30 A Generalisation of Shiffman’s Second Theorem

Shiffman’s second theorem says that if a minimal annulus is bounded by circles in
parallel planes, then every level set is a circle.

In [25], it is proved that the same conclusion is true if we replace the boundary
circles in Theorem 29.2 by parallel straight lines and assume A is properly embedded.

Furthermore, Toubiana [78] has proved that if two non-parallel straight lines lie in
distinct parallel planes then they cannot bound any proper minimal annulus in the slab
bounded by the planes.

In this section we will give a generalization of the results stated above, with a unified
proof.

Theorem 30.1 Suppose A C S(—1,1) is a minimal annulus in a slab and A(l) =
AN Py, A(—1) = AN P_; are straight lines or circles.

1. If both A(1) and A(—1) are circles, then A(t) = AN P, is a circle for —1 <t < 1.
In particular, A is embedded.

2. If at least one of the A(1) and A(—1) is a straight line and A is properly embedded,
then A(t) = AN P, is a circle for =1 <t < 1.

Remark 30.2 The first part of Theorem 30.1 is exactly Shffiman’s second theorem,
Theorem 29.2. We will see that the second part of theorem 30.1 implies the results in
[25] and [78].

Let A C S(—1,1) be a proper minimal annulus such that A(1) = AN P, and
A(—=1) = AN P_; are straight lines or circles and A4 = A(1) U A(—1). In the case
that there is only one straight line, we will always assume that A(1) is the straight line.
Then the interior of A is conformally equivalent to the interior of

Ap={2€C:1/R<|z| <R},
for some 1 < R < oco. In fact the interior of A is conformally equivalent to
{zeC:p<|z|<P, 0<p<P< o0},

for some p and P. Since A has 1-dimensional boundary A which is separated by
the interior of A, it follows 0 < p and P < oco. Hence if R = \/P_/p > 1 then
Int(A) = Int(Ag).

There is a conformal harmonic immersion

X :Ap —C < S(~1,1),

where C'is a subset of 9Ag and X ({|z] = R}—C) = A(1), X({|z| = 1/R}-C) = A(-1).
If A(1) and A(—1) are both circles, then C' = §; if only A(1) is a straight line, then
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C C {|z| = R}; if A(1) and A(—1) are both straight lines, then C' N {|z| = R} # 0 and
Cn{|z| =1/R} # 0. When C # () we assume that X is a proper embedding.
The Enneper-Weierstrass representation of A is

X(z)z%‘f/1 (w1, wo, ws)+V,

where V = (a,b,0) € R? and

we = £(1+ ¢%(2)) f(2)dz, (30.162)

w3 = g(2)f(2)dz,

where ¢ is the Gauss map and f is a holomorphic function. We first prove some facts
about such a minimal immersion.

Lemma 30.3 Suppose X : {1/R < |z| < R} — S(—1,1) is a properly immersed
minimal annulus and is embedded in a neighbourhood of {|z| = R} U {|z| = 1/R}. Let
g : {1/R < |z| < R} — C be the Gauss map of X. Let A = X({1/R < |z| < R}).
Suppose that A C Py U P_; and A(l) = 0AN P, A(—=1) = 0A N P_; are circles or
straight lines. Let C' C {|z| = 1/R} U {|z| = R} be the set such that |X(z,)] — oo
whenever z, — z € C, then CN{|z| = R} =p and CN{|z| = 1/R} = q if they are not
empty sets. The Gauss map g can be extended to a neighbourhood of Ar such that the
extended g ot p and q has either zero or pole. Moreover, the Gauss map g has neither
zero nor pole in a neighbourhood of Agr except at p and gq.

Furthermore, the third coordinate function X° can be extended to the whole Ap such
that X3||z|:1/R = —1 and XB“ZI:R = 1.

Proof. Let J = X({|z| = 1}) be the Jordan curve on A and let A; be the proper
minimal annulus in A with boundary A(1) and J. Suppose that A(1) is a straight
line, then let S be the rotation around A(1) of angle 7. By the Rotation Theorem
(Theorem 8.2) and Extension Theorem (Theorem 4.2), A; U S(A;) is a smooth proper
minimal surface with boundary J U S(J). The conformal structure of A; U S(A;) is
then {1 < |2] < R?} — C'n{|z| = R} (with the mapping Y (z) = X (z) for z € Agp — C
and Y (z) = S(X(R?z/|z|%)) for z € {R < |z| < R*}).

Since {|z| = R} — C and {|z| = 1/R} — C are homeomorphic to straight lines or
circles, they are connected. It turns out that C N {|z| = R} and C N {|z| = 1/R} are
also connected, hence simply connected as an interval.

Let D C {1 < |2| < R?} be a disk like neighbourhood of C' N {|z| = R} such
that z € D if and only if R?z/|z| € D and 8D is diffeomorphic to a circle, and the
Y (0D) is a Jordan curve on A; U S(A;) which bounds a properly embedded minimal
annulus A = Y(D — Cn{|z| = R}). Since A; N S(A;) is contained in the slab S(—1, 3),
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by the Cone Lemma (Theorem 21.1), A has finite total curvature. Then by Lemma
10.5, Propositions 10.7 and 10.6, this annular end has the conformal structure of a
punctured disk, and the Gauss map of A can be extended to the puncture. In particular,
C N {l|z| = R} is a single point p and the Gauss map g : D — C of Y can be extended
to p, and g(p) is either zero or co. Similarly, we can prove that C N {|z| = 1/R} = {q}
if it is not empty and g(q) is either zero or oco.

Since p corresponds to an embedded flat annular end, by Theorem 11.8 we know
that there is a d; > 0 such that when 1 — 6; < 2 < 1, P, N A is compact. By Lemma
23.2, the tangent plane of A at any point of AN P, is not parallel to the zy-plane. In
particular, dX?® # 0 on (X3)7!(z). Thus (X3)7!(2) is a 1-dimensional submanifold of
Apg consists of smooth loops. If it has more than one loop or any loop is homologically
trivial, then using the maximum principle we can show that A is contained in a plane.
Thus (X3)~!(2) is a homologically non-trivial smooth Jordan curve. Similarly, if A(—1)
is a straight line, then there is a d; > 0 such that when —1 < 2 < —1+46,, (X3)7(2) is a
homologically non-trivial smooth Jordan curve. Let A, be the closed annulus bounded
by (X3)71(2) and (X3)7!(—2), for 0 < 1 — z < min{6;, &, }. Clearly A, is compact and
Al = XY AN S(-2,2)) . Since AN P, is compact for —1 < z < 1, by Lemma 23.2,
the extended Gauss map ¢ of Y does not equal to zero or co in a neighbourhood of Ag
except at p or gq.

For any sequence z, — p, since p ¢ A, for 1 — 6y < z < 1, z, ¢ A, for almost all
Zy,. Thus X3(z,) must converge to 1. Similarly, for any sequence z, — g, X3(2,) must
converge to —1. Thus the third coordinate function X? can be continuously extended
to the whole Ag such that X?|,=;/r = —1 and X3||Z|:R =1. O

The harmonic third coordinate function X? satisfies X3|,j=1/r = —1 and X3||,=g = 1
and —1 < X®|my(ap) < 1. Hence we have

X° = log |z,
g

and ox? ; 1 .
wy = [(2)g(z)dz = QW dz = o (lo Rl gz> dz = logR;dz'
Thus . .
J=) = log R zg(z)’
and

Wy = logR2z ( )
g)dz

w2 = 1og R 2z (

11
w3 = logR z dz
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and X can be represented as

X(p) = IO;R%/;D (—21;(1/9—9) —(1/9+g), )dz—H/ (30.163)
Let -
z)= > anz", Z b 2" (30.164)

Then by (27.126), (30.163) gives a minimal annulus if and only if
S(bo) = S(ap), R(bo) = —R(ao). (30.165)

Remark 30.4 Let S be the 180°-rotation around the straight line A(1) in R3, and
S§=AUS(A). Then

/ KdA =+ / KdA, (30.166)
A 2Js
where K is the Gauss curvature, and dA is the area element of A.

As in the proof of Theorem 27.2, kK = 7" 'A™*R(z¢'/g) in the interior of Ap. We
must prove that x is a non-zero constant on each {|z| = r}, 1/R < r < R. This is
equivalent to prove that kg = 0. For that we calculate

/ !
ree = (A7)oR (ﬁ) + AT [m <Zi>}
g g P
_ _1 —1A=2/A2 EQ_I -1 i zg'
= A7 (A)9§J%<g>+/\ m[zzdz
2 ~nl r AN
= a2 w2 S AL (29
Oz g | dz \ g /)
_ / /
— A—l(\} Igl ]Q“Zg §R Zg A—lc\\Y Zi ﬁ
1+ |g] dz \ ¢
_ —1|9|2‘“ 1<\-i Eg_/ ]
- e (#)a(2) sl £ (2)
_ Lo lgP -1 (2 ] @ (29
= 2A |g|2+1\s<g> A™ \Szdz P

B 1lg9)°—1 2 d (zg
= A~ \5[ng|2+1( ) zdz p .

_ gP-1(zg\*  d [z
H(z) = 2092+1\ g P g

1 g 1 g 2 d (¢
= ——— (2] +2 (L) -z (2], 1
lg|2+1<zg> +2<Zg zdz Zg (30.167)

Let




Note that
v:=r1AKky = SH. ' (30.168)

Since rA > 0, to prové k¢ = 0 we only need prove that v = 0.

Since 5
1( ¢ d (¢
2 <Zg> “dz (Zg
482H — 4 0 1 Z_gl i =__4_8____:g_g__l____ z_g' i
020% 820z [1+1g]2 \ ¢ 0z (1+ 9% \ g
_ o0l ~ 24507 (i) rer () £(+9)
(1+19/?)3 g (I+1gP)2\"g)dz\"g

—8lg” [LlgP-1(zg\"__d (¢
2092+1\ ¢ dz\"g /|

(L+19%)?
By (7.28) and (7.30),

2 . 2 N2 4] 1[ 2

A= 217l (1+191%)", K:_[m] ’

is holomorphic, we have

AH =

hence we have

8lg')? 1
FrEE —§K|f|2(1 +19?)* = —2KA*.

Thus
AH =2KA*H. (30.169)

Taking the imaginary part, we have

Av = 2K A\. (30.170)

Remember that Asq = A™2A 4, = A72A. If ' = A(1) and A(—1) are straight lines or
circles, then k9 = 0 on 0Ar — C. Hence on Ap, v satisfies

AA’U —2Kv = 0,
(30.171)

V|gap-c =0,

We want to prove that v is continuous on Ag and v|sa, = 0, i.e., v is an eigenfunction
corresponding to the eigenvalue zero. When A(1) and A(—1) are circles this is certainly
true. The next lemma shows that it is always true.

Lemma 30.5 Let A be as in Theorem 30.1, p, q be as in Lemma 80.3, and v be as
defined in (80.168). Then v is continuous on Ag and v|0Ag = 0.
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Proof. Without loss of generality, we can assume that p = R. By Lemma 30.3, we
can assume that the Gauss map g has limit zero at p = R and g can be extended to a
holomorphic function §. Let ¢ = 2 — R on a disk D, centered at z = R, we have

3(2) = (z = R)"h(z) = C"h((),

where & is a holomorphic function on D, and h(R) # 0.
By definition, v = SH and

2 _ / 1 N 2 1 N 2 ’
o ML= L(20)'d (20 (1) ()" 1(20)' d (=)
2192+1 \ ¢ iz lg|>2+1 g 2\ g dz \ g
For convenience, we will write ¢ and h instead of § and h. Note that
, 2
CZ (Zg (Z)>
9(2)
is holomorphic on D, and since |g]> = |z — R|*|h(2)|> = [(|*|h(2)[?,

_1_ _____1__. __1_00 k k = k (k-1)
(1 TR = S0 o =@ S

k=1 k=1

is a C'*° complex function in a neighborhood of R. Thus

v (i) (5) -5 (- i) (56)

is a C*° complex valued function near z = R. If we can prove that

zg d (zg
?(z) = 2<g> zdz(g)
is holomorphic in a neighbourhood of R, then H is a C* complex valued function in a
neighbourhood of R. In particular, v = SH is C* in a neighbourhood of R, and thus
v(R) = 0 since on |z| = R and z # R we already know that v(z) = 0.
Since R corresponds to an embedded flat end, and that end intersects P; at a straight
line, we have n = 2 by Proposition 11.14. Hence :

Y& 2R NG e, &
o0 TR T el T ¢ T

where (R
a_p = 2R and Ay = 2+Rm
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Moreover

! 2 )
() = e

( ZZ)) C”R a_1+(C+R)§kaka_1,

and > C -
()

. 1 a__l - 20_1R a_10p — A1 1 & k e k—1
Since a_; = 2R,

a?, —2a_1R=0.

We would like to prove that a_jap — a_; = 0 and thus ® is holomorphic near z = R.
The ag can be calculated as follows. The Weierstrass representation for the extended
surface S is

w1 = 1021221; (“ - g) dz

W2 = lo;R2z ( +g) dz

11
longdZ’

as commented after Lemma 30.3. Let C' be a loop around z = R in a small disk. Then
since X : {z:1/R < |z| < R?} — {R} — R? is well defined and

W3 =

X(Z) =§R (wl,wg,wg),
Po

we must have

%Li(iz—)—g(z))dz:o, -3 C;—z<$+g(z))dz=o,

/idz—/ gdz—
c 29 cz

since g(z)/z is holomorphic at z = R. Hence we know that the residue of 1/zg(z) at
z = R is zero. Hence we have

o = in(55) = ()

— i [ )
B zl—m( 22h(z) zhz(z)>
1 W (R)

" R2h(R) RR*(R)

and

155



Hhos MR 1 1(R)
LACL —2+R
WE) - R and ag + h(R)

This shows that a_jap —a_; = 0. ,
Note that by orientability, if g(p) = 0 then g(¢q) = co. Using

=1.

We) _ ¢
1/g 9’
we can prove that @ is holomorphic near g exactly as above. O

Now by (30.170) and Lemma 30.5, v is a Jacobi field. Moreover, v satisfies

Aqv—2Kv =0,
: (30.172)

'U|6AR =0.

Recall that v = SH = rAky.

If v #£ 0, then the zero set of v divides Ax into connected subdomains, called nodal
domains. As mentioned in Section refsec, any proper subdomain of a nodal domain is
stable. Thus by Theorem 20.3, the total curvature of each nodal domain is less than or
equal to —27. Suppose that there are k nodal domains; the total curvature of A must
be less than or equal to —2km.

By our hypothesis that A is embedded and the proof of Lemma 30.3, A(t) is a Jordan
curve for —1 < ¢ < 1. By the four-vertex-theorem, see [36], which says that if kg # 0
then the zero set of ky divides each A(t) into at least four components, we know that
there are at least four nodal domains. Thus if v # 0, then K(A4) < —8r.

The next lemma shows that in fact, K(A) > —4n. This contradiction then shows
that v = 0, which is equivalent to x being constant along each A(t) for —1 < ¢ < 1.
Since A(t) is a Jordan curve, we know that A(¢) must be a circle.

Lemma 30.6 Sﬁppose that A C S(-1,1) is a proper minimal annulus, and 0A =
A(L)UA(-1). If A(1) = AN P, and A(—1) = AN P_; are circles or straight lines, then

/ KdA > —dr.
A

Proof. If A(1) and A(—1) are both circles, then by Theorem 27.4 the Gauss map g is
one-one onto a sphere domain. Hence [, KdA > —4r.

Now assume that A(1) is a straight line and C' N {|z| = R} = {p}, then A(—1) is a
circle. We will use the extended surface S in the proof of Lemma 30.3 to calculate the
total curvature of A. Notice that & has an embedded flat annular end corresponding
to the point p. Since the end is embedded, the order of A at that end is 2. Let
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D, C {1/R < |z| < R®} be a disk centred at p and radius p. Note that x({1/R < || <
R3} — {p}) = —1. By the Gauss-Bonnet theorem

K(S)=-2m— /|z|:1/R Kgds — /|Z|=R3 Kqds — /3D,, Kgds.

Using the same argument as in Theorem 23.1 we have

lim Kgds = 2.
p—=0J8D,

Notice that the other two integrals are larger than —27 because A(—1) and R(A(-1))
are circles and :

ds :/ ds, / ds = ds.
/|z|=1/ng A o=re ran) 0

We have
/ KdA > —8r.
S

By (30.166), we conclude that the total curvature of A is larger than —4x.

Assume {p} = C N {|z| = R} and {¢} = Cn{|z| = 1/R}, i.e, A(1) and A(—1) are
both straight lines. Then let D}, and Di be two disks centered at p and ¢ with radii
pand let M, = Ap — (D}, U Df)). Since p and q correspond to embedded ends, A has
order 2 at p and g. Thus

/MpKdA+/aMpmgds+§i:(ai+ﬁi):0,

where «; and (; are the exterior angles at (9Df, N 0Ag, and obviously
/1)1_r>r(1)(ai + 5;) =m.

Again by the same argument as in Theorem 13.4, noting that A has poles at p and ¢,
we have

lim Kgds = .

p=0/9DiNAR

Since A(1) and A(—1) are straight lines,

lim /@gds:/ Kgds = 0.
p=0JoM,—udD;, dAR
Thus we have
K(A)=lim | KdA=—4nr.

p—0J M,
]

The proof of theorem 30.1 is complete.
Note that the proof of K(A) > —4x only used the fact that A is embedded in a
neighbourhood of the straight line boundary. Thus we see immediately that
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Corollary 30.7 Suppose that A C S(—1,1) is a proper minimal annulus. If A(1) =
AN P is a straight line and A is embedded in a neighborhood of A(1), and A(—1) =
AN P_; is a circle, then each A(t) = AN P, is a circle for —1 <t < 1. In particular,
A is embedded.

Proof. We only need point out that we can still use the four-vertex theorem, even
though some level sets A(t) may not be Jordan curves. It is shown in [36], that all
curves which have exactly two vertices are curves which have exactly two simple loops,
on each loop the curvature is positive or negative and hence its total curvature must be
0. Note that A(—1) has total curvature 2. Since A(t) is a closed curve for —1 <t < 1,
by continuity every A(t) has total curvature 2w. Hence the four-vertex theorem is
applicable to A(t) for —1 <t < 1. |

Corollary 30.8 Suppose that A C S(—1,1) is a proper minimal annulus. If A(1) =
ANP; and A(—1) = AN P_; are straight lines and A is embedded in neighbourhoods of
A(1) and A(—1), then each A(t) = ANP, is a circle for —1 <t < 1. In particular, A
is embedded.

Proof. We have X?® = log|z|/log R. Let ¢ > 0 such that on {R — ¢ < |2|] < R} X is
an embedding. Then A(t) is a Jordan curve when log(R —¢€)/log R < t < 1. Thus we
can still use the four-vertex theorem. a

Remark 30.9 Corollaries 30.7 and 30.8 are slightly better than Corollary 1 in [17].
There do exist properly immersed minimal annuli in S(—1,1) whose level sets are not
circles, see [78].

Since all minimal surfaces foliated by circles must be a part of a Riemann’s example,
we have proved that:

Corollary 30.10 Let Ly C Py, L_y C P_y be two parallel straight lines. IfT' = LiUL_,
is the boundary of a properly embedded minimal annulus A in S(—1,1), then A is one
of Riemann’s examples.

Finally, we have a non-existence theorem:

Corollary 30.11 Let L, C P, L_1‘ C P_1 be two non-parallel straight lines. Then
I'=L; UL_; cannot bound a properly embedded minimal annulus in S(—1,1).

Corollary 30.10 is the main theorem of [25], in which it is proved via elliptic function
theory. Corollary 30.11 is a result of Toubiana [78]. The proof of Theorem 30.1 is
adapted from [17].
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