dy 

!~ 211it J IR 1 

4H 

for every cp E L1nL2(1R). It is well-known that by this a unitary operator S(t); E..., E 

is defined and that the resulting one-parameter family of operators t H S( t) , 

i E (-00,00) , is a unitary group. 

For a Borel set B in 11<, let P(B) be the operator of point-wise 

multiplication by the characteristic function of B on the space E. 

Let t > 0 be fixed and let n be the set of all continuous functions (paths) 

w: [O,t] ..., IR. Let Q be the family of all sets 

(H.l) X= {w En; w(t.) E B., j= 1,2, ... ,n}, 
J J 

for arbitrary n = 1,2, ... , O:s; t1 < t. < ... < t 1 < t :s; t and Borel sets 
L. '11.- 'II. 

in IR, 

j = 1,2, ... ,n. 

Let cp be a non-zero element of the space E. Let 

for any set X E Q written in the form (IU). 

Then v; Q..., E is an additive set function which has infinite variation on every 

set X E Q. A gauge integrating for v can be constructed in a similar manner as a 

gauge for the set function of Example 4.28. 

Indeed, let ~n be partitions of the real-line into finite numbers of intervals 

such that ~n+1 is a refinement of ~n' n = 1,2, ... 0 For every n = 1,2, ... , let 1'11. be 

the family of all sets X E Q, which can be written in the form 

X = {w : w(j/2n ) E B., j = 1,2, ... ,2n} , 
J 

where the sets B., depending on X, belong to .A , j = 1,2, ... ,2'11.. Then 1 E II(Q) 
J /~'1, n 

are partitions such that 1 1 is a refinement of 1 , for every n = 1,2,.... Let [ be 
n+_ n 

the Wiener measure in n with unit variance per unit of time and with the standard 

normal initial distribution, say. That is, t is the measure such that 
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for every set, X, of the form (H.I), where we put to = O. Assume that the partitions 

tzn are so chosen that, for every n = 1,2, ... , there is a number 'Tnn > 0 such that 

l(X) = m for every X E 
n 

and that 'Tn -j 0 as n -j ()(). Partitions of n similar to 
n 

'P were used by N. Wiener in the first constructions of the measure named after him; 
n 

see, for example, [68]. 

Now, given an integer n::: 1 , let 

JJ (X) = m- I L t(ZnX)ll(Z) 
n n ZE'P 

n 

for every X E Q. Then : Q -j E is an indeficient additive set function. 

Let C E be the space of all convergent sequences of elements of the space E 

equipped with the usual sup norm. Let J.b: Q -j C E be the set functions such that 

JJ(X) =: {JJn(Xn:=l' for every XE Q. Let Fn = E and let Tn: CE-j Fn be the n-th 

coordinate map, for every n = 1,2,.... The set functions TOJJ:Q-j 
n 

are then 

indeficient because T OJJ = 
n 

function JJ is indeficient. 

Because 

, n = 1,2, ... 0 Therefore, by Proposition 4.25, the set 

v(X) = lim JJ (X) , 
n 

n-joo 

for every X E Q, and the limit is a continuous linear map from the space C E onto 

E, the gauge p, defined by (E.l) and (E.2) for every X E Q, integrates for v. 

J. Let Q be a multiplicative quasiring of sets in a space n directed 

upward by inclusion. (See Section G.) Let II c IT(Q) be a set of partitions. Let E be 

a Banach space. 

Given a Young function, <Ii, the family of all additive set functions ~: Q -j E 
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such that 

sup{ V(j)( ~,Ll;X) : X E Q} < 00 , 

will be denoted by By iP(.6.,E). \liTe shall write BY{\)(Q,E) = BY{\)(II,E) . 

These notions are useful mainly in the case when Q is a quasi algebra, that is, 

n E Q. In that case, the definitions can be simplified somewhat. 

PROPOSITION 4.34. If {\) is a Young function, then By1(L1,E) C BY{\) (.6.,E) c 

ByOO(Q,E) , any set of partitions .6. c II . 

1f iP and '1' are Young functions which there exist numbers a > 0 and 

k> 0 such that :s kiP(s), for every s E [O,a], then Byi!>(.6.,E) C By '1' (.6.,E) , 

for any set of partitions .6. c II. 

Proof. The first statement I:; obvious. The second one is analogous to the statement 

1.15 in [51]. For its proof, let tIS note first that, if the condition is satisfied, then, for 

every b > 0, there is a constant e> 0 such that '1'(s):s .eiP(s) , for every s E [O,b] . 

In fact, if a:S s:s b, then 

So, let us assume that ~ E BY~ (,CI.,E). Then there eyjsts a b > 0 such that 

I ~(Xn Y) I :s b for every set X E Q and every set Y belonging to some l' E L1 . 

The second part of this proposition has a converse: If nand Q are as in 

Example 5.28 and BYiP (Q,IR) c BYW (Q,IR), then there exist numbers a > 0 and 

k> 0 such that '1'(s):s kiP(s) for every s E [O,a] . Cf. statement 1.15 in [51]. 

The sets BY\6"E) and ByOO(.6.,E) are, obviously, vector spaces with respect 

to the natural operations. The following proposition says that, if the Young function, 

~, satisfies condition (.6.2) for small values of the argument (see Section IG), then 

also BY~(Ll,E) is a vector space. It is analogous to statement 1.13 in [51] and so, its 

proof too is analogous, 
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PROPOSITION 4.35. If the Young function, iP, satisfies the condition (Ll2 ) for 

small values of the argument, then By<il?(Ll,E) is a vector space under the natural 

opemtions. 

Proof. Assume that k > 0 and a > 0 are numbers such that ([>(2s)::; k<i'>(s) for 

every s E [O,a]. Then, for every b > 0, there is an £(b) 2': 1 such that 

iD(2s) ::; £(b)([>(s) for every s E [O,£(b)]. In fact, if ta::; s::; b, then 

iD(s) ?: Jt:1) iD(s) = 1 :1:1) :t:l) ([>(28) 2': 1 :tg~) ([>(28) . 

Now, if ~ E By<P(Ll,E) and 'f/ E BY([>(Ll,E) , there exists a b > 0 such that 

I ~(Xn Y) I ::; b and I 'f/(Xn Y) I ::; b, for every X E Q and every set Y belonging to 

any partition from Ll. Consequently, 

for every X E Q. If, further, c is a number, let m be the least positive integer sD,:h 

that I cl ::; 2m . Then 

for every X E Q . 

For every ~ E By1(Ll,E) , let 

Then the functional ~ H Vl(~,Ll), ~ E BV1(Ll,E), is a norm making the space 

BV\6"E) complete. 

If the Young function, iP, satisfies condition (Ll2) for small values of the 

argument (see Section IG), then a norm still can be introduced in the space 

BViD (Ll,E). It can be naturally done in at least two ways. Thus let 

for every ~ E BV<il?(~,E). Secondly, given a set function ~ E BV<P(Ll,E) and a 

partition 1 Ell, let 
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~,ll)=SUP{ I !3(xny)IJl(Xny)I :!3EBxP ,PEll,XEQ}, 
YEP 

where B A"i' is the set of all functions 

such that 

!3: {XnY: YE 1} -j [0,00) 

I w(j3(xn Y)) :s: 1 , 
YEP 

and W is the Young function complementary to oij). (See Section IG.) 

43 

By analogy with the usual terminology in Orlicz spaces, the functional 

{H V(j)(~'tI.), ~ E BV([l(Ll,E) , will be called the Luxemburg norm and the functional 

e H ~,6.), {E BV(jj> (ll,E) , the Orlicz norm. It turns out that these functionals 

are indeed nonns on the space BVil> (6.,E) and they are equivalent. 

PROPOSITION 4.36. Assume that the <P satisfies conditions (0), 

(00) and (6.2) small values of the argument. Then the 

vg( . ,6.) are norms on the space BVoij) (6.,E) such that 

every {E BV<P(tI.,E). The space BV<P(6.,E) is complete in each of these norms. 

Proof. The inequalities (J.l) follow directly from the definitions of the functionals 

V(jj>( • and vg(. ,6.) and from Proposition 1.15. We omit the proofs that these 

functionals are indeed norms and of the completeness of the space BVoij) (tI.,E) . 

Let us note that, if 1 < P < 00 and oij)(s) = SF , for every s E [0,(0), then 

v (e,6.) = [SUp{ L le(Xny)IP;'PE/).,XEQ}lJ 1/P, 
P YEP 

for every ~ E BVP(tI.,E) . 
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K Let Q be a multiplicative quasiring of sets in a space n which is 

directed upward by inclusion and E a Banach space. Let L'l. c II = II(Q) be a set of 

partitions and let oi[l be a Young function satisfying condition (L'l.2) for small values 

of the argument. (See Section IG.) 

Let us note first that, if the additive set function Jl : Q -) E has finite 

oi[l-variation with respect to the set of partitions L'l. and f is a Q-simple function, 

then fJl E BV iP (,6.,E). Now, assuming that Jl is such a set function, the closure of 

the vector space {fJl: f E sim(Q)} in BV iP (,6"E) will be denoted by By<1>(,6"Jl). 

Then BVoi[l(,6"Jl) is a Banach space, being a closed subspace of BV<1>(,6"E). Again, 

we write By<1> (Q,Jl) = By<1> (II,Jl) . 

(Kl) 

If [ is a real valued positive (J-additive set function on Q, then 

VI (fi,II) = f I II dt 
n 

for every IE sim(Q). Therefore, the elements of the space Byl(Q,t) are canonically 

associated with [-integrable functions, or, more accurately, with the equivalence 

classes of such functions. In other words, the space Byl(Q,t) is identified with L1(/,) . 

In this section, those set functions, Jl: Q -) E, are isolated for which an 

analogous identification of By1l(,6"Jl) with a space of (equivalence classes of) 

functions on n is possible. The definition is immediate. 

An additive set function Jl: Q -) E will be called (1l,,6,)-closable if it has finite 

1l-variation with respect to the set of partitions ~ and the seminorm p = p oi[l,6, on 
Jl, , 

sim(Q) , defined by 

p(f) = VoIl(fJl,~) 

for every f E sim(Q), is integrating. In that case, we write £(Jl,oIl,~) = £(p,sim(Q)) 

and 11·11 <1> ~ = P iP,0. = P = q . Also, £(p"oIl,Q) = £(p"oIl,ll) . 
Jl" Jl" P 

Because sim(Q) is dense in £(Jl,oi[l,ll), for every f E £(Jl,<1>,,0.) , there is a 

unique element Vj (: BY<P(,6"Jl) such that Vj = fp, for f E sim(Q) and the map 

f H vj ' from C(Jl, oi[l ,,6,) onto BVoi[l(L'l.,Jl), is continuous. We write, of course, 
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f.u = vf ' for every f E [(tt,ifi,t:J.) , and call ffJ, the indefinite integral of the function j 

vvith respect to It, 

To introduce an interesting class of (il? ,t:J.)-closable additive set functions, we 

adopt the following definition, An additive set function fJ,: Q --j E will be called 

(j}-scattered if the set function X H oiJ)( Ilt(X) I), X E Q, is (J-additive, 

This notion originates from the case when E is a Hilbert space and for any 

disjoint sets, X and Y, belonging to Q, the values fJ,(X) and tt( Y) are 

orthogonal, Such a set function is called orthogonally scattered, It is irmnediate that, 

if fJ, is an orthogonally scattered set function, then the set function X H 1 tl( Xl 12 , 

X E Q, is additive if E is a real Hilbert space, then also the converse is true, 

Since, however, the converse is not necessarily true in a complex Hilbert space and 

(J-additivity is built in the notion of a 2-scattered set function, which is convenient for 

the purpose of this example, we keep the notions of an orthogonally scattered and a 

2-scattered set function distinct, For a systematic treatment of orthogonally scattered 

additive set functions, see [49), 

PROPOSITION 't37. Assume that the Young function <I> satisfi~s condition (.6.), 

Let It: Q --j E be a (f)-scattered additive set junction, Denote t(X) = <I>( I fJ,(X) I) for 

eVe171 X E Q, Assume that the measure generated by the set function t is (J-finite, 

Then the set function It is (<I> ,TI)- closable, [(tt, oiJ) ,Q) = .c(!) (t) and 

(K2) V~(ftt;TI) = Ilfll~,<I> ' 

for every f E [( tt, <I> ,Q) . 

Proof. First we prove (K2) for f E sim(Q), So, let 

n 

f = L cJ,XJ, 
j=l 

with an arbitrary n = 1,2,»" numbers c, and pairwise disjoint sets X, E Q, 
J J 

j = 1,2,»"n, Let W be the Young function complementary to (j), Then 
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and 
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Ilfll~,1ll ::: sup{ J n fgdt : 9 E sim(Q) , J n w( \ g\ )dt:S 1} 

V~(ftt;II) ::: sup{ L \ (fttH Y) \ S( Y) : S E Bp, P E II} , 
YEP 

where Bp is the family of all functions S: p,.., [0,(0) such that 

L w(S(y)):s 1. 
YEP 

4.37 

Because V~(. ,IT) is a norm in the space BVIll (tt,Q) , it suffices to calculate the 

supremum over partitions P E II such that every set X., j::: 1,2, ... ,n, is equal to the 
J 

union of some elements of P. Furthermore, it suffices to take S E B1' such that 

S( Y) ::: 0, whenever Ynx::: 0 for each j::: 1,2, ... ,n. Then, given such as, we put 
j 

Because, in calculating Ilfil O '"', it suffices to take those functions 9 E sim(Q) which 
t, 'J! 

are obtained in this manner, the equality (K2) is indeed true. 

The equality (K2) is analogous to, or a generalization of, (KI). It implies that 

the set function f.l is (J-additive, (1ll,II)-closable and that C{tt,Ill,Q)::: CIll(t) . 

It seems difficult to prove the (Ill ,b.)-closability of set functions which are not 

in a sense equivalent to Ill-scattered ones. None-the-Iess, the norms VIll and V~ 

could still be helpful. For, if the additive set function tt: Q,.., E has finite 

Ill-variation, then the gauge p, defined by 

for every X E Q, is usually very sub-additive (see Section 2J) and so, in many cases, 

Proposition 2.25 applies. Then this gauge can be used instead of the one studied in 

Section C. 




