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EXISTENCE OF A POTENTIAL BY 

KURZWEIL-HENSTOCK INTEGRATION. 

R. VYBORNY 

ABSTRACT. Applications of ideas from Kurzweil-Henstock integration to path inde­
pendence of line integrals is discussed. 

Introduction. This paper is an extract from [V3], consequently detailed state­
ments and proofs are mostly omitted. 

One of the main features of the Perron integral is that it integrates every deriv­
ative without any restriction. It seems that this property was not fully exploited 
because of the nonelementary character of Perron's definition. In 1957 Kurzweil 
[K], in connection with research in differential equations, gave an elementary defini­
tion equivalent to the Perron one, moreover,the proof of the fundamental theorem 
became then extremely simple. For Ku.rzweil's own presentation of the theory see 
[K1]. Henstock later [He] independently rediscovered Kurzweil's approach and ad­
vanced it further [He 1-4]. In this talk we list some applications of K-H integration 
in analysis and prove the existence of a potential under assumptions substantially 
weaker than the classical ones 

Notation, basic facts. A partition of a compact interval [a, b] is a set of couples 
(6, h) such that the points €1e E [a, b], the intervals I~e are non-overlapping and 

" (1) UI~e =[a, b]. 

We shall call the point 6 the tag of I~e. A partition with the additional property 
that €~e E I~c is a P-partition. We shall be dealing only with P-partitions and 
shall omit the qualifying letter P. Often it will be convenient to have the intervals, 
I~e = [u~e, v~e], ordered hence for a partition IT= {e~c, [u~e, v~c]} we have 

If 8: [a, b]f-> (0, oo) then a partition IT for which 
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for all i with 1 :S: i :s; n is called a c5-fine partition of (a, b]. The set of all c5-fine 
partition will be denoted by P(c5). Hence, instead of saying that ll is 6-fine, we 
write ll E P(c5). For any positive function c5 and any compact interval (a, b] a c5-fine 
partition of (a, b] always exists. The existence and the use of c5-fine partitions has 
been traced by Mawhin [Ma] to Cousin in the last century. We shall refer to the 
statement guaranteeing the existence of a c5-fine partition for any positive function 
c5 as to Cousin's lemma. The contrast between the early discovery of Cousin's 
lemma and rather late arrival of Kurzweil-Henstock integral is a bit surprising. As 
Hadamard once said: "In mathematics simple ideas come late." 

Real line applications. It has been shown, for instance in (V1] and (B], that 
c5-fine partitions have applications in analysis of Ire.. 

Cousin's lemma has been shown to be equivalent to the least upper bound axiom 
(V1] and has been used in the proofs of the following theorems: 

(3) 

(1) the Bolzano-Cauchy convergence principle (V3], 
(2) the Bolzano-Weierstrass theorem, 1 

(3) intermediate value theorem [V1], 
(4) uniform continuity,2 

(5) uniform approximation of continuous functions by continuous piecewise 
linear functions, 

(6) Weierstrass' theorems on boudedness and extreme values of continuous 
functions (V1], . 

(7) Mean Value Theorems not only on Ire. but also for vector valued functions 
(V3]. 

(8) Besides all this there is a host of theorems asserting something about the 
increament of a function from some information concerning the derivative. 
The simplest example is: 

f' > 0 => f increasing, 
a more sophisticated example is: 
f absolutely continuous, g increasing and lf'l :S: g' a.e. implying 

lf(b)- f(a)l :S: g(b)- g(a). 

See (Eo], (V1], (V3]. 

The Kurzweil-Henstock definition. A number I is the integral of f 
from a to b if for everey positive e: there is a positive function c5 sucb that 
for every partition ll E P(c5) (given by (2)) 

The Fundamental theorem. In Kurzweil-Henstock theory the formula 

l F' = F(b)- F(a) 

1 the proof is similar to the proof of 1) in [V3] 
2 similar to the proof by Borel's covering theorem 
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holds for a continuous F if the derivative F' exists except possibly a count­
ablest M. There are other conditions under which the equation above holds 
but (3) suffices for our purposes. 

The Fundamental Theorem can be used to improve classical versions of 
the following theorems 

( 1) Differentiation of series [V3], 
(2) L'Hospital rule [V3], 
(3) The Taylor Theorem and Taylor-like theorems {T], [Tl], [V3]. 

Existence of a potential. The letters G and S will stand for an open 
set and an open star-shaped set in lR", n 2: 2, respectively. We denote 
by d(M), A(M) and p(M) the diameter, the two dimensional area and 
the perimeter of M, in that order. A generic point in lR" will be de­
noted by (:z:\:z:2 , ••• ,:z:"), hence for a mapping F: G 1-+ lR" we have 
F = ( F\ F 2, ••• F") with F' : G 1-+ lR 1• Partial derivatives will be de­
noted by subscripts, consequently 8/8:z:,Fi = F~. The word path will be 
used for a continuous map of bounded variation from an interval in lR into 
JR". We shall allow a slight abuse of notation and use the same symbol 
for a closed path and its geometrical image (correspondingly oriented). By 
a line integral Jrp F(:z:)d:z: or Jrp L:~ F'(:z:)d:z:' we understand the Kurzweil­
Henstock limit of the Riemann sums 

" 
LLFi(cp(6))(cp'(vk)- cp'(uk)). 

k i=l 

It is a classical result that if F has continuous partial derivatives in S and 

for all :z: E S then the line integral is independent of the path and there 
exists a function U with U,;(:z:) = F'(:z:) for all :z: E S. Moreover U is ob­
tained by choosing an arbitrary point :z:o in S and integrating F from :z:0 

to a variable point :z: along any path in S. Our aim in this section is to 
reduce the assumption of continuous derivatives to mere differentiabilty of 
F. Results of this nature can be also obtained by using the work of Jarnfk, 
Kurzweil, Mawhin and Pfeffer on Stokes' theorem. We shall need the follow­
ing generalization of Cousin's lemma: If Tis a triangle and Tki k = 1 ... r 
are nonoverlapping triangles with U~Tl: = T, points Yk belong to Tk and 
6: T 1-+ (O,oo) then we say that the set {(yk, Tk);k = 1,2, ... ,r} is a 
6-fine partition ofT if d(Tk) < 6(yk)· For a triangle T E JR" there always 
exists a 6-tine partition consisting of triangles similar to T. An indirect 
proof can be given which follows the usual pattern of the one-dimensional 
bisection argument except that now T would be divided into four similar 
triangles formed by mid-points of sides ofT. We shall say that assumption 
'D is satisfied in G if F is continuous in G and there exists a countable set 
M such that F is differentiable and satisfies (4) in G \ M. 
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Lemma. IfD is satisfied in G and the triangle T C G then 

l F(x)dx == 0. 

Proof. The elements of M can be enumerated and for Wm E M and for 
arbitrary c: > 0 there exists a 8 > 0 such that 

f: 
IF(x)- F(wm)l < 2m 

whenever lx- wml < 6. For y E S \ M there is a li > 0 such that for 
i== 1,2, ... ,n 

IF'(x)- Fi(y)- t F,~(y)(xi- yi)l < ~IY- xl 
j=l 

whenever lx- Yl < li. Let T C G and {yk, Tk} ali-fine partition ofT with 
triangles similar to T. If Yk E M then Yk = Wm for some m and we obtain 
from (6) 

If Yk r/:. M then because of ( 4) . 

This can be seen most. easily by realizing that the integrand in (9) has a 

'primitive' fl, where U(x) == E~=l Fi(y)x' +! E~j=l F,~(y)(:rJ- yi)(xi­
yi). For Yk </:. M we get from (7) and(9) that 

li. F(x)dxi < cd(T0 )p(T~:). 
The triangles Tk are similar to T, therefore there exists a constant C de­
pending only on T (and independent ofk) such that d(Tk)p(T~:) < CA(Tk) 
for all k. Consequently (10) becomes 

IL. F(x)dxl < CE:A.(Tk)· 

Obviously 

l F(x)dx == ~ £k F(x)dx, 

which finally by (8) and (11) gives 

£ F(x)dx < e:(CA(T) + p(T)). D 
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Theorem. Path independence. If D is satislied in S then there is a 
function U : S r---+ lR snw.7 that 

i=1 

b] ~-> S is a path lying in S then 

1 F(x)dx == U(\o(b))-
<p 

P·roof. It suffices to prove (12): "'quation (13) then follovrs by m1 argument 
similar to that one used in the proof of the Fundamental Theorem in K-H 
theo-ry" ~I'o 8ee thh1 choose e > f.L For every e E [ al b] there is a positive fj 

such that if !z - e 1 < 6 then 

n 

jU(10(z))- IJ(so(~))- _'L Fi(IP(~))(fP;(z)- ;p;(e))i < e/so(z)- ;p(e))l. 
1 

Consequently, if~ - li < u :<:;: ~ :<:;: v < ~ + li then 

(14) /U(\O(v))- U(cp(u))- tFi(I"(O)(IOi(v)- tpi(u))/ < cV~r<p. 
1 

For II a 5-fi.ne partition of [a, b] we obtain with the help of (14) 

n 

jU('P(b))- - ")'). pi(rp((k))(rpi 
,£__; ..__.,. 

. I 
- \O'(uk))/ < cVarrp. 

" -- (t. 

II 1 

This establishes the implications VVe denote by l( x) the path 
whose geometrical ima.ge joins the centre of the star-shaped region S with 
x and define 

r 
U(x) = I P(z)dz. 

Ji(z) 

It follows from the Lemma. that 

U(x+h)-

where 'if;(t) = :!l + th, with IJ :<:;: t 
{12). 

j F(z)dz, 
hf; 

L Routine continuity argument now 

GENERALIZATIONS. If 'Pl and 'P2 are two paths homotopic with fixed 
ends in G and assumption TJ i3 sa.tisfied in G then 



256 

This can be proved in two different ways. Firstly the integral J'P F(z)dz is 
independent of the path locally, i.e. in some neighborhood of every point 
in G. Using this one can employ the usual homotopy argument (see e.g. 
[C]) to obtain the result in the large. Alternatively, one can use Cousin's 
lemma (with squares rather than triangles) for the homotopy square and 
proceed similarly as in the Lemma. This would necessitates the use of a 
differentiable (compare [V2]) homotopy, the general result must then be 
obtained by an approximation argument. 

REMARK. The assumption 'D can be weakened without substantially 
changing the proofs. One needs to assume the differentiability only on 
two-dimensional planes only, the modified assumption reads as follows: We 
say that weak-'D is satisfied in G ifF is continuous in G and for every two­
dimensional plane P there exists a countable set Mp such that for every 
:z: E G n (P \ Mp) there exists a symmetric n by n matrix [a;;] with the 
following property: Given e: > 0 and :z: E P n G there is a positive 6 such 
that for every y and z in P with iz - Yi < 6 and l:ll - zi < 6 we have 

< e:iy- zl max(i:ll- yl, lz- zl). 

The lemma and the theorem on path independence remain valid if the 
assumption 'D is replaced by weak-'D. This allows the set where F is not 
differentiable or equation ( 4) is not satisfied to be uncountable. It is an 
interesting problem to determine how big (say in measure theoretic terms) 
this set can be and still have the theorem on path independence valid. 
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