
30 A Generalisation of Shiffman's Second Theorem 

Shiffman's second theorem says that if a minimal annulus is bounded by circles in 
parallel planes, then every level set is a circle. 

In [25], it is proved that the same conclusion is true if we replace the boundary 
circles in Theorem 29.2 by parallel straight lines and assume A is properly embedded. 

Furthermore, Toubiana [78] has proved that if two non-parallel straight lines lie in 
distinct parallel planes then they cannot bound any proper minimal annulus in the slab 
bounded by the planes. 

In this section we will give a generalization of the results stated above, with a unified 
proof. 

Theorem 30.1 Suppose A C S( -1, 1) is a minimal annulus in a slab and A(l) = 

An P 1 , A( -1) =An P_1 are straight lines or circles. 

1. If both A(1) and A( -1) are circles, then A( t) = An Pt is a circle for -1 < t < 1. 
In particular, A is embedded. 

2. If at least one of the A(1) and A( -1) is a straight line and A is properly embedded, 
then A(t) =An Pt is a circle for -1 < t < 1. 

Remark 30.2 The first part of Theorem 30.1 is exactly Shffiman's second theorem, 
Theorem 29.2. We will see that the second part of theorem 30.1 implies the results in 
[25] and [78]. 

Let A c S( -1, 1) be a proper minimal annulus such that A(1) = A n P1 and 
A( -1) = An P_ 1 are straight lines or circles and oA = A(1) U A( -1). In the case 
that there is only one straight line, we will always assume that A(l) is the straight line. 
Then the interior of A is conformally equivalent to the interior of 

for some 1 < R < oo. In fact the interior of A is conformally equivalent to 

{ z E c : p < I z I < P, 0 ::; p < p ::; 00}' 

for some p and P. Since A has !-dimensional boundary oA which is separated by 

the interior of A, it follows 0 < p and P < oo. Hence if R = J P / p > 1 then 
Int(A) ~ Int(AR)· 

There is a conformal harmonic immersion 

X: AR-c '---7 S(-1, 1), 

where Cis a subset of oAR and X( {lzl = R}-C) = A(1), X( {lzl = 1/ R}-C) =A( -1). 
If A(1) and A( -1) are both circles, then C = 0; if only A(1) is a straight line, then 
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C C {lzl = R}; if A(1) and A( -1) areboth straight lines, then C n {lzl = R} =/= 0 and 
·· C n {lzl = 1/ R} =/= 0. When C =/= 0 we assume that X is a proper embedding. 

The Enneper-Weierstrass representation of A is 

X(z) = ~ 1z (w1, w2, w3) + V, 

where V =(a, b, 0) E R 3 , and 

w1 = !(1- g2(z))f(z)dz, 

w2 = ~(1 + g2(z))f(z)dz, 

w3 = g(z)f(z)dz, 

(30.162) 

where g is the Gauss map and f is a holomorphic function. We first prove some facts 
about such a minimal immersion. 

Lemma 30.3 Suppose X : {1/R < lzl < R} -+ S(-1, 1) is a properly immersed 
minimal annulus and is embedded in a neighbourhood of {lzl = R} U {lzl = 1/ R}. Let 
g: {1/R < lzl < R}-+ C be the Gauss map of X. LetA= X({1/R < lzl < R}). 
Suppose that aA c g u P_1 and A(1) = aA n g, A(-1) = aA n P_1 are circles or 
straight lines. Let C C {lzl = 1/R} U {lzl = R} be the set such that IX(zn)l -+ oo 
whenever Zn-+ z E C, then C n {lzl = R} = p and C n {lzl = 1/ R} = q if they are not 
empty sets. The Gauss map g can be extended to a neighbourhood of AR such that the 
extended g at p and q has either zero or pole. Moreover, the Gauss map g has neither 
zero nor pole in a neighbourhood of AR except at p and q. 

Furthermore, the third coordinate function X 3 can be extended to the whole AR such 
that X 3 llzl=l/R = -1 and X 3 llzi=R = 1. 

Proof. Let J = X ( {I z I = 1}) be the Jordan curve on A and let A 1 be the proper 
minimal annulus in A with boundary A(1) and J. Suppose that A(1) is a straight 
line, then let S be the rotation around A(1) of angle Jr. By the Rotation Theorem 
(Theorem 8.2) and Extension Theorem (Theorem 4.2), A1 U S(A1) is a smooth proper 
minimal surface with boundary J U S(J). The conformal structure of A1 U S(A1) is 
then {1 < lzl < R2}- C n {lzl = R} (with the mapping Y(z) = X(z) for z EAR- C 
and Y(z) = S(X(R2z/lzl 2 )) for z E {R < lzl < R2 } ). 

Since {lzl = R} - C and {lzl = 1/ R} - C are homeomorphic to straight lines or 
circles, they are connected. It turns out that C n {lzl = R} and C n {lzl = 1/ R} are 
also connected, hence simply connected as an interval. 

Let D C {1 < lzl < R2 } be a disk like neighbourhood of C n {lzl = R} such 
that z E D if and only if R2z/lzl E D and aD is diffeomorphic to a circle, and the 
Y(aD) is a Jordan curve on A1 U S(A1 ) which bounds a properly embedded minimal 
annulus A= Y(D-Cn{lzl = R}). Since A1 nS(AI) is contained in the slab S(-1,3), 
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by the Cone Lemma (Theorem 21.1), A has finite total curvature. Then by Lemma 
10.5, Propositions 10.7 and 10.6, this annular end has the conformal structure of a 
punctured disk, and the Gauss map of A can be extended to the puncture. In particular, 
C n {lzl = R} is a single point p and the Gauss map g: D---+ C of Y can be extended 
top, and g(p) is either zero or oo. Similarly, we can prove that Cn {lzl = 1/R} = {q} 
if it is not empty and g(q) is either zero or oo. 

Since p corresponds to an embedded flat annular end, by Theorem 11.8 we know 
that there is a 61 > 0 such that when 1 - 61 < z < 1, Pz n A is compact. By Lemma 
23.2, the tangent plane of A at any point of An Pz is not parallel to the xy-plane. In 
particular, dX3 i- 0 on (X3 )-1(z). Thus (X3)-1(z) is a !-dimensional submanifold of 
AR consists of smooth loops. If it has more than one loop or any loop is homologically 
trivial, then using the maximum principle we can show that A is contained in a plane. 
Thus (X3)-1(z) is a homologically non-trivial smooth Jordan curve. Similarly, if A(-1) 
is a straight line, then there is a 62 > 0 such that when -1 < z < -1+62 , (X3 )-1 (z) is a 
homologically non-trivial smooth Jordan curve. Let A~ be the closed annulus bounded 
by (X3 )-1(z) and (X3)-1(-z), for 0 < 1- z < min{61,62}. Clearly A~ is compact and 
A~ = x-1(A n S( -z, z)) . Since An Pz is compact for -1 < z < 1, by Lemma 23.2, 
the extended Gauss map g of Y does not equal to zero or oo in a neighbourhood of AR 
except at p or q. 

For any sequence Zn ---+ p, since p tj_ A~ for 1 - 61 < z < 1, Zn tj_ A~ for almost all 
Zn. Thus X 3(zn) must converge to 1. Similarly, for any sequence Zn ---+ q, X 3(zn) must 
converge to -1. Thus the third coordinate function X 3 can be continuously extended 
to the whole AR such that X 3 llzi=1/R = -1 and X 3 llzi=R = 1. D 

The harmonic third coordinate function X 3 satisfies X 3 llzi=1/R = -1 and X 3 llzi=R = 1 
and -1 < X 3 lrnt(AR) < 1. Hence we have 

and 

Thus 

and 

1 
X 3 = --loglzl, 

logR 

8X3 d ( 1 ) 1 1 
w3 = f(z)g(z)dz = 2--a;:dz = dz logR logz dz = logR:;-dz. 

1 1 
f(z)--­

- logRzg(z)' 

w1 = - 1-1... (l -g) dz logR 2z g 

1 . (1 ) w2 = - _!:_ - + g dz 
logR 2z g 
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and X can be represented as 

Let 

1 fP ( 1 i 1) 
X(p) = log RSR J1 2z (1/ g- g), 2z (1/ g +g),-; dz + V. 

n=-oo 

1 

g(z) n=-oo 

Then by (27.126), (30.163) gives a minimal annulus if and only if 

S'(bo) = S'(ao), SR(bo) = -SR(ao). 

(30.163) 

(30.164) 

(30.165) 

Remark 30.4 Let S be the 180°-rotation around the straight line A(1) in R 3 , and 
S =Au S(A). Then 

f K dA = ~ f K dA, 
lA 2 ls (30.166) 

where K is the Gauss curvature, and dA is the area element of A. 

As in the proof of Theorem 27.2, "' = r-1 A - 1SR(zg' /g) in the interior of AR. We 
must prove that "' is a non-zero constant on each {lzl = r }, 1/ R < r < R. This is 
equivalent to prove that "-o = 0. For that we calculate 

Let 

H(z) 

(30.167) 
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Note that 
v := r A"'e = '25H. (30.168) 

Since r A > 0, to prove "'e = 0 we only need prove that v = 0. 
Since 

~ (zg') 2
- z.!!_ (zg') 

2 g dz g 
is holomorphic, we have 

6.H = 
02 H 02 [ 1 (zg') 2

] 0 -i? (zg') 2 

4 azaz = - 4 azaz 1 + lgl 2 g = - 4 az (1 + lgl2)2 g 
lg'l2(1 + lgl 2)- 2g'ggg' (zg') 2 

. gg' ( g') d ( g') 4 - +8 z- - z-(1 + lgl2)3 g (1 + lgl2)2 g dz g 
-8lg'l 2 [1lgl2- 1 (zg') 2 d ( g')] 

(1 + lgl2)2 2lgl2 + 1 g - z dz zg . 
By (7.28) and (7.30), 

A2 = _411!12 (1 + lgl2)2' K [ 4lg'l ] 2 
=- 1!1(1 + lgl 2)2 ) 

hence we have 

Thus 
(30.169) 

Taking the imaginary part, we have 

(30.170) 

Remember that 6.A = A ~2 6.AR = A - 2 6.. If r = A(1) and A( -1) are straight lines or 
circles, then "'e = 0 on oAR - c. Hence on AR, v satisfies 

{ 
6.Av- 2Kv = 0, 

vlaAR-C = 0, 

(30.171) 

We want to prove that vis continuous on AR and vlaAR = 0, i.e., vis an eigenfunction 
corresponding to the eigenvalue zero. When A(1) and A( -1) are circles this is certainly 
true. The next lemma shows that it is always true. 

Lemma 30.5 Let A be as in Theorem 30.1, p, q be as in Lemma 30.3, and v be as 
defined in {30.168). Then vis continuous on AR and vlaAR = 0. 

153 



Proof. Without loss of generality, we can assume that p = R. By Lemma 30.3, we 
·· can assume that the Gauss map g has limit zero at p = R and g can be extended to a 

holomorphic function g. Let ( = z- Ron a disk DP centered at z = R, we have 

where his a holomorphic function on Dp and h(R) #- 0. 
By definition, v = C:SH and 

H(z) = ~ lgl 2 - 1 (zg') 2 -zj_ (zg') = ( 1 - 1 ) (zg') 2 -~ (zg') 2 -zj_ (zg'). 
2 lgl 2 + 1 g dz g · lgl 2 + 1 g 2 g dz g 

For convenience, we will write g and h instead of g and h. Note that 

(2 (zg'(z))2 
g(z) 

is holomorphic on DP and since lgl 2 = lz- Rl 4lh(z)l2 = l(l 4lh(z)l 2 , 

-; (1- 1 2) =-; f(-1)k+llgl2k = (2 f(-1)k+ll(l4(k-l)lh(z)l2k 
( 1 + lgl ( k=l k=l 

is a coo complex function in a neighborhood of R. Thus 

w z . = 1 - 1 z g' = ~ 1 - 1 2 z g' ( z) ( ) ( )2 ( ) ( )2 
( ) · lgl 2 + 1 g ( 2 1 + lgl 2 ( g(z) 

is a c= complex valued function near z = R. If we can prove that 

1 (zg') 2 d (zg') <P(z) := -2 g - z dz g 

is holomorphic in a neighbourhood of R, then H is a coo complex valued function in a 
neighbourhood of R. In particular, v = CSH is coo in a neighbourhood of R, and thus 
v(R) = 0 since on lzl =Rand z #- R we already know that v(z) = 0. 

Since R corresponds to an embedded flat end, and that end intersects P1 at a straight 
line, we have n = 2 by Proposition 11.14. Hence 

where 

g'(z) 2R h'(z) 
zg(z) = z-R+2+zh(z)' or 

g'(z) _ a_l ~ ;-k 
z . ( ) - ;- + L..t aks , 

g z S k=O 

h'(R) 
a_ 1 = 2R and a0 = 2 + R h(R). 
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Moreover 

and 

(
7 g'(z)) 2 = a:_1 2a_lao ~b ;-k 

~ g(z) (2 + ( + f;:a k'> ' 

.!!___ ( g'(z)) = _ a_lR _ a_l (~" R) ~ k ;-k-1 
z dz z g(z) (2 ( + " + 6_ ak-, ' 

a~ 1 - 2a_lR = 0. 

We would like to prove that a_ 1a0 - a_ 1 = 0 and thus <I> is holomorphic near z = R. 
The a0 can be calculated as follows. The Weierstrass representation for the extended 

surfaceS is 
w1 = _l _ _l (l- g) dz 

log R 2z 9 

w - _l _ _j_ (l +g) dz 
2 - logR 2z 9 

W3 = lo~R~dz, 
as commented after Lemma 30.3. Let C be a loop around z = R in a small disk. Then 
since X: {z: 1/R < [z[ < R3}- {R} -t R 3 is well defined and 

X(z) = R {z (w1, w2, w3), 
}PO 

we must have 

?R k 21z (gtz) - g(z)) dz = 0, -8' k 21z (gtz) + g(z)) dz = 0, 

and 

r 2_dz = r !!..dz = 0, 
Jc zg lc z 

since g(z)jz is holomorphic at z = R. Hence we know that the residue of 1/zg(z) at 
z = R is zero. Hence we have 

0 = r ((z-R?)' r ( 1 )' 
zl!11 zg(z) = z~ zh(z) 

. ( 1 h'(z) ) 
}l!11 - z2 h(z) - zh2 (z) 

1 h'(R) 
R2 h(R) Rh2 (R). 

155 



Thus 
h'(R) 
h(R) 

1 
R' 

and 
h'(R) 

a0 = 2 + R h(R) = 1. 

This shows that a_lao - a_l = 0. 
Note that by orientability, if g(p) = 0 then g(q) = oo. Using 

(1/g)' g' 

1/g g 

we can prove that <P is holomorphic near q exactly as above. 

Now by (30.170) and Lemma 30.5, v is a Jacobi field. Moreover, v satisfies 

Recall that v = CSH = rA"'e· 

{ 
l:,Av -_2Kv = 0, 

vlaAR- 0. 

0 

(30.172) 

If v t:- 0, then the zero set of v divides AR into connected subdomains, called nodal 
domains. As mentioned in Section refsec, any proper subdomain of a nodal domain is 
stable. Thus by Theorem 20.3, the total curvature of each nodal domain is less than or 
equal to - 2n. Suppose that there are k nodal domains; the total curvature of A must 
be less than or equal to - 2kn. 

By our hypothesis that A is embedded and the proof of Lemma 30.3, A(t) is a Jordan 
curve for -1 < t < 1. By the four-vertex-theorem, see [36], which says that if "'e t:- 0 
then the zero set of K,g divides each A(t) into at least four components, we know that 
there are at least four nodal domains. Thus if v t:- 0, then K(A) :S -81r. 

The next lemma shows that in fact, K(A) 2: -4n. This contradiction then shows 
that v = 0, which is equivalent to"' being constant along each A(t) for -1 < t < 1. 
Since A(t) is a Jordan curve, we know that A(t) must be a circle. 

Lemma 30.6 Suppose that A c S( -1, 1) is a proper minimal annulus, and 8A = 
A(1)UA(-1). If A(1) = AnP1 and A(-1) = AnP_1 are circles or straight lines, then 

iKdA 2: -4n. 

Proof. If A(l) and A( -1) are both circles, then by Theorem 27.4 the Gauss map g is 
one-one onto a sphere domain. Hence fA K dA > -4n. 

Now assume that A(1) is a straight line and Cn {lzl = R} = {p}, then A(-1) is a 
circle. We will use the extended surface S in the proof of Lemma 30.3 to calculate the 
total curvature of A. Notice that S has an embedded flat annular end corresponding 
to the point p. Since the end is embedded, the order of A at that end is 2. Let 
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Dp C {1/ R < lzl < R 3 } be a disk centred at p and radius p. Note that x( {1/ R < lzl < 
R3 } - {p}) = -1. By the Gauss-Bonnet theorem 

K(S) = -21r -1 "'9ds- { "'9ds- { "'9 ds. 
lzl=1/ R Jlzi=R3 laDp 

Using the same argument as in Theorem 23.1 we have 

lim r K,gds = 21!". 
p-+O lenp 

Notice that the other two integrals are larger than -21r because A( -1) and R(A( -1)) 
are circles and 

We have 

r K, ds = r K, ds 
jlzi=1/R g jA(-1) g ' 

r K, ds = r K, ds. 
jlzi=R3 g j R(A( -1)) 9 

is KdA > -81r. 

By (30.166), we conclude that the total curvature of A is larger than -41!". 
Assume {p} = C n {lzl = R} and {q} = C n {lzl = 1/ R}, i.e., A(1) and A( -1) are 

both straight lines. Then let D~ and D~ be two disks centered at p and q with radii 
p and let MP = AR- (D~ u D~). Since p and q correspond to embedded ends, A has 
order 2 at p and q. Thus 

where O:i and Pi are the exterior angles at 3D~ n oAR, and obviously 

lim ( o:i + Pi) = 1r. 
p-+0 

Again by the same argument as in Theorem 13.4, noting that A has poles at p and q, 
we have 

lim r . K,g ds = 1!". 
p-+O len;,nAR 

Since A(1) and A( -1) are straight lines, 

Thus we have 

lim r . K,g ds = r K,g ds = 0. 
p-+0 1aMp-U8D'p laAR 

K(A) =lim { K dA = -41!". 
p-+O}Mp 

The proof of theorem 30.1 is complete. 

0 

Note that the proof of K(A) 2:: -41!" only used the fact that A is embedded in a 
neighbourhood of the straight line boundary. Thus we see immediately that 
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Corollary 30.7 Suppose that A C S(-1,1) is a proper minimal annulus. If A(1) == 
·· A n P1 is a straight line and A is embedded in a neighborhood of A(1), and A( -1) = 
An P_1 is a circle, then each A(t) =An Pt is a circle for -1 < t < 1. In particular, 
A is embedded. 

Proof. We only need point out that we can still use the four-vertex theorem, even 
though some level sets A(t) may not be Jordan curves. It is shown in [36], that all 
curves which have exactly two vertiCes are curves which have exactly two simple loops, 
on each loop the curvature is positive or negative and hence its total curvature must be 
0. Note that A( -1) has total curvature 271'. Since A ( t) is a closed curve for -1 ::; t < 1, 
by continuity every A(t) has total curvature 271'. Hence the four-vertex theorem is 
applicable to A(t) for -1 ::; t < l. D 

Corollary 30.8 Suppose that A C S( -1, 1) is a proper minimal annulus. If A(1) = 
An P1 and A( -1) =An P_1 are straight lines and A is embedded in neighbourhoods of 
A(1) and A( -1), then each A(t) =An Pt is a circle for -1 < t < 1. In particular, A 
is embedded. 

Proof. We have X 3 =log lzl/logR. Let E > 0 such that on {R- E < lzl ::; R} X is 
an embedding. Then A(t) is a Jordan curve when log(R- c)/logR < t < 1. Thus we 
can still use the four-vertex theorem. D 

Remark 30.9 Corollaries 30.7 and 30.8 are slightly better than Corollary 1 in [17]. 
There do exist properly iJ;D.mersed minimal annuli in S ( -1, 1) whose level sets are not 
circles, see [78]. 

Since all minimal surfaces foliated by circles must be a part of a Riemann's example, 
we have proved that: 

Corollary 30.10 Let L1 C P1 , L_1 C P_1 be two parallel straight lines. Ifr = L1 UL_1 

is the boundary of a properly embedded minimal annulus A in S(-1, 1), then A is one 
of Riemann's examples. 

Finally, we have a non-existence theorem: 

Corollary 30.11 Let L1 C P1 , L_1 C P_1 be two non-parallel straight lines. Then 
r = L 1 U L_1 cannot bound a properly embedded minimal annulus in S(-1, 1). 

Corollary 30.10 is the main theorem of [25], in which it is proved via elliptic function 
theory. Corollary 30.11 is a result of Toubiana [78]. The proof of Theorem 30.1 is 
adapted from [17]. 
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