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NONLINEAR OBLIQUE BOUNDARY VALUE 
PROBLEMS FOR TWO DIMENSIONAL 

HESSIAN AND CURVATURE EQUATIONS 

John Urbas 

Our aim here is to describe some recent results concerning nonlinear oblique 
boundary value problems for two closely related classes of nonlinear elliptic 
equations-Hessian and curvature equations. 

Hessian equations are equations of the form 

(1) 

where the function is of a special type. It is given by 

(2) 

where A ( D2u) denotes the vector of eigenvalues of the Hessian D2u of a C 2 real 
valued function u and f is a smooth real valued symmetric function defined 
on a region I; C lR n. Equations of this type arise in many situations. In dif­
ferential geometry Hessian equations arise in connection with the Minkowski, 
Christoffel and similar problems (see [16]). Typical examples are Poisson's 
equation 
(3) b.u = g' 

and the Monge-Ampere equation 

( 4) 

These correspond to the choices 

n 

(5) j().) =I: A; 
i=l 

and 
n 

(6) j(A) = n A; 
i=l 

respectively. Many other symmetric functions f give rise to interesting partial 
differential equations, for example, 

(7) j().) = O"m(A) = 
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for m an integer between 1 and n . . The cases (5) and (6) of course correspond 
to the choices m = 1 and m = n respectively. Suitable powers and ratios of 
such functions are also of interest. 

Curvature equations are obtained in a similar way to Hessian equations­
in equation (2) we simply replace the eigenvalues of D 2u by the principal 
curvatures of the graph of u. Thus a typical curvature equation can be written 
as 
(8) F[u] = g(x, u, Du) 

where F is given by 
(9) F[u] = j(K:), 

f is a symmetric function as above and K: = ~~:( u) is the vector of principal cur­
vatures of the graph of u. These are the eigenvalues of the second fundamental 
form 

(10) 

relative to the metric 
(11) 

Equivalently, they are the eigenvalues of the matrix 

(12) 

where gii denotes the inverse of 9ij, and so is given by 

(13) ij _ o·. _ D;uDju 
g - 'J 1 + jDuj2 • 

Notice that a;j is generally not symmetric, but if desired, it can be replaced 
by a symmetric matrix having the same eigenvalues. Corresponding to the 
functions given by (5) and (6) we get the mean curvature equation 

(14) 

and the Gauss curvature equation 

(15) 
(1 + jDuj 2)~ = 9 · 

The intermediate functions given by (7) with 1 < m < n also give rise to 
interesting partial differential equations, of which the scalar curvature equation 
(rn = 2) is the most important. 
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To obtain existence results for equations of the above types it is reasonable 
to impose restrictions which force (1) and (8) to be elliptic. In the present 

this means that the matrix F;j = ;~ is positive definite. Here T'ij 

denotes a replacement 'lariable for the second derivatives of u. It is not difficult 
to check that the positivity of [F;j] is equivalent to a condition on J, namely 

of 
/; = ~~ > 0 on .E for each z . 

d"'i 

Thus we should seek solutions u which are admissible in the sense that A.(D2u), 
respectively belongs to a region Eon which (16) holds. Suitable regions 
.E are usually symmetric cones containing the positive cone r + = {.-\ E 1Rn : 
A; > 0 V i}. For f given by (7) we may take .E = r m where for each integer 
m between 1 and n rm is the component of the set p, E IR" : CTm(.A) > 0} 
containing f +· \Ve then find that each fm is an open symmetric convex cone 
with vertex at the 

n 

r + = r, c fn- J. c ' ' ' c:: E IR.n: L),; > 
i=l 

If we seek solutions of this type, we must clearly take g positive. 
The rcost basic value for of the above 

types is the Dirichlet where we seek a :3olution which takes prescribed 
''alues on the boundary 80 of a fl. c JIF'. This problem. has been 
resolved in recent years in varying degrees of generality for both Hessian and 
curvature The Dirichlet problem for a very general class of Hessian 

was solved Nirenberg and [3]. For the 
cases some results were obtained by Ivochkina In addition, 
recent work of Krylov [10, 11, 12] embraces Hessian equations as special cases 
of a much larger family of equations. The theory for curvature equations is less 
developed. At the present time the Dirichlet problem for curvature equations 

to the function f given has been solved by Ivochkina 
[8, 9] and Trudinger 19] under geometrically natural conditions on the data. 
Also, Caffarelli, Nirenberg and Spruck ["1] have treated the Dirichlet problem 
for more general curvature equations, but only for zero boundary data on 

convex domains. In addition, the special cases (14) and (15) have 
been studied in their own using techniques which are specific to each 
of these cases; the contributions are too numerous to list here (see [6] for 
references). 

Next v1e want to describe some recent work [20, 21] on other boundary 
value problems for Hessian and curvature equations. This is less developed 
than the corresponding theory for the Dirichlet problem, in that so far we 
have been able to treat only two dimensional problems. However, we hope 
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to deal with higher dimensional problems in the future. So far these have 
been successfully handled only in certain special cases, for example [14] for the 
Neumann problem for Monge-Ampere equations, and [17] for the Neumann 
problem for general Hessian equations, but only on balls. 

We now state our results in detail. From now on we will be interested only 
in the two dimensional case, so below r + denotes the positive cone in lR?. 
First we consider boundary value problems for Hessian equations, of the form 

(17) 

(18) 

F(D 2u) = g(x, u) in 51, 

b(x,u,Du) = 0 on 8!2. 

We assume that f E Coo(r +) n C0(f +) is a positive function such that 

(19) 

(20) 

(21) 

(22) 

and 
(23) 

af 
r. - - > 0 on r+ for i = 1' 2 ' 
Jt - a>..; 

f is concave on r + ' 

f = 0 on or+' 
~J;(>..),\i2::0 on r+, 

T = 'L,J;(>..) 2:: O"o on {,\ E f+: f(,\) S tt} 

for any fJ., > 0 and some positive constant O'o = O'o(f, fL ). 
These hypotheses (with r + replaced by a larger convex symmetric cone r 

with vertex at the origin) turn out to be natural and essentially optimal for 
Hessian and curvature equations, in all dimensions. Occasionally we need to 
add some extra conditions (such as condition (39) below). It can be shown 
that these conditions are satisfied by f = O'm l/m on r m, where O'm is given by 
(7). In the two dimensional case f(,\) = ~and f(,\) = ;~:;;2 are examples 
on r+. 

The assumption that f is defined on r + rather than on a larger cone may 
seem restrictive a.t first sight, but it is appropriate in two dimensions. To see 
this we observe that the matrix [Fij(D2 u)] is diagonal if D 2u is diagonal, and 
its eigenvalues are ft and Evidently (!I, is normal to the level lines 
of J, which are asymptotic to or+, If r + is replaced by a larger cone r' the 
level lines of f will be asymptotic to or, so fd fz will be bounded between 
two positive constants depending on the aperture of the cone. This implies 
that the equation is uniformly elliptic. Nonlinear oblique boundary value 
problems for uniformly elliptic equations have been studied by Lieberman and 
Trudinger [13) in all dimensions, so we do not consider this case. In our 
situation, however, the equation is necessarily quite strongly nonuniformly 
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elliptic, and results for this case turn out to be qualitatively different from the 
uniformly elliptic case, as well as requiring different techniques. 

We now proceed to the rem~ining hypotheses. We· assume that n is a 
smooth, uniformly convex domain in lR? and g E C00 (0 X IR) is a positive 
function satisfying 
(24) 9z20 on nxiR. 

For the boundary condition (18) obliqueness means that 

(25) bp(x,z,p) ·1(x) > 0 

for all (X, z, p) E an X IR X IR2, where I denotes the inner unit normal vector 
field to an. It follows that any smooth oblique boundary condition (18) can 
be written in the form 

(26) D7 u+ r/>(x,u,8u) = 0 on an, 
where r/> is a smooth functiqn defined on an X IR X IR2 and 8u denotes the 
tangential gradient of u relative to an given by 

8;u = (8;j -lm)Diu. 

It turns out to be convenient to consider several types of boundary condi­
tions separately. For the semilinear boundary condition 

(27) Df3u+rf>(x,u)=0 on an, 
we assume that fJ is a smooth unit vector field on an satisfying the strict 
obliqueness condition 
(28) {:J • 1 > 0 on on, 
together with the structure condition 

(29) [ -2 (1+ (~ ~ )') C;fi;(x) -¢,(x, z) 5;;] r;r; > 0 

for all (x,z) E an X IR, where Tis a unit tangent vector to an at x. 
\Ve also assume that r/> E coo (an X IR) satisfies 

(30) 

(31) 

rPz < 0 on an X IR, 

rf>(x,z) < 0 for all X Eon and all z;:::: N 

for some constant N, and 

(32) rf>(x, z)-+ oo as z-+ -oo 

uniformly for X E on. Notice that (29) is automatically satisfied if fJ = I, 
or more generally if fJ is a vector field with constant normal and tangential 
components; this follows easily from (30) and the uniform convexity of n. 

vVe then have the following result. 
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Theorem 1 Under the above hypotheses the boundary value problem (17), 
(27). has a unique convex solution u E C00 (0). 

For the fully nonlinear boundary condition (26) we assume that</> E Coo( anx 
lR x IR2 ) satisfies the conditions 

(33) 

(34) 

cPz < 0 on an X lR X IR2 ' 

¢(x,z,O) < 0 for all X E an and all z 2 N 

for some constant N, and 

(35) 

uniformly for 
p- (p. 'Y(x)) 

(36) 

for all (x, E 

lying in any compact subset of an X IR?' where PT = 
We also assume that ¢ satisfies the concavity condition 

X JR X JR2 where r is a unit tangent vector to an at x. 

Theorem 2 Under the above hypotheses the boundary value problem (1 
has a convex solution u E C00 (0). 

It is known that for uniformly elliptic equations (29) is not necessary for 
the existence of smooth solutions-all we require is that (:J be a sufficiently 
smooth vector field satisfying (28). Likewise, condition (36) does not appear 
in the uniformly elliptic theory. Notice that (36) excludes the well known 
capillary bounda.ry condition 

(37) 

unless e is negative, a condition which is impossible to satisfy in our setting 
since we are seeking convex solutions (recall that 'Y is the inner normal). The 
capillary boundary condition is a typical nonlinear boundary condition studied 
in connection with uniformly elliptic equations, as weli as with som$nonuni­
formly elliptic ones, such as the mean curvature equation (14). In view of 
these remarks, it may appear that conditions (29) and (36) are an artifice of 
our method of proof, and are not really necessary. This is not so, for it is 
possible to construct examples for which the second derivatives of the solution 
become unbounded precisely where the conditions (29) and (36) fail (see [20], 
Section 6). We do not have such examples for the boundary condition (37); the 
classica.l solvability of (17) subject to under the natural (in our context) 
restriction 0 > 0 remains an open problem. 
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Next we mention some analogous results for curvature equations of the 
form 
(38) F[u] = g(x, u). 

In addition to the above hypotheses we now also need an extra hypothesis on 
f, namely 

(39) T-too as A2 -too on {AEf+:f(.X):::;p} 

for any JL > 0. This condition is undesirable in view of the fact that it is 
not satisfied by one of the more interesting examples, the harmonic mean 
curvature, which corresponds to the choice f(.X) = ~~12 • The reason we need 
this condition is that the left hand side of (38) has a gradient dependence. 
In fact, this condition (and sometimes an even stronger condition) is also 
necessary in the Hessian case if g depends on Du. Corresponding to Theorems 
1 and 2 for Hessian equati<;ms we have the following analogous results for 
curvature equations. 

Theorem. 3 If in addition to the above hypotheses there is a convex subso­
lution 1£ E C2(!1) n C1 (D) of equation (38), then each of the boundary value 
problems (38), (26) and (38), (27) has a unique convex solution u E C00 (D). 

The hypothesis concerning the existence of a convex subsolution is required 
to ensure that the domain does in fact support a convex solution of the equa­
tion. For example, the only convex solution of the prescribed Gauss curvature 
equation (15) with g = 1 on the unit ball B is u(x) = -j1 -JxJ2 , up to an 
additive constant; furthermore, there are no convex solutions with g ~ 1 on 
any domain which properly contains B. The existence of a subsolution does 
not need to be assumed in Theorems 1 and 2 because it is trivial to construct 
convex subsolutions of (17). 

It turns out that the proof of Theorem 3 for the semilinear boundary condi­
tion can be modified slightly to obtain some existence results without assuming 
the structure condition (29). Instead of (29) we need to impose an additional 
condition on f. 

Theorem 4 Suppose that the hypotheses of Theorem 3 a1·e satisfied, with the 
exception of (29), and in addition we have 

for any positive constants p1 :::; p 2 • Then the boundary value problem (38), 
(27) has a unique convex solution u E C00 (D). 
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There is also an analogue of Theorem 4 for Hessian equations. Its proof, 
however, depends on Theorem 4-we do not have a direct proof. 

V./e now mention another type of boundary condition which is natural for 
convex solutions. For smooth uniformly convex functions the gradient map 
Du : D -+ IR? is one to one. Thus a natural problem is to prescribe the 
gradient image of u, i.e., 
( 41) Du(D) = n· 
for a given uniformly convex domainD* C IR2 : This can be reformulated in a 
more c<:mventional way as 

( 42) h(Du) = 0 on aft 
where h is a uniformly concave defining function for D*, i.e., D* = {p E IR2 : 

h(p) > 0} and D h ;1:- 0 on aD". It is not difficult to verify that ( 42) IS a 
degenerate boundary condition on convex functions, i.e., 

( 43) 

However, we can show that for solutions of (17) and is a strictly 
oblique condition in two dimensions, in the sense that there exists a 
positive constant co, depending only on D, D*, f, g, hand l!ullc'(0), such that 

( 44) l rD ) , lip\ u · 7 ::::_ c0 on an. 

Once we know this the boundary condition ( 42) is very similar to the condition 
(26) with concavity assumption (36). 

To obtain existence results for we need slightly different hypotheses on 
f and g. In addition to the hypotheses required above we also need to assume 

! .. 1 :::; G(f(>.)) for A E r + 

for some real valued, continuous, increasing function G on [0, oo) with G(O) = 
0. Vve also assume that g is a smooth function on D x IR satisfying 

( 46) , z) ·-> oo as z .-; oo 

and 
g(x, z) -+ 0 as z -; -oo, 

uniformly for all (x, z) E ft x Ill. \Ve then have the following results. 

Theorem 5 Under the above hypotheses each of the boundary value problems 

(17), (42) and has a convex solution u belonging to coo(fi). If in 
addition 

( 48) 9z > 0 on D X JR, 

the solution is unique. 
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The boundary condition (41) for Monge-Ampere equations has received 
considerable attention. Pogorelov [15] proved the existence of generalized {i.e., 
not necessarily C2 ) solutions. In two dimensions the interior regularity of 
the solution is then a consequence of well known results for two dimensional 
Monge-Ampere equations. The global regularity of solutions in two dimen­
sions was established by Delanoe [5]. For higher dimensional Monge-Ampere 
equations subject to ( 41 ), the inteJ;ior and global C1 ·"' regularity was recently 
proved by Caffarelli [1, 2]. Higher global regularity in dimensions greater than 
two remains an open problem. 

We conclude this survey with a brief sketch of the ideas involved in the proof 
of Theorems 1 to 5. For simplicity we consider only the Hessian equation (17) 
with the semilinear boundary condition (27). 

It is well known (see [6], Chapter 17) that to prove Theorem 1 it suffices 
to establish an a priori estimate 

( 49) 

for some o: > 0 for any convex solution u of (17), (27). Of the various steps 
involved in proving (49) the only one which is neither easy nor a consequence 
of the uniformly elliptic theory is the second derivative bound, so we discuss 
only this step. For this we of course assume that u and Du have already been 
bounded. 

First we need to obtain some second derivative bounds on 8D. If we dif­
ferentiate the boundary condition (27) once in a tangential direction T at any 
:z:o E 80., we get 
(50) !DurtJu(xo)l S C. 

Next >ve estimate D 1313 u on 80.. To do this we need to derive a suitable dif­
ferential inequality for B = D 13u + cf;(x, u). After some computation we :find 
that 
(51) IF;jDijBI s CT m n, 
and clearly B = 0 on DD. If 1j; is a uniformly convex defining function for n, 
then for A sufficiently large 

(52) 

and consequently, by the maximum principle 

(53) 

This leads to 
(54) 

D1 (Al,b ±B) s 0 on l7D. 

0 s D.l3f3'u s C on Dn ; 

the lower bound is implied by the convexity of u. 
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Next we consider the function·. 

(55) 

where 17ranges over all directions in IR2 . After some computat:lcm we find that 
for A fixed large enough · 

(56) 

for any 1), sow has its maximum on an, say at Xo E an and a direction t. By 
replacing t by its negative if necessary we may suppose that t points into D 
a.t x 0 . Then implies, by the maximum principle, 

(57) 

which can be written as 

(58) 

To proceed further we need to relate these inequalities to the boundary 
condition. If we tangentially differentiate (27) twice we find, after using the 
estimates (50) and (54), that 

(59) 

where T is tangential to an at Xo and Co is a positive constant. In fact, Co is 
precisely the left hand side of (29) evaluated at x = x 0 , z = u(x0 ). Clearly, an 
upper bound for Dnu(x0 ) follows if we can show 

This would follow from the first inequality of (58) if we knew that t = To 

Unfortunately, we cannot assert this, nor have we been successful in modifying 
the choice of w to ensure that at a boundary maximum point ~ is necessarily 
tangential (although this can be done in the special case that n is a 
see[l7]). Our approach, therefore, is to show that the two inequalities (58) 
imply the bound (60), provided Dau(x0 ) is large enough. Essentially, the idea 
is to express Dnf3U as a linear of and Du.(u with positive 
bounded coefficients, modulo some well behaved correction terms. To do this 
we need to use the obliqueness of f3 and the once differentiated equation 

(61) k = 1 '2, 

which gives us some crucial relations between certain third derivatives. Once 
we have bounded DTru(x0), all the second derivatives are bounded at x 0, by 
the obliqueness of /3, and hence everywhere in n. 
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This approach does not appear to work in higher dimensions as there are 
too many third derivatives. 

In the case of either of the fully nonlinear boundary conditions (26) and 
( 42) the strategy is similar. The estimation of D.,.f3U on an is the same as 
before, (where now f3 denotes the vector.field bpf[bp[ with b given by either 
(26) or ( 42)}, while the estimation of Df3[3U on an is a little more difficult. 
In place of {59) we obtain, by virtue of the concavity condition (36) or the 
uniform concavity of h, an even stronger estimate, namely 

(62) 

where Co is ~ positive constant. 
For curvature equations the ideas are similar in principle, but technically 

more difficult. One of the major differences arises in the reduction to a bound­
ary estimate. It no longer suffices, as above, to consider a simple function such 
as (55). Instead we consider 

(63) 

where a is a positive constant to be determined, K(x,7J) denotes the normal 
curvature of the graph of u at (x,u(x)) in a tangential (to the graph of u) 
direction 7J, and v is the unique convex solution of 

(64) F(D2v) = 8o m n, 
Df3(v+p'lj;)+<f>(x,v+p'I/J) = 0 on an, 

where 80 is a small positive constant and 'lj; is a uniformly convex defining 
function for n. It is in solving (64) that condition (29) is used-it is not 
needed anywhere else in the proof. . 

To conclude we mention that once we have the basic existence theorems 
stated above, we may obtain existence results under a variety of other hypothe­
ses, but we still need to retain the essential structure conditions (29) and (36) 
on the boundary condition (except in Theorem 4 and its analogue for Hessian 
equations). We can obtain some results without assuming the monotonicity 
conditions (24), (30) or (36), and we can obtain C1•1 solutions in certain de­
generate situations, for example if g is nonnegative rather than positive, or if 
we do not have strict ineqality in (19). 
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