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0. Introduction

In this survey article we start with the unitary dilation of a single
contraction due to Sz.-Nagy and Foias [46]. Ando gave a generaliza-
tion to a pair of commuting contractions [2]. He proved that such a
pair has a simultaneous commuting dilation. Then came the startling
revealation from Varopoulos [47], Parrott [37] and Crabb-Davie [19]
that this phenomenon can not be generalized any further. They pro-
duced examples of triples of commuting contractions which fail to have
any commuting isometric dilation. The next stage of developments
saw the successful attempt of dilating a special class of tuples, viz.,
the contractive ones. Drury [28], in connection to his generalization of
von Neumann’s inequality, and then Arveson [6] proved the standard
commuting dilation for commuting contractive tuples. Several authors
pursued the idea of dilating any contractive tuple (commuting or not)
to isometries with orthogonal ranges. Some ideas along this direction
can already be seen in an early paper of Davis [22]. In more concrete
form this dilation appeared in the papers of Bunce [18] and Frazho [29].
A real extensive study of this notion has been carried out by Popescu
in a series of papers, see [41] - [45] and also [3], [4] with Arias. He
has neat generalizations of many results from one variable situation.
This dilation is called the standard non-commuting dilation. Davidson,
Kribs and Shpigel [21] derive more information about this dilation for
finite rank tuples. Then of course arose the natural question that if
one starts with a commuting contractive tuple, then what is the re-
lation between the two dilations that it posseses. A recent article by
Bhat, Bhattacharyya and Dey [16] show that the standard commuting
dilation is the maximal commuting dilation sitting inside the standard
non-commuting dilation.

Section 1 is about unitary dilation of a contraction and von Neu-
mann’s inequality. Simultaneous commuting unitary dilation of a pair
of commuting contractions and the von Neumann inequality for such
pairs is taken up in Section 2. In this section, we also show that in
general a triple of commuting contractions does not have a commuting
unitary dilation. In Section 3, the contractive tuples are introduced
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and for a commuting contractive tuple, the standard commuting di-
lation is constructed. We also study two special contractive tuples.
Section 4 is about the standard non-commuting dilation of a general
contractive tuple. In Section 5, we outline the proof that the standard
commuting dilation is the maximal commuting piece of the standard
non-commuting dilation.

1. Dilation of a Single Contraction

All the Hilbert spaces in this note are over the complex field and are
separable. Given two Hilbert spaces H and K, the notations K ⊃ H
and H ⊂ K will mean that H is a closed subspace of K or that H
is isometrically embedded into K, i.e., there is a linear isometry A
mapping H into K. In the latter case, we shall identify H with the
closed subspace AH of K. Any bounded operator T on H is then
identified with the bounded operator ATA∗ on AH.

Definition 1.1. Let H ⊂ K be two Hilbert spaces. Suppose T and
V are bounded operators on H and K respectively. Then V is called a
dilation of T if

T nh = PHV
nh

for all h ∈ H and all non-negative integers n where PH is the projection
of K onto H. A dilation V of T is called minimal if span{V nh : h ∈
H, n = 0, 1, 2, . . .} = K. An isometric (respectively unitary) dilation of
T is a dilation V which is an isometry (respectively unitary).

Let H be a Hilbert space, let B(H) denote the algebra of all bounded
operators on H and let ‖ · ‖ denote the operator norm on B(H). An
element T of B(H) is called a contraction if ‖T‖ ≤ 1. Given any pair
(H, T ) of a Hilbert space and a contraction acting on it, the following
classical theorem of Sz.-Nagy and Foias constructs a Hilbert space K ⊃
H and an isometric dilation V of T on K. Two dilations V1 and V2 on
the Hilbert spaces K1 and K2 respectively, of the same operator T on
H are called unitarily equivalent if there is a unitary U : K1 → K2 such
that UV1U

∗ = V2.

Theorem 1.2. For every contraction T on a Hilbert space H, there is
a minimal isometric dilation which is unique up to unitary equivalence.

Proof: Let DT = (1H−T ∗T )1/2 be the unique positive square root of
the positive operator 1H−T ∗T . This is called the defect operator of T .
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Let DT = RangeDT . Then the dilation space is constructed by setting

K = H⊕DT ⊕DT · · · .

The space H is identified with the subspace of K consisiting of elements
of the form (h, 0, 0, . . .) where h ∈ H. This is the way H is isometrically
embedded into K. Define the operator V on K by

V (h0, h1, h2, . . .) = (Th0, DTh0, h1, h2, . . .).

For every h ∈ H, we have ‖Th‖2+‖DTh‖2 = ‖h‖2, so that the operator
V defined above is an isometry.

Now for h0 ∈ H and (k0, k1, k2, . . .) ∈ K, we have

< V ∗h0, (k0, k1, k2, . . .) > = < h0, V (k0, k1, k2, . . .) >

= < (h0, 0, 0, . . .), (Tk0, DTk0, k1, k2, . . .) >

= < h0, Tk0 >

= < T ∗h0, k0 >=< T ∗h0, (k0, k1, k2, . . .) > .

Thus V ∗h = T ∗h for all h ∈ H. The operator V on K has the
property that H is is left invariant by V ∗. When this happens, H is
called a co-invariant subspace of V . In such a case, it is easy to see
that T n = PHV

n|H for n = 1, 2, . . . and T is called a piece of V . So V
is an isometric dilation of T . Minimality becomes clear by observing
that

V n(h0, h1, h2, . . .) = (T nh0, DTT
n−1h0, . . . , DTh0, h1, h2, . . .)

from which it follows that

(1.1) V n(h0, 0, 0, . . .) = (T nh0, DTT
n−1h0, . . . , DTh0, 0, 0, . . .).

This gives another proof of T n = PHV
n|H for n = 1, 2, . . .. Moreover,

it follows from (1.1) that

span{V n(h, 0, 0, . . .) : h ∈ H, n = 0, 1, 2, . . .} = H⊕DT ⊕DT · · · = K.

It just remains to show that the minimal dilation is unique up to
unitary equivalence. To that end, first note that given any isometric
dilation V of T and two elements h and h′ of H, we have

〈V nh, V mh′〉 =

{
〈V n−mh, h′〉 = 〈T n−mh, h′〉 if n ≥ m ≥ 0,
〈h, V m−nh′〉 = 〈h, Tm−nh′〉 if m ≥ n ≥ 0.

Thus 〈V nh, V mh′〉 (and hence the inner product of two finite sums

of the form
∑N

n=0 V
nhn and

∑N ′

n=0 V
nhn) does not depend on a par-

ticular choice of minimal dilation V . Now take two minimal dilations,
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say V1 and V2 on the spaces K1 and K2 respectively and define U on
span{V n

2 h : h ∈ H, n = 0, 1, 2, . . .} by

U(
N∑

n=0

V n
2 hn) =

N∑
n=0

V n
1 hn.

This is a well-defined and isometric linear transformation from a dense
subspace of K2 onto a dense subspace of K1. It is well-known that such
an U extends to a unitary operator from K2 to K1. Moreover, note
that for h ∈ H, we have Uh = U(V 0

2 )h = V 0
1 h = h, thus the isometric

embedding of H into K2 and K1 are left intact by U . Of course, U has
been so costructed that UV2U

∗ = V1.
The basic ingredient for the construction above is the operator called

unilateral shift.

Definition 1.3. An isometry S on a Hilbert space M is called a uni-
lateral shift if there is a subspace L of M satisfying

(i) SnL ⊥ L for all n = 1, 2, . . . and
(ii) L ⊕ SL ⊕ S2L · · · = M.
The subspace L is called the generating subspace for S and dimL is

called the multiplicity of S.

A unilateral shift has a unique generating subspace and is determined
up to unitary equivalence by its multiplicity, i.e., if S1 and S2 are two
unilateral shifts on Hilbert spaces L1 and L2 respectively with the same
multiplicity, then there is a unitary U : L1 → L2 such that US1U

∗ = S2.
The proofs and other facts about unilateral shifts can be found in, for
example [46].

Let S be the unilateral shift defined on the space DT ⊕DT · · · by

S(h1, h2, . . .) = (0, h1, h2, . . .), where h1, h2, . . . ∈ DT .

Then S has multiplicity equal to rankDT and the block operator
matrix of the dilation V is

T 0 0 0
DT

0
0

S

 .

The next step is to obtain a unitary dilation.

Definition 1.4. Let H ⊂ K be two Hilbert spaces. Suppose V and U
are bounded operators on H and K respectively such that

Unh = V nh for all h ∈ H.
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Then U is called an extension of V . A unitary extension is an extension
which is also a unitary operator.

An extension U of a bounded operator V is also a dilation of V
because PHU

nh = PHV
nh = V nh for any h ∈ H and n ≥ 1. It

moreover has the property that H is an invariant subspace for U . It is
this second property that makes it clear that in general, contractions
could not have isometric extensions.

Remark 1.5. Let H be a Hilbert space and T ∈ B(H). Suppose V is
a dilation of T on a Hilbert space K1 ⊃ H and U is an extension of V
on a Hilbert space K2 ⊃ K1. Then U is a dilation of T . Indeed,

PHU
nh = PHV

nh because U is an extension of V and h ∈ H ⊂ K1

= T nh because V is a dilation of T.

Definition 1.6. A unitary operator U on a Hilbert space M is called
a bilateral shift if there is a subspace L of M satisfying

(i) UnL ⊥ L for all integers n 6= 0 and
(ii) ⊕∞n=−∞U

nL = M.
The subspace L is called a generating subspace for U and dimL is called
the multiplicity of U .

Lemma 1.7. A unilateral shift V on M always has an extension to a
bilateral shift. Moreover, the extension preserves multiplicity.

Proof: The generating subspace of V is L = M	 VM. Define K =
⊕∞−∞Ln where each Ln is the same as L. For an element (. . . , l−2, l−1, l0,
l1, l2, . . .) of K with ln ∈ Ln for every n ∈ Z, define

U(. . . , l−2, l−1, l0, l1, l2, . . .) = (. . . , l′−2, l
′
−1, l

′
0, l

′
1, l

′
2, . . .),

where now l′n ∈ Ln and l′n = ln−1 for all n ∈ Z. Clearly, U is unitary and
{(. . . , 0, 0, l0, 0, 0, . . .) : l0 ∈ L0} is a generating subspace for U . This
subspace has the same dimension as that of L. An element

∑∞
0 V nln

of H is identified with the element (. . . , 0, 0, l0, l1, l2, . . .) of K. This is
an isometric embedding.

Now for h =
∑∞

0 V nln, we have

Uh = U(. . . , 0, 0, l0, l1, l2, . . .) = (. . . , 0, 0, 0, l0, l1, . . .)

=
∞∑
0

V nln−1 = V h.

That completes the proof.
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An immediate corollary is the following.

Corollary 1.8. An isometry V on H always has an extension to a
unitary.

Proof: By Wold decomposition ([46], page 3), we have H = H0 ⊕H1

where H0 and H1 are reducing subspaces of V and V = V0 ⊕ V1 where
V0 = V |H0 is a unitary and V1 = V |H1 is a unilateral shift. By the
lemma above, V1 can be extended to a bilateral shift, say U1. Now
V0 ⊕ U1 is a unitary extension of V .

Theorem 1.9. For every contraction T on a Hilbert space H, there is
a minimal unitary dilation which is unique up to unitary equivalence.

Proof: Obtaining a unitary dilation is mmediate from the above dis-
cussions. We take an isometric dilation and then its unitary extension,
say U0. This is a unitary dilation, although may not be minimal. Let

K = span{Un
0 h : h ∈ H and n = 0, 1, 2, . . .}.

This is a reducing subspace for U0 and the restriction U of U0 to K is
a minimal unitary dilation.

The uniqueness (up to unitary equivalence) proof is exactly on the
same lines as the proof of uniqueness of isometric dilation.

The unitary dilation of a contraction gives a quick proof of von Neu-
mann’s inequality. In its original proof [36], von Neumann first proved
it for Mobius functions and then used the fact that the space of ab-
solutely convergenet sums of finite Blashke products is isometrically
isomorphic to the disk algebra, the algebra of all functions which are
analytic in the interior and continuous on the closure of the unit disk.
See Drury [27] or Pisier [40] for the details of this proof. The following
proof using the dilation is due to Halmos [30].

Theorem 1.10. (von Neumann’s inequality): For every polyno-
mial p(z) = a0 + a1z + · · ·+ amz

m, let

‖p‖ = sup{|p(z)| : |z| ≤ 1}.

If T is a contraction and p is a polynomial, then

‖p(T )‖ ≤ ‖p‖.

Proof: First note that by spetcral theory, if U is a unitary operator
and p is a polynomial, then σ(p(U)) = {p(z) : z ∈ σ(U)}.

Since U is unitary, σ(U) ⊂ T where T is the unit circle. Thus
‖p(U)‖ = sup{|p(z)| : z ∈ σ(U)} ≤ sup{|p(z)| : z ∈ T} = ‖p‖. Now by
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the unitary dilation theorem, p(T ) = PHp(U)|H which gives

‖p(T )‖ = ‖PHp(U)|H‖ ≤ ‖p(U)‖ ≤ ‖p‖.

The survey article by Drury [27] is an excellent source for more dis-
cussions on von Neumann’s inequality.

2. Tuples of Commuting Contractions

Ando gave a beautiful generalization of Sz.-Nagy and Foias’s theorem
for two commuting contractions. The concept of dilation for a tuple of
operators is similar to Definition 1.1.

Definition 2.1. Let H ⊂ K be two Hilbert spaces. Suppose T =
(T1, T2, . . . , Tn) and V = (V1, V2, . . . , Vn) are tuples of bounded operators
acting on H and K respectively, i.e., Ti ∈ B(H) and Vi ∈ B(K). The
operator tuple V is called a dilation of the operator tuple T if

Ti1Ti2 . . . Tikh = PHVi1Vi2 . . . Vikh for all h ∈ H, k ≥ 1

and all 1 ≤ i1, i2, . . . , ik ≤ n.

If Vi are isometries with orthogonal ranges, i.e., V ∗i Vj = δij for
1 ≤ i, j ≤ n, then V is called an isometric dilation. A dilation V
of T is called minimal if span{Vi1Vi2 . . . Vikh : h ∈ H, k ≥ 0 and 1 ≤
i1, i2, . . . , ik ≤ n} = K.

Theorem 2.2. For a pair T = (T1, T2) of commuting contractions on a
Hilbert space H, there is a commuting isometric dilation V = (V1, V2).

Proof: Let H+ = H ⊕H ⊕ · · · be the direct sum of infinitely many
copies of H. Define two isometries W1 and W2 on H+ as follows. For
h = (h0, h1, h2, . . .) ∈ H+, set

Wih = (Tih0, DTi
h0, 0, h1, h2, . . .), for i = 1, 2.

Here DTi
are the defect operators as defined in the proof of Theo-

rem 1.2. Clearly, W1 and W2 are isometries. However, they need not
commute. We shall modify them to get commuting isometries.

Let H4 = H ⊕ H ⊕ H ⊕ H and let v be a unitary operator on H4.
We shall specify v later. Identify H+ and H ⊕H4 ⊕ H4 ⊕ · · · by the
following identification:

h = (h0, h1, h2, . . .) → (h0, {h1, h2, h3, h4}, {h5, h6, h7, h8}, . . .).
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Now define a unitary operator W : H+ → H+ by

Wh = (h0, v(h1, h2, h3, h4), v(h5, h6, h7, h8), . . .),

where h = (h0, h1, h2, . . .). The unitarity of W is clear since v is a
unitary and

W ∗h = W−1h = (h0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .).

We define V1 = WW1 and V2 = W2W
−1. These are isometries

because they are products of isometries. These act on H+ and

V ∗i (h0, 0, . . .) = (T ∗i h0, 0, . . .), for i = 1, 2.

Now we shall see that v can be chosen so that V1 and V2 commute.
To choose such a v, we first compute V1V2 and V2V1.

V1V2(h0, h1, . . .) = WW1W2v
−1(h0, h1, . . .)

= WW1W2((h0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .)

= WW1(T2h0, DT2h0, 0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .)

= W (T1T2h0, DT1T2h0, 0, DT2h0, 0, v
−1(h1, h2, h3, h4),

v−1(h5, h6, h7, h8), . . .)

= (T1T2h0, v(DT1T2h0, 0, DT2h0, 0), (h1, h2, h3, h4),

(h5, h6, h7, h8), . . .)

and

V2V1(h0, h1, . . .) = W2W1(h0, h1, . . .)

= W2(T1h0, DT1h0, 0, h1, h2, . . .)

= (T2T1h0, DT2T1h0, 0, DT1h0, 0, h1, h2, . . .).

Since T1 and T2 commute, V1V2 will be equal to V2V1 if

(2.2) v(DT1T2h, 0, DT2h, 0) = (DT2T1h, 0, DT1h, 0)

for all h ∈ H. Now a simple calculation shows that

‖(DT1T2h, 0, DT2h, 0)‖ = ‖(DT2T1h, 0, DT1h, 0)‖, for all h ∈ H.
Hence one can define an isometry v by (2.2) from

L1
def
= span{(DT1T2h, 0, DT2h, 0) : h ∈ H}

onto L2
def
= span{(DT2T1h, 0, DT1h, 0) : h ∈ H}. To extend v to the

whole of H4 as a unitary operator, i.e., an isometry of H4 onto itself,
one just needs to check that H4 	 L1 and H4 	 L2 have the same
dimension. If H is finite dimensional, this is obvious because L1 and
L2 are isometric. When H is infinite dimensional, note that L⊥1 and
L⊥2 have dimension at least as large as dimH because each of L⊥1 and
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L⊥2 contain a subspace isomorphic to H, for example the subspace
{(0, h, 0, 0) : h ∈ H}. Thus

dimH4 ≥ dim(H4 	 Li) ≥ dimH = dimH4 for i = 1, 2.

So they have the same dimension. This completes the proof that v can
be so defined that V1 and V2 commute.

Theorem 2.3. Let V1 and V2 be two commuting isometries on a Hilbert
space H. Then there is a Hilbert space K and two commuting unitaries
U1 and U2 on K such that

U1h = V1h and U2h = V2h for all h ∈ H.

In other words, two commuting isometries can be extended to two com-
muting unitaries.

We remark here that simple modifications of the proof of this the-
orem yield that the same is true for any number (finite or infinite) of
commuting isometries.
Proof: Using Corollary 1.8, we first find a unitary extension U1 on a
Hilbert space H̃ of the isometry V1. Without loss of generality we may
assume that this extension is minimal, i.e.,

H̃ = span{Un
1 h : n ∈ Z and h ∈ H}.

We want to define an isometric extension Ṽ2 on H̃ of V2 which

(1) would commute with U1,
(2) would be a unitary on H̃ if V2 already is a unitary.

Assume for a moment that this has been accomplished, i.e., we have
found a Ṽ2 satisfying the above conditions. Then if V2 happens to
be unitary, we are done. If not, then just repeat the construction by
applying Corollary 1.8 again, this time to the isometry Ṽ2 instead of
V1. Since U1 is already a unitary, the resulting extensions that we shall
get will be commuting unitaries.
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Now we get down to finding a Ṽ2 satisfying (1) and (2). To that end,
note that

‖
∞∑

n=−∞

Un
1 V2hn‖2

=
∑
n,m

〈Un
1 V2hn, U

m
1 V2hm〉

=
∑
n≥m

〈Un−m
1 V2hn, V2hm〉+

∑
n<m

〈V2hn, U
m−n
1 V2hm〉

=
∑
n≥m

〈V n−m
1 V2hn, V2hm〉+

∑
n<m

〈V2hn, V
m−n
1 V2hm〉 as U1 extends V1

=
∑
n≥m

〈V2V
n−m
1 hn, V2hm〉+

∑
n<m

〈V2hn, V2V
m−n
1 hm〉 as V2, V1 commute

=
∑
n≥m

〈V n−m
1 hn, hm〉+

∑
n<m

〈hn, V
m−n
1 hm〉 as V2 is an isometry

= ‖
∞∑

n=−∞

Un
1 hn‖2 tracing the steps back with V2 = 1H.

Thus on the dense subspace span{Un
1 h : n ∈ Z, h ∈ H}, one can

unambiguously define an isometry Ṽ2 by

Ṽ2

(
∞∑

n=−∞

Un
1 hn

)
=

∞∑
n=−∞

Un
1 V2hn.

Of course, Ṽ2 extends V2 and commutes with U1. Finally if V2 is a
unitary, i.e., a surjective isometry, then it follows from the definition
of Ṽ2 that it has a dense range. An isometry with a dense range is
surjective and hence unitary. We have finished the proof.

This theorem of course immediately produces the unitary dilation
theorem for two commuting contractions:

Theorem 2.4. Given two commuting contractions T1 and T2 on a
Hilbert space H, there is a Hilbert space K ⊃ H and two commuting
unitaries U1 and U2 on K such that

(2.3) Tm
1 T

n
2 h = PHU

m
1 U

n
2 h, for all h ∈ H and m,n = 0, 1, 2, . . . .

Proof First get a commuting isometric dilation V = (V1, V2) on a
space H+ by Theorem 2.2. Then get a commuting unitary extension
U = (U1, U2) of V by Theorem 2.4. Now U is the required dilation
because U1 and U2 commute and for any h ∈ H and m,n = 0, 1, 2, . . .,
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we have

PHU
m
1 U

n
2 h = PHV

m
1 V n

2 h because U extends V and h ∈ H ⊂ H+

= Tm
1 T

n
2 h because V dilates T .

The simultaneous unitary dilation theorem immediately produces a
von Neumann’s inequality.

Corollary 2.5. (von Neumann’s inequality): Let T1 and T2 be
two commuting contractions acting on a Hilbert space H. Suppose
p(z1, z2) is any polynomial in two variables. Then

‖p(T1, T2)‖ ≤ sup{|p(z1, z2)| : |z1| ≤ 1, |z2| ≤ 1}.

Proof Let K ⊃ H be a unitary dilation space for T and U1 and
U2 be two commuting unitaries on K as obtained from Theorem 2.4.
Since U1 and U2 are commuting unitaries, all four of U1, U2, U

∗
1 and

U∗2 commmute. Thus the C∗-algebra C generated by U1 and U2 is
commutative. So by Gelfand theory ([20], Chapter I), C is isometrically
∗-isomorphic to C(MC) where MC is the set of all multiplicative linear
functionals χ on C. Such functionals satisfy ‖χ‖ = χ(1) = 1.

Thus |χ(Ui)|2 = χ(Ui)χ(U∗i ) = χ(UiU
∗
i ) = χ(1K) = 1. So for any

polynomial p(z1, z2), we have

‖p(U1, U2)‖ = sup
χ∈MC

|χ(p(U1, U2)|

= sup
χ∈MC

|p(χ(U1), χ(U2))| as χ is multiplicative & linear

≤ sup
|z1|=1,|z2|=1

|p(z1, z2)|.

Hence

‖p(T1, T2)‖ = ‖PHp(U1, U2)|H‖ ≤ ‖p(U1, U2)‖ ≤ sup
|z1|=1,|z2|=1

|p(z1, z2)|.

The simultaneous unitary dilation of a pair of contractions is due
to Ando [2] and the proofs given here are essentially the same as his
original ones. We shall end this section with the rather striking fact
that Ando’s theorem does not generalize to more than two commuting
contractions. The unitary extension theorem of isometries holds good,
as remarked above, for any number of commuting isometries. It is the
isometric dilation of contractions which fails for more than a pair of
contractions.
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Perhaps the easiest way to see it is to construct a triple of commut-
ing contractions which do not have a commuting unitary dilation. To
that end, let L be a Hilbert space and let A1, A2, A3 be three unitary
operators on L such that

A1A
−1
2 A3 6= A3A

−1
2 A1.

(For example, A2 = 1 and A1, A3 two non-commuting unitaries will
do.) Let H = L ⊕ L and let Ti ∈ B(H) for i = 1, 2, 3 be defined as

Ti(h1, h2) = (0, Aih1) where h1, h2 ∈ L.
Clearly ‖Ti‖ = ‖Ai‖ = 1 for i = 1, 2, 3 and TiTj = TjTi = 0 for
i, j = 1, 2, 3. SO (T1, T2, T3) is a commuting triple of contractions on
H. Suppose there exist commuting unitary operators U1, U2, U3 on
some Hilbert space K ⊃ H such that Ti = PHUi|H for i = 1, 2, 3. Then

PHUi(h, 0) = Ti(h, 0) = (0, Aih), h ∈ H i = 1, 2, 3.

Note that ‖Ui(h, 0)‖ = ‖h‖ and ‖(0, Aih)‖ = ‖Aih‖ = ‖h‖. So
Ui(h, 0) = (0, Aih). Hence

UkU
−1
j Ui(h, 0) = UkU

−1
j (0, Aih) = UkU

−1
j (0, Aj(A

−1
j Aih))

= UkU
−1
j Uj(0, A

−1
j Aih) = Uk(0, A

−1
j Aih) = (0, AkA

−1
j Aih).

Since the Ui commute, UkU
−1
j Ui = UiU

−1
j Uk for all i, j = 1, 2, 3. So

AkA
−1
j Ai = AiA

−1
j Ak for all i, j = 1, 2, 3. That is a contradiction. So

there is no commuting dilation.
Note that von Nemann’s inequality is an immediate corollary of uni-

tary dilation. So one way to show non-existence of dilation is to show
that von Neumann’s inequality is violated. This is what Crabb and
Davie did with a triple of operators acting on an eight-dimensional
space [19]. The literature over the years is full of a lot of discussions
and considerations of many aspects of the issue originating from this
spectacular failure of von Neumann’s inequality. The survey article of
Drury [27] is very insightful, so is the monograph by Pisier [40]. The
reader is referred to Varopoulos [47] for his probabilistic arguments
and establishing connection with Grothedieck’s inequality, and Parrott
[37] who gave an example which satisfies von Neumann’s inequality
but does not have a unitary dilation. Of more recent interest are the
articles by Bagchi and Misra and the author [32], [12].

3. Standard Commuting Dilation

This section will show that a commuting contractive tuple has a
commuting dilation which is canonical in a sense to be described below.
We call it the standard commuting dilation. We shall begin with the
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relevant definitions along with a little bit of discussion on the free
Fock space creation operators which will be used in the next section.
Since an n-tuple of commuting cotractions does not in general admit
a commuting dilation and does not satisfy von Neumann’s inequality,
one was led to consider a particular class of commuting contractive
tuples. Throughout the rest of the paper, n is a fixed positive integer
larger than 1.

Definition 3.1. Let H be a Hilbert space and let T = (T1, . . . , Tn) be a
tuple of bounded operators acting on H. Then T is called a contractive
tuple if

∑n
i=1 TiT

∗
i ≤ 1H. The tuple is called commuting if TiTj = TjTi

for all i, j = 1, 2, . . . , n. The positive operator (1H−
∑n

i=1 TiT
∗
i )1/2 and

the closure of its range are respectively called the Defect operator of T
and the Defect space of T and are denoted by DT and DT .

Contractivity of a tuple is equivalent to demanding that for all
h1, h2, . . . , hn ∈ H,

‖T1h1 + T2h2 + · · ·+ Tnhn‖2 ≤ ‖h1‖2 + ‖h2‖2 · · ·+ ‖hn‖2.

A prototype of a commuting contractive tuple is the so-called n-shift
which we shall simpy call the shift since n is fixed. This operator
tuple will play a central role in the theory of dilation of a commuting
contractive tuple, much like that of the unilateral shift in the case of a
single contraction. Before we formally define it, we shall briefly sketch
here the route that we are going to follow for finding the dilation and
how we are going to use this special tuple for our purpose. Suppose
we have a single linear contraction T on a Hilbert space. Consider the
usual Toeplitz algebra T (See [6]), i.e., the unital C∗-algebra generated
by the unilateral shift S. Then there is a unique unital completely
positive map ϕ on T which maps S to T and moreover any ‘sesqui-
polynomial’

∑
ak,lS

k(S∗)l to
∑
ak,lT

k(T ∗)l (Keeping powers of S∗, T ∗

only on the right is important). Actually this is a way of looking at
Sz. Nagy dilation of contractions. Indeed if we consider the minimal
Stinespring representation π of ϕ, we see that π(S) is nothing but
the minimal isometric dilation of T . We shall imitate this path for
finding dilation for a commuting contractive tuple. See Paulsen [38]
for discussions on completely positive maps, Stinespring dilation and
related material.

Given a Hilbert space L and k = 0, 1, 2, . . ., we write L©sk for the
symmetric tensor product of k copies of L. The space L©s0 is defined as
the one dimensional vector space C with its usual inner product. For
k ≥ 2, L©sk is the subspace of the full tensor product L⊗k consisting of
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all vectors fixed under the natural representation of the permutation
group σk,

L©sk = {ξ ∈ L⊗k : Uπξ = ξ, π ∈ σk},
Uπ denoting the isomorphism of L⊗k defined on elementary tensors by

(3.4) Uπ(x1⊗x2⊗· · ·⊗xn) = xπ−1(1)⊗xπ−1(2)⊗· · ·⊗xπ−1(n), xi ∈ L.

Let {e1, e2, . . . , en} be the standard basis of Cn. Then an orthonor-
mal basis for the full tensor product space L⊗k is {ei1 ⊗ · · · ⊗ eik : 1 ≤
i1, . . . , ik ≤ n}. The full Fock space over L and the symmetric Fock
space over L are respectively

Γ(L) = C⊕ L⊕ L⊗2 ⊕ · · · ⊕ L⊗k ⊕ · · ·

and

Γs(L) = C⊕ L⊕ L©s2 ⊕ · · · ⊕ L©sk ⊕ · · · .
In both the Fock spaces, the one dimensional subspace C ⊕ {0} ⊕

{0}⊕· · · is called the vacuum space. The unit norm element (1, 0, 0, . . .)
in this space is called the vacuum vector and is denoted by ω. The
projection on to the vaccum space is denote by E0. Define the creation
operator tuple V = (V1, V2, . . . , Vn) on Γ(Cn) by

Viξ = ei ⊗ ξ for i = 1, 2, . . . , n and ξ ∈ Γ(Cn).

It is easy to see that the Vi are isometries with orthogonal ranges.
Denoting by P+ the orthogonal projection onto the subspace Γs(L) of
Γ(L), define the tuple of bounded operators S = (S1, S2, . . . , Sn) on
Γs(L) by

Siξ = P+(ei ⊗ ξ) for i = 1, 2, . . . , n and ξ ∈ Γ(Cn).

Since Vi are isometries, the Si are contractions. The projection P+

acts on the full tensor product space L⊗k by the following action on
the orthonormal basis:

P+(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) =
1

k!

∑
eπ(i1) ⊗ eπ(i2) ⊗ · · · ⊗ eπ(ik)

where π varies over the permutation group σk. Using this it is easy to
see that S forms a commuting tuple. The operator tuple S is called the
commuting n-shift. For contractivity of S, we start with the following
lemma.

Lemma 3.2. 1Γ(Cn) −
∑
ViV

∗
i is the one-dimensional projection onto

the vacuum space.
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Proof: We compute the action of V ∗i on the orthonormal basis ele-
ments:

〈V ∗i (ei1 ⊗ ei2 ⊗ · · · ⊗ eik), ξ〉 = 〈ei1 ⊗ ei2 ⊗ · · · ⊗ eik , Viξ〉
= 〈ei1 ⊗ ei2 ⊗ · · · ⊗ eik , ei ⊗ ξ〉

=

{
〈ei2 ⊗ · · · ⊗ ein , ξ〉 if i1 = i

0 if i1 6= i.

Thus

(3.5) V ∗i (ei1 ⊗ ei2 ⊗ · · · ⊗ eik) =

{
ei2 ⊗ · · · ⊗ eik if i1 = i

0 if i1 6= i.

Hence it follows that
∑
ViV

∗
i (ei1 ⊗ ei2 ⊗ · · ·⊗ eik) = ei1 ⊗ ei2 ⊗ · · ·⊗ eik

for any k ≥ 1 and 1 ≤ i1, . . . , ik ≤ n.
Now

〈V ∗i ω, ξ〉 = 〈ω, ei ⊗ ξ〉 = 0 for any ξ ∈ Γ(Cn) and any i.

Thus
∑
ViV

∗
i (ω) = 0 and hence 1Γ(Cn)−

∑
ViV

∗
i is the 1-dimensional

projection onto the vacuum space.
This lemma immediately gives the contractivity property for V and

S:

Corollary 3.3. V and S are contractive tuples.

Proof: We have seen in the lemma above that 1Γ(Cn) −
∑
ViV

∗
i is

a projection and hence a positive operator. Thus
∑
ViV

∗
i ≤ 1Γ(Cn).

A moment’s thought shows that Γs(Cn) is a co-invariant subspace
for the operator tuple V , i.e., V ∗i leaves Γs(Cn) invariant for each i =
1, 2, . . . , n. Thus

∑
SiS

∗
i =

∑
(P+

∑
ViP+)(P+V

∗
i P+) = P+

∑
ViV

∗
i P+

≤ 1Γs(Cn).
Before we proceed further, it will be helpful to list some properties

of the shift which will be needed later.

Lemma 3.4.
∑n

i=1 S
∗
i Si is an invertible operator on Γs(Cn).

Proof:
We shall show that

∑
S∗i Si is a digonal operator in a natural ba-

sis for Γs(Cn). Any ordered n-tuple of non-negative integers k =
(k1, k2, . . . , kn) will be called a multi-index. Let |k| = k1 +k2 + · · ·+kn.
Given such a multi-index k with |k| ≥ 1, we shall, for brevity, write

ek = Uπ(e⊗k1
1 ⊗ e⊗k2

2 ⊗ · · · ⊗ e⊗kn
n ).
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Clearly, the set {ω} ∪ {ek : k is a multi-index with |k| ≥ 1} forms a
basis for the space Γs(Cn). For any multi-index k with |k| ≥ 1, we have

S∗i e
k = V ∗i e

k =

{
0 if ki = 0
ki

|k|e
k′ otherwise,

the last step following from (3.4) and (3.5), here k′ is the multi-index
(k1, . . . ki−1, ki−1, ki+1, . . . , kn). Thus we have a formula for the action
of S∗i on the basis. (This immediately gives another proof of the fact
that

∑
SiS

∗
i = 1Γs(Cn)−E0 because

∑
SiS

∗
i (ω) = 0 and for any k with

|k| ≥ 1,
∑
SiS

∗
i (e

k) = (|k|)−1
∑
ki(e

k) = ek.) Now
∑
S∗i Siω = nω and

for |k| ≥ 1,∑
S∗i Si(e

k) =
∑

S∗i (e
k′′) where k′′ is the multi-index

(k1, . . . ki−1, ki + 1, ki+1, . . . kn)

=
∑ ki + 1

|k|+ 1
ek

=
|k|+ n

|k|+ 1
ek.

Thus
∑
S∗i Si is a diagonal operator in the basis mentioned above.

Since none of the diagonal coefficients is zero and the sequence of di-
agonal coeffcients tends to n as |k| → ∞, the operator is invertible.

The C∗-subalgebra of B(Γs(Cn)) generated by S1, . . . , Sn will be de-
noted by Tn and called the Toeplitz C∗-algebra. The Toeplitz C∗-
algebra is unital. We do not have to, a priori, include 1Γs(Cn) in the
C∗-algebra Tn because the operator

∑
S∗i Si is invertible in B(Γs(Cn)).

Since C∗-algebras are inverse closed, (
∑
S∗i Si)

−1 is in the C∗-algebra
generated by S1, . . . , Sn and hence Tn is unital. The subalgebra of Tn

consisting of polynomials in S1, . . . , Sn and 1Γs(Cn) will be denoted by
A. The following two lemmas give more information about the C∗-
algebra Tn.

Lemma 3.5. Tn = spanAA∗.
Proof A direct computation yields

S∗i Sje
k =

|k|
|k|+ 1

SjS
∗
i e

k for 1 ≤ i, j ≤ n

and hence the result follows.

Lemma 3.6. All compact operators are in Tn..
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Proof Since
∑
SiS

∗
i = 1Γs(Cn)−E0, the one-dimensional projection

E0 onto the vacuum space is in spanAA∗. Now given any two multi-
indices k and l, the operator SkE0S

∗l is in spanAA∗. But note that
this operator is nothing but the rank-one operator

ξ → 〈ξ, el〉ek.

As the set {ω, ek : k is any multi-index } is a basis for Γs(Cn), all rank
one operators are in spanAA∗. Thus spanAA∗ contains all finite rank
operators and hence all compact operators.

We now proceed towards developing the model and dilation for a
given commuting contractive tuple T on a Hilbert space H. By an
operator space we shall mean a vector subspace of B(L) where L is a
Hilbert space. Given an operator space E and an algebra A ⊆ E , a
completely positive map ϕ from E to B(H) for some Hilbert space H
is called an A-morphism if

ϕ(AX) = ϕ(A)ϕ(X), for any A ∈ A and X,AX ∈ E .

This is related to the hereditary isomorphisms of Agler [1].
Every unital A-morphism ϕ : Tn → B(H) for some Hilbert space H

gives rise to a commuting contractive tuple (T1, . . . , Tn) on H by way of
Ti = ϕ(Si), i = 1, . . . , n. Indeed,

∑
TiT

∗
i = ϕ(

∑
SiS

∗
i ) ≤ ϕ(1Γs(Cn)) =

1H and TiTj = ϕ(Si)ϕ(Sj) = ϕ(SiSj) = ϕ(SjSi) = ϕ(Sj)ϕ(Si) = TjTi

for all 1 ≤ i, j ≤ n. Given any commuting contractive tuple T acting
on H, our aim is to produce an A-morphism from the C∗-algebra Tn

(with its subalgebra A as defined above) to B(H). This will be achieved
by the help of the following crucial thorem. The A-morphism is the
key element in finding dilation and proving von Nemann inequaltiy. In
fact, it could be thought of as the model for T . We shall associate a
completely positive map PT with T which acts on B(H) by

PT (X) =
n∑

i=1

TiXT
∗
i .

Since T is a contractive tuple, the completely positive map PT is con-
tractive and hence 1H ≥ PT (1H) ≥ P 2

T (1H) ≥ · · · . This decreasing
sequence of positive contractions converges strongly and A∞ will de-
note the positive contraction which is the strong limit:

A∞ = lim
m→∞

Pm
T (1H).

The commuting contractive tuple T will be called pure if A∞ = 0.
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Theorem 3.7. Let (T1, . . . , Tn) be a commuting contractive tuple of
operators on a Hilbert spaceH. Then there is a unique bounded operator
L : Γs(Cn)⊗DT → H satisfying L(ω ⊗ ξ) = DT ξ and

(3.6) L(ek ⊗ ξ) = T kDT ξ

for every multi-index k with |k| = 1, 2, . . . . In general ‖L‖ ≤ 1, and if
(T1, . . . , Tn) is a pure tuple, then L is a coisometry: LL∗ = 1H.

Proof A bounded operator L satisfying (3.6) is obviously unique be-
cause Γs(Cn) is spanned by the set of vectors

{ω, ek : k is a multi-index with |k| = 1, 2, . . . }.
We define L by exhibiting its adjoint, i.e., we shall exhibit a contrac-

tion A : H → Γs(Cn) ⊗ DT , define L = A∗ and then show that L has
the required properties.

For every h ∈ H, let Ah be the sequence of vectors (ζ0, ζ1, ζ2, . . . )
where ζk ∈ (Cn)⊗k ⊗DT is defined by

ζk =
n∑

i1,...,ik=1

ei1 ⊗ · · · ⊗ eik ⊗DTT
∗
ik
. . . T ∗i1h

for k ≥ 1 and ζ0 = ω⊗DTh. Notice that since T ∗1 , . . . , T
∗
n commute,

ζk actually belongs to the symmetric subspace (Cn)©sk ⊗DT so that in
fact A maps into Γs(Cn) ⊗ DT . To show that A is a contraction we
claim that

∞∑
k=0

‖ζk‖2 ≤ ‖h‖2.

Indeed,

‖ζk‖2 =
n∑

i1,...,ik=1

‖DTT
∗
ik
. . . T ∗i1h‖

2 =
n∑

i1,...,ik=1

〈Ti1 . . . TikD
2
TT

∗
ik
. . . T ∗i1h, h〉.

Noting that D2
T = 1H − P (1H) we find that

n∑
i1,...,ik=1

Ti1 . . . TikD
2
TT

∗
ik
. . . T ∗i1 = P k(1H−P (1H)) = P k(1H)−P k+1(1H),

and hence

‖ζk‖2 = 〈P k(1H)h, h〉 − 〈P k+1(1H)h, h〉.
The series ‖ζ0‖2 + ‖ζ1‖2 + . . . therefore telescopes and we are left with

∞∑
k=0

‖ζk‖2 = ‖h‖2 − 〈A∞h, h〉 ≤ ‖h‖2.
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Now let ζ = ek ⊗ ξ for some multi-index k with |k| = m ≥ 1 and
ξ ∈ DT . Then for any h ∈ H,

〈L(ζ), h〉 = 〈ek ⊗ ξ, Ah〉

=
∞∑
l=1

n∑
i1,...,il=1

〈ek ⊗ ξ, ei1 ⊗ · · · ⊗ eil ⊗DTT
∗
il
. . . T ∗i1h〉

=
n∑

i1,...,im=1

〈Uπ(e⊗k1
1 ⊗ · · · ⊗ e⊗kn

n , ei1 ⊗ · · · ⊗ eim〉〈ξ,DTT
∗
im . . . T

∗
i1
h〉

= 〈ξ,DT (T k)∗h〉 = 〈T kDT ξ, h〉.

For ζ = ω ⊗ ξ with ξ ∈ DT we have

〈ω ⊗ ξ, Ah〉 = 〈ω ⊗ ξ, ω ⊗DTh〉 = 〈ξ,DTh〉 = 〈DT ξ, h〉,

as required. If (T1, . . . , Tn) is pure, then A∞ = 0. Thus A is an isometry
and hence L is a coisometry.

Given a commuting contractive tuple, the following theorem con-
structs an A-morphism from the Toeplitz C∗-algebra into the unital
C∗-algebra generated by T1, T2, . . . , Tn. Note that (3.6) implies that
L(Sk ⊗ 1DT

) = T kL.

Theorem 3.8. For every commuting contractive tuple (T1, . . . , Tn) act-
ing on a Hilbert space H there is a unique unital A-morphism

ϕ : Tn → B(H)

such that ϕ(Si) = Ti, i = 1, . . . , n.

Proof: The uniqueness assertion is immediate since an A-morphism
is uniquely determined on the closed linear span of the set of products
{AB∗ : A,B ∈ A}.

For existence, first assume that the commuting contractive tuple
T = (T1, T2 . . . , Tn) is pure. Recall that this means P k(1H) converges
strongly to 0 as k tends to ∞. We first construct an A-morphism for
such a tuple. The lemma above asserts that there is a unique bounded
operator L : Γs(Cn)⊗DT → H satisfying L(ω ⊗ ξ) = DT ξ for ξ ∈ DT

and

L(ek ⊗ ξ) = T kDT ξ,

for |k| = 1, 2, . . . , ξ ∈ DT ; moreover, since (T1, . . . , Tn) is a pure con-
tractive tuple, L is a coisometry.

Let ϕ : Tn → B(H) be the completely positive map

ϕ(X) = L(X ⊗ 1DT
)L∗, X ∈ Tn.
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The map ϕ is unital because L is a co-isometry. (3.6) implies that for
every X ∈ Tn we have ϕ(SkX) = L(SkX⊗1DT

)L∗ = L(Sk⊗1DT
)(X⊗

1DT
)L∗ = T kL(X ⊗ 1DT

)L∗ = T kϕ(X). So for any polynomial f ,

ϕ(f(S)X) = f(T )ϕ(X)

hence ϕ is an A-morphism having the required properties.
The general case is deduced from this by a classical device. For any

commuting contractive tuple T = (T1, . . . , Tn) define T r for 0 < r < 1
to be

T̄r = (rT1, . . . , rTn).

It is clear that T r is a pure commuting contractive tuple. Thus there
is an A-morphism ϕr : Tn → B(H) satisfying

ϕr(Si) = rTi, i = 1, . . . , d.

We have

ϕr((Si1 , . . . , Sik)(S
∗
j1
, . . . , S∗jl

)) = f((rTi1 , . . . , rTik)(rT
∗
j1
, . . . , rT ∗jl

))

for k, l ≥ 1 and 1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n. Since operators of the
form (Si1 , . . . , Sik)(S

∗
j1
, . . . , S∗jl

) span Tn and since the family of maps
ϕr, 0 < r < 1 is uniformly bounded, it follows that ϕr converges point-
norm to an A-morphism ϕ as r ↑ 1, and ϕ(Si) = Ti for all i.

Corollary 3.9. von Neumann’s inequality: Let T = (T1, . . . , Tn)
be any commuting contractive tuple acting on a Hilbert space H and
S = (S1, . . . , Sn) be the shift. Then for any polynomial f in n-variables,

‖f(T1, . . . , Tn)‖ ≤ ‖f(S1, . . . , Sn)‖.
Proof: Making use of the unital completely positive map ϕ of the last
theorem which maps f(S1, . . . , Sn) to f(T1, . . . , Tn), we have

‖f(T1, . . . Tn)‖ = ‖ϕ(f(S1, . . . , Sn))‖ ≤ ‖ϕ‖‖f(S1, . . . , Sn)‖
= ‖f(S1, . . . , Sn)‖.

The above theorems lead us to the following dilation theorem for any
commuting contractive tuple T acting on some Hilbert space H. We
need some notation. If m is a positive integer or ∞ and M is a Hilbert
space of dimension m, we shall mean by m · S, the operator tuple
(S1 ⊗ 1M, . . . , Sn ⊗ 1M) acting on Γs(Cn)⊗M. In the next theorem,
we are going to express T as a compression of a direct sum one of whose
components might be absent. To assimilate this in a single notation,
we make the convention that m · S is absent if m = 0.
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Given a Hilbert space N , and a representation β of Tn on N , the
operator tuple

A
def
= m · S ⊕ β(S)

is clearly a commuting contractive tuple on Ĥ def
= (Γs(Cn)⊗M)⊕N .

Let H be a subspace of Ĥ such that A∗iH ⊆ H for all i = 1, . . . , n.
Recall that such subspaces are called co-invariant with respect to the
tuple A. Consider the compression T of A to H as follows.

Ti
def
= PKAi|H.

This T is clearly a commuting contractive tuple on H and moreover,
for any polynomial f(z1, . . . , zn), f(T ) is the compression of f(A) due
to the co-invariance of H with respect to A. We prove that every
commuting contractive tuple has such a realization with β sending all
compact operators to zero.

Theorem 3.10. Dilation: Let T be any commuting contractive tuple
acting on a separable Hilbert space H and rankDT = m (which is a
non-negative integer or ∞). Then there is a separable Hilbert space M
of dimension m, another separable Hilbert space N with a commuting
tuple of operators Z = (Z1, . . . , Zn) acting on it, satisfying Z1Z

∗
1 + · · ·+

ZnZ
∗
n = 1N such that:

(a) H is contained in Ĥ def
= (Γs(Cn)⊗M)⊕N as a subspace and it

is co-invariant under A
def
= m · S ⊕ Z.

(b) T is the compression of A to H, that is, T k = PHA
k|H for every

multi-index k.
(c) Ĥ = span{Akh : h ∈ H and k is any multi-index}.

Thus any commuting contractive tuple has a minimal commuting dila-
tion. Moreover, this dilation is unique up to unitary equivalence.

Proof We consider the minimal Stinespring dilation of ϕ. Thus we
get a Hilbert space Ĥ containing H and a representation π of Tn on Ĥ
such that

ϕ(X) = PHπ(X)PH for X ∈ Tn,

where PH is the projection onto H (We are identifying any operator

Z ∈ B(H) with PHZPH ∈ B(Ĥ)). So

Ĥ = span {π(X)u : X ∈ Tn and u ∈ H}.

The C∗-algebra Tn is separable and hence the Hilbert space Ĥ is also
separable. The tuple (π(S1), . . . , π(Sn)) is a dilation of (T1, . . . , Tn) in
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the sense that for any polynomial f ,

f(T1, . . . , Tn) = PHf(π(S1), . . . , π(Sn))|H,
and H is a co-invariant subspace for (π(S1), . . . , π(Sn)).

Let us denote the set of all compact operators on Γs(Cn) by B0(Γs(Cn))
(or just B0 when there is no chance of confusion). Since Tn contains B0,
by standard theory of representations of C∗-algebras (see [20], Chapter
I for example), the representation π decomposes as π = π0⊕ π1, where

πi : Tn → B(Ĥi) with π0 being a non-degenerate representation of B0 on

Ĥ0, π1 being 0 on B0 and Ĥ = Ĥ0⊕Ĥ1 (one of π0 and π1 could be absent
too). Since the only non-degenerate representation of the C∗-algebra of
compact operators is the identity representation with some multiplicity
and since a represenation which is non-degenerate on an ideal, extends
uniquely to the entire C∗-algebra, it follows that π0 is just the identity
representation with some multiplicity i.e., up to unitary isomorphism,
Ĥ0 = Γs(Cn)⊗M and π0(X) = X⊗1M for some Hilbert space M. So

if we take N = Ĥ1, and π1(Si) = Zi then (Z1, . . . , Zn) is a commuting
contractive tuple and (a), (b) are satisfied. Moreover

∑
ZiZ

∗
i = 1N as

π1 kills compact operators and 1Γs(Cn) −
∑
SiS

∗
i is compact.

It remains to prove that the multiplicity i.e., dim (M) is just the
rank of DT . For this, note that dim M = dim( range π0(E)) where E
is any one-dimensional projection in Tn. Taking E = E0, the projection
onto the vacuum space, and making use of minimality of Stinespring
representation, we have

range π(E0) = {π(E0)ξ : ξ ∈ Ĥ} = span{π(E0)π(X)u : X ∈ Tn, u ∈ H}.
Then by Lemma 3.6 and its proof,

range π(E0) = span{π(E0)π(E0X)u : X ∈ Tn, u ∈ H}
= span{π(E0)π(X)u : X ∈ B0, u ∈ H}
= span{π(E0)π(SkE0(S

l)∗)u : all multi-indices k, l, and u ∈ H}
= span{π(E0)π((Sl)∗)u : all multi-indices k, l, and u ∈ H}.

Now we define a unitary U : range π(E0) → rangeDT by setting

Uπ(E0)π((Sl)∗)u = DT (T l)∗u

and extending linearly. Then U is isometric because for u, v ∈ H and
all k and l,

〈π(E0)π((Sk)∗)u, π(E0)π((Sl)∗)v〉 = 〈u, π(Sk)π(E0)π((Sl)∗)v〉
= 〈u, T kD2

T (T l)∗v〉
= 〈DT (T k)∗u,DT (T l)∗v〉.
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Taking l = 0, it is clear that U is onto. This proves that rangeDT

and M have the same dimensions. Now the uniqueness of the dilation
follows from that of Stinespring dilation of a completely positive map.

As remarked before in the direct sum for Ĥ and A appearing in this
theorem one of the summands could be absent. M and n ·S are absent
iff n = 0, that is, iff

∑
TiT

∗
i = 1H. It can be shown that N and Z is

absent if and only if Pm
T (1H) converges to zero strongly as m tends to

infinity where PT is the completely positive map associated with T .
It is known by the counter-examples of Parrott and Varopoulos that

the dilation operator A could not be as nice as an isometry. Neverthe-
less, it is a commuting tuple and the final section will show us that it
is the best that can be done retaining commutativity.

The ideas of this section are from Arveson [6], Drury [28] and Arias-
Popescu [3], [4], [41], [42], [44], although we closely follow the methods
of Arveson. In fact, the standard commuting dilation was looked at
by Drury [28] in his study of von Neumann inequality for tuples and
similar ideas have been explored by Agler [1], Athavale [11] and oth-
ers for different classes of operators using various reproducing kernels.
Popescu concentrated mainly on the non-commutative case more of
which we shall see in the next section, many commutative results fall
out as special cases from his theory. The crucial operator L of Theorem
3.7 is actually the adjoint of the Poisson transform defined by Popescu.
The proof of the dilation theorem here is due to B. V. R. Bhat and the
author [15].

4. Standard Non-commuting Dilation

In this section, we concentrate on general contractive tuples, which
are not necessarily commuting. The dilation will consist of isometries
with orthogonal ranges. As in Section 3, we consider a model n-tuple
V = (V1, V2, . . . , Vn). Recall from last section that V is the tuple of
creation operators on the full Fock space over Cn. Let C∗(V ) denote
the C∗-subalgebra of B(Γ(Cn)) generated by V1, V2, . . . , Vn. We first
note the elemantary observation:

Lemma 4.1. V1, V2, . . . , Vn are isometries with orthogonal ranges.

Proof For any ξ1, ξ2 ∈ Γ(Cn), and any i, j ∈ {1, 2, . . . , n}, we have
〈Viξ1, Vjξ2〉 = 〈ei ⊗ ξ, ej ⊗ ξ2〉 = 〈ei, ej〉〈ξ1, ξ2〉 = δij〈ξ1, ξ2〉, where δij is
Kronecker delta.
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Hence the C∗-algebra C∗(V ) is automatically unital. Let A be the
algebra generated by 1Γ(Cn) and V1, V2, . . . , Vn. This is called the non-
commutative disk algebra, see Popescu [44]. This is the set of all oper-
ators of the form f(V ) where f varies over all polynomials in n non-
commuting variables. There is a non-commutative Poisson transform
and the A-morphism which will be used for getting dilation. In this
case too, the C∗-algebra is the same as the operator space spanAA∗
because V ∗i Vj = δij.

Lemma 4.2. All compact operators on Γ(Cn) are in C∗(V ).

Proof First E0 = 1Γ(Cn) −
∑
ViV

∗
i is in C∗(V ). Now for any k ≥

1, l ≥ 1, 1 ≤ i1, i2, . . . , ik ≤ n and 1 ≤ j1, j2, . . . , jl ≤ n, we see that the
operator Vi1Vi2 . . . VinE0(Vj1Vj2 . . . Vjl

)∗ is the same as

ξ → 〈ξ, ei1 ⊗ ei2 ⊗ · · · ⊗ eik〉ej1 ⊗ ej2 ⊗ · · · ⊗ ejl
.

Since {ω, ei1 ⊗ ei2 ⊗ · · · ⊗ eik : k ≥ 1 and 1 ≤ i1, i2, . . . , ik ≤ n} forms
a basis for Γ(Cn), all rank one operators are in C∗(V ) and hence all
compact operators are in C∗(V ).

In the following we are going to describe the Poisson kernel and
the Poisson transform associated with a contractive tuple following
Popescu [44]. So take a contractive tuple T = (T1, T2, . . . , Tn) of oper-
ators acting on H. The Poisson kernel {Kr(T )}0≤r≤1 associated with
T is the family of bounded operators Kr(T ) : H → Γ(Cn)⊗DT defined
by Kr(T )h = (ζ0, ζ1, ζ2, . . .) where ζ0 = ω ⊗DTh and for k ≥ 1,

ζk = rk

n∑
i1,...,ik=1

ei1 ⊗ ei2 ⊗ · · · ⊗ eik ⊗Dr(T )(Ti1Ti2 . . . Tik)
∗h,

where Dr(T ) is the defect operator (1H −
∑
r2TiT

∗
i )1/2.

Since (rT1, . . . , rTn) is pure for 0 < r < 1, it is easy to check that Kr(T )

is an isometry for 0 < r < 1 and K(T )
def
= K1(T ) is a contraction with

K(T )∗K(T ) = 1H − A∞ where A∞ is the operator defined in Section
3. Thus K(T ) is an isometry if and only if T is pure.

The Poisson transform associated with the contractive tuple T is the
completely positive map α : C∗(V ) → B(H) defined by

α(X) = lim
r→1

Kr(T )∗(X ⊗ 1DT
)Kr(T ),

where the limit is in the norm topology of B(H). For each 0 < r < 1,
the Kr(T ) satisfies

Kr(T )∗(Vi1Vi2 . . . Vik ⊗ 1DT
) = Ti1Ti2 . . . TikKr(T )∗
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for k ≥ 1 and 1 ≤ i1, i2, . . . , ik ≤ n. This implies that the Poisson
transform is a unital completely contractive A-morphism. Depending
on the property of the tuple T , the image of K(T ) can be contained in
a subspace, say LT ⊗ DT where LT is a subspace of Γ(Cn). We state
the discussion above as a theorem.

Theorem 4.3. If T = (T1, . . . , Tn) is a contractive tuple acting on a
Hilbert space H, then there is a unique unital A-morphism α : C∗(V ) →
B(H) such that α(Vj) = Tj.

Proof The only point which needs a proof is uniqueness which is
clear too. An A-morphism which sends Vj to Tj for every j has to be
unique because C∗(V ) = spanAA∗.

Corollary 4.4. von Neumann’s inequality: Let T = (T1, . . . , Tn)
be any contractive tuple acting on a Hilbert spaceH and V = (V1, . . . , Vn)
be the tuple of creation operators on Γ(Cn). Then for any polynomial
f in n non-commuting indeterminates,

‖f(T1, . . . , Tn)‖ ≤ ‖f(V1, . . . , Vn)‖.

Proof The proof is obvious using theA-morphism α obtained above.

Thus for a commuting contractive tuple T , there are at least two
von Neumann inequalities given by Corollary 3.9 and Corollary 4.4.
Arias and Popescu noted that given any pure contractive tuple T , the
best von Nemann inequality arises from the smallest co-invariant (with
respect to V ) subspace, say LT , of Γ(Cn) such that K(T ) takes its
values in LT ⊗DT . If Bi = PLT

Vi|LT
for i = 1, 2, . . . , n, then

‖f(T )‖ ≤ ‖f(B)‖ for all polynomials f

in n non-commuting indeterminates.

See [3]. They also give a formaula for LT in terms of T .
Theorem 4.3 gives the following dilation theorem for any contractive

tuple T acting on some Hilbert space H. We are going to use the
notation employed in the Dilation theorem of Section 3. Given a Hilbert
space N , and a representation β of C∗(V ) on N , the operator tuple

A
def
= n · V ⊕ β(V )

is clearly a contractive tuple on Ĥ def
= (H ⊗M) ⊕ N . Let H be a

co-invariant subspace of Ĥ under the tuple A. Then the compression
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T of A to H
Ti

def
= PHAi|H

is a contractive tuple on H and moreover, for any polynomial f in n
non-commuting indeterminates, f(T ) is the compression of f(A) due
to the co-invariance of H with respect to A. The following theorem
proves a converse.

Theorem 4.5. Dilation: Let T be any contractive tuple acting on a
separable Hilbert space H and rankDT = m (which is a non-negative
integer or ∞). Then there is a separable Hilbert space M of dimension
m, another separable Hilbert space N with a tuple of operators Z =
(Z1, . . . , Zn) acting on it, satisfying Z∗i Zj = δij for 1 ≤ i, j ≤ n and
Z1Z

∗
1 + · · ·+ ZnZ

∗
n = 1N such that:

(a) H is contained in Ĥ def
= (H ⊗M) ⊕ N as a subspace and it is

co-invariant under A
def
= m · V ⊕ Z.

(b) T is the compression of A to H, i.e.,

Ti1Ti2 . . . Tikh = PHAi1Ai2 . . . Aikh

for every h ∈ H, k ≥ 1 and 1 ≤ i1, i2, . . . , ik ≤ n.
(c) Ĥ = span{Ai1Ai2 . . . Aikh where h ∈ H, k ≥ 1 and 1 ≤ i1, i2, . . .

. . . , ik ≤ n}.
In other words, every contractive tuple T has a minimal isometric di-
lation in the sense of Definition 2.1.

Any two such minimal isometric dilations are unitarily equivalent.

Proof We consider a Stinespring dilation of α. Thus we get a
Hilbert space Ĥ containing H and a representation π of C∗(V ) on

Ĥ such that

ϕ(X) = PHπ(X)PH for X ∈ C∗(V ),

where PH is the projection onto H (We are identifying any operator

Z ∈ B(H) with PHZPH ∈ B(Ĥ)). Now

α(Vi)α(V ∗i ) = α(ViV
∗
i )

= PHπ(ViV
∗
i )PH

= PHπ(Vi)π(V ∗i )PH

= PHπ(Vi)(PH + P⊥H )(PH + P⊥H )π(V ∗i )PH

= (PHπ(Vi)PH + PHπ(Vi)P
⊥
H )(PHπ(V ∗i )PH + P⊥Hπ(V ∗i )PH)

= α(Vi)α(V ∗i ) + (PHπ(Vi)P
⊥
H )(PHπ(Vi)P

⊥
H )∗.

Thus

(4.7) PHπ(Vi)P
⊥
H = 0.
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Note that we may and do assume π to be a minimal Stinespring
dilation. So

Ĥ = span {π(X)u : X ∈ C∗(V ) and u ∈ H}.

The C∗-algebra C∗(V ) is separable and hence the Hilbert space Ĥ is
also separable. The tuple (π(V1), . . . , π(Vn)) is a dilation of (T1, . . . , Tn)
in the sense that for any polynomial f (in n non-commuting variables),

f(T1, . . . , Tn) = PHf(π(V1), . . . , π(Vn))|H,
and H is a co-invariant subspace for (π(V1), . . . , π(Vn)) in view of (4.7).
The proof for obtaining the spaces M and N and the operator tuples
Z and A are exactly the same as in Theorem 3.10 and so we omit that.
We give proof of the multiplicity i.e., dim (M) = rank of DT which
involves now non-commuting polynomials. We have

range π(E0)

= {π(E0)ξ : ξ ∈ Ĥ}
= span{π(E0)π(X)u : X ∈ C∗(V ), u ∈ H}range π(E0)

= span{π(E0)π(E0X)u : X ∈ C∗(V ), u ∈ H}
= span{π(E0)π(X)u : X ∈ B0(Γ(Cn)), u ∈ H}
= span{π(E0)π(Vi1 . . . VikE0(Vj1 . . . Vjl

)∗)u : k, l ≥ 1;

1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n and u ∈ H}
= span{π(E0)π((Vj1 . . . Vjl

)∗)u : l ≥ 1; 1 ≤ j1, . . . , jl ≤ n and u ∈ H}.
Now a unitary U : range π(E0) → rangeDT can be defined by setting

Uπ(E0)π((Vj1 . . . Vjl
)∗)u = DT (Tj1 . . . Tjl

)∗u

and extending linearly. Then U is isometric because for u, v ∈ H and
1 ≤ i1, . . . , ik, j1, . . . , jl ≤ n,

〈π(E0)π((Vi1 . . . Vik)
∗)u, π(E0)π((Vj1 . . . Vjl

)∗)v〉
= 〈u, π(Vi1 . . . Vik)π(E0)π((Vj1 . . . Vjl

)∗)v〉
= 〈u, Ti1 . . . TikD

2
T (Tj1 . . . Tjl

)∗v〉
= 〈DT (Ti1 . . . Tik)

∗u,DT (Tj1 . . . Tjl
)∗v〉.

It is clear that U is onto. This proves that rangeDT and M have the
same dimensions.

The final contention of course follows from the fact that minimal
Stinespring dilation is unique up to unitary equivalence.

Thus any contractive tuple can be dilated to a tuple of isometries
with orthogonal ranges. The dilation obtained in the theorem above is
called the standard non-commuting dilation. The decomposition of A
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into the direct sum of m · V and Z can actually be thought of as the
Wold decomposition, see Popescu [41]. Clearly, the m·V part (the non-
commutative shift) is absent if and only if T satisfies

∑
TiT

∗
i = 1H and

the Z part (the anaogue of the unitary part when n = 1) is absent if
and only if T is pure. Thus the dilation tuple A satisfies

∑
AiA

∗
i = 1Ĥ

if and only if
∑
TiT

∗
i = 1H.

Bunce [18] and Frazho [29] had explored the ideas of isometeric dila-
tion with orgonal ranges. Popescu was the first to study this and other
related notions from one variable operator theory systematically and
obtained generalizations of such notions as Wold decomposition, char-
acteristic function and functional calculus. He extensively developed
the model theory. Popescu’s original arguments for the dilation was
a bit different. He also treated infinite sequences of operators. Most
of the results here will generalize to infinite sequences of commuting
or non-commuting operators, we do not go into the infinite case here
because notationally it is more difficult to present.

An alternative proof of the dilation theorem also follows from the
discrete time case of Bhat’s dilation of quantum dynamical semigroups
[13].

5. Maximality of The Standard Commuting Dilation

In this section, we would answer a natural question. If T is a com-
muting tuple of bounded operators acting on a Hilbert space H, then it
possesses two dilations. On one hand, there is the standard commuting
one which retains commutativity but the constituent operators are only
a direct sum of the commutative shift and a spherical isometry. On the
other hand, one has the standard non-commuting one which gives the
dilation as isometries with orthogonal ranges, but loses commutativity.
So the natural question is what is the best dilation retaining commu-
tativity. The recent result of Bhat, Bhattacharyya and Dey shows that
the standard commuting dilation is the maximal commuting tuple con-
tained in the minimal isometric dilation. We shall briefly outline the
ideas here referring the reader to [16] for the details of proofs.

Since we shall deal with both the standard commuting dilation and
the standard non-commuting dilation of a commuting tuple, let us fix
some notations. The standard commuting dilation of a commuting con-
tractive tuple will be denoted by S̃ and the standard non-commuting
dilation of a contractive tuple will be denoted by Ṽ . If T is a com-
muting contractive tuple acting on H, then we have seen that both
the dilations are of such a type that H is a co-invariant subspace.
Recall that in such a case, T is called a piece of the dilation tuple.
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For an arbitrary tuple of operators R = (R1, R2, . . . , Rn) acting on
a Hilbert space L and having a co-invariant subspace H, the tuple
(PHR1|H, PHR2|H, . . . , PHRn|H) is called a piece of R. It is the same
as saying that (R∗1|H, R∗2|H, . . . , R∗n|H) is a part of R∗ in the sense of
Halmos [31]. Let R be an n-tuple of bounded operators on a Hilbert
space L. Consider

C(R) = {M : M is a co-invariant subspace for each Ri,

and R∗iR
∗
jh = R∗jR

∗
ih, for all h ∈M, and i, j = 1, . . . , n}.

So C(R) consists of all co-invariant subspaces of an n-tuple of oper-
ators R such that the compressions of the tuple R to the co-invariant
subspace form a commuting tuple. It is a complete lattice, in the sense
that arbitrary intersections and closures of spans of arbitrary unions
of such spaces are again in this collection. Therefore it has a maxi-
mal element. We denote it by Lc(R) (or by Lc when the tuple under
consideration is clear).

Definition 5.1. Suppose R is an n-tuple of operators on a Hilbert
space L. Then the maximal commuting piece of R is defined as the
commuting piece Rc = (Rc

1, . . . , R
c
n) obtained by compressing R to the

maximal element Lc(R) of C(R). The maximal commuting piece is said
to be trivial if the space Lc(R) is just the zero space.

The following result is quite useful in determining the maximal com-
muting piece. Before going into it, we introduce another notation
which will be very useful in this section. As we have seen, very of-
ten we need to consider products of the form Ti1Ti2 · · · Tik , where
1 ≤ i1, i2, . . . , ik ≤ n and T = (T1, T2, . . . , Tn) is a tuple of operators
acting on H. It will be convernient to have a notation for this. Let Λ
denote the set {1, 2, . . . , n} and Λk denote the k-fold cartesian product

of Λ with itself for k ≥ 1. Given i = (i1, . . . , ik) in Λk, T i will mean the
operator Ti1Ti2 · · ·Tik . Let Λ̃ denote ∪∞n=0Λ

n, where Λ0 is just the set
{0} by convention and by T 0 we would mean 1H. In a similar fashion

for i ∈ Λ̃, ei will denote the vector ei1 ⊗ ei2 ⊗ · · · ⊗ eik in the full Fock
space Γ(Cn) and e0 is the vacuum ω.

Lemma 5.2. Let R be an n-tuple of bounded operators on a Hilbert

space L. Let Kij = span{Ri(RiRj −RjRi)h : h ∈ L, i ∈ Λ̃} for all
1 ≤ i, j ≤ n, and K = span{∪n

i,j=1Kij}. Then Lc(R) = K⊥. In other
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words, Lc(R) = {h ∈ L : (R∗iR
∗
j − R∗jR

∗
i )(R

i)∗h = 0, for all i, j =

1, 2, . . . , n and i ∈ Λ̃}.
Proof: Firstly K⊥ is a co-invariant subspace of R. This is obvious as
each Ri leaves K invariant. Now for i, j ∈ {1, 2, . . . , n}, h1 ∈ Lc, and
h2 ∈ L,

〈(R∗iR∗j −R∗jR
∗
i )h1, h2〉 = 〈h1, (RjRi −RiRj)h2〉 = 0.

So we get (R∗iR
∗
j − R∗jR

∗
i )h1 = 0. So K⊥ is in C(R). Now if M is an

element of C(R), take i, j ∈ {1, . . . , n}, i ∈ Λ̃, h1 ∈ M, and h ∈ L. We
have

〈h1, R
i(RiRj −RjRi)h〉 = 〈(R∗jR∗i −R∗iR

∗
j )(R

i)∗h1, h〉 = 0

as (Ri)∗h1 ∈ M and R∗i commutes with R∗j on M. Hence M is con-

tained in K⊥ Now the last statement is easy to see.

Corollary 5.3. Suppose R, T are n-tuples of operators on two Hilbert
spaces L,M. Then the maximal commuting piece of (R1⊕T1, . . . , Rn⊕
Tn) acting on L ⊕M is (Rc

1 ⊕ T c
1 , . . . , R

c
n ⊕ T c

n) acting on Lc ⊕Mc.
The maximal commuting piece of (R1 ⊗ 1M, . . . , Rn ⊗ 1M) acting on
L ⊗M is (Rc

1 ⊗ 1M, . . . , R
c
n ⊗ 1M) acting on Lc ⊗M.

Proof: As the product (R ⊕ T )i breaks into the direct sum Ri ⊕ T i

and the product (R ⊗ 1M)i breaks into the tensor product Ri ⊗ 1M,
so the proof is clear from the Lemma above.

Lemma 5.4. Let V = (V1, . . . , Vn) and S = (S1, . . . Sn) be standard
contractive tuples on full Fock space Γ(Cn) and the symmetric Fock
space Γs(Cn) respectively. Then the maximal commuting piece of V is
S.

Proof: It is clear that S is a commuting piece of V . To show max-

imality suppose x ∈ Γ(Cn) and 〈x, V i(VjVj − VjVi)y〉 = 0 for all

i ∈ Λ̃, 1 ≤ i, j ≤ n and y ∈ Γ(Cn). We wish to show that x ∈ Γs(Cn).
Suppose x = ⊕m≥0xm with xm ∈ (Cn)⊗

m
for m ≥ 0. For m ≥ 2 and

any permutation σ of {1, 2, . . . ,m} we need to show that the unitary
Uσ : (Cn)⊗

m → (Cn)⊗
m
, defined by

Uσ(u1 ⊗ · · · ⊗ um) = uσ−1(1) ⊗ · · · ⊗ uσ−1(m),

leaves xm fixed. Since the group of permutations of {1, 2, . . . ,m} is
generated by permutations {(1, 2), . . . , (m−1,m)} it is enough to verify
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Uσ(xm) = xm for permutations σ of the form (i, i+ 1). So fix m and i
with m ≥ 2 and 1 ≤ i ≤ (m− 1). We have

〈⊕pxp, V
i(VkVl − VlVk)y〉 = 0,

for every y ∈ Γ(Cn), 1 ≤ k, l ≤ n. As i is arbitrary, this means that

〈xm, z ⊗ (ek ⊗ el − el ⊗ ek)⊗ w〉 = 0

for any z ∈ (Cn)⊗
(i−1)

, w ∈ (Cn)⊗
(m−i−1)

. This clearly implies Uσ(xm) =
xm, for σ = (i, i+ 1).

Here is an important lemma which will be used in the proof of the
main theorem.

Lemma 5.5. Suppose T ,R are n-tuples of bounded operators on H, L,
with H ⊆ L, such that R is a dilation of T . Then Hc(T ) = Lc(R)

⋂
H

and Rc is a dilation of T c.

Proof: We have R∗ih = T ∗i h, for h ∈ H. Therefore, (R∗iR
∗
j −

R∗jR
∗
i )(R

i)∗h = (T ∗i T
∗
j − T ∗j T

∗
i )(T i)∗h for h ∈ H, 1 ≤ i, j ≤ n, and

i ∈ Λ̃. Now the first part of the result is clear from Lemma 5.2. Fur-
ther for h ∈ Lc(R), R∗ih = (Rc

i )
∗h and so for h ∈ Hc(T ) = Lc(R)

⋂
H,

(Rc
i )
∗h = R∗ih = T ∗i h = (T c

i )∗h. This proves the claim.
Suppose

∑
TiT

∗
i = 1H, then it is easy to see that Pm

T (1H) = 1H
for all m and there is no-way this sequence can converge to zero. So
in the pure case the defect operator and the defect spaces are non-
trivial. First we restrict our attention to pure tuples (not necessarily
commuting).

Theorem 5.6. Let T be a pure contractive tuple on a Hilbert space
H. Then the maximal commuting piece Ṽ

c
of the minimal isometric

dilation Ṽ of T is a realization of the standard commuting dilation of
T c if and only if DT (H) = DT c(Hc(T )). In such a case rank (DT ) =
rank (DT c) = rank (DṼ ) = rank (DṼ

c).

Proof: Note that one of the realizations of the standard non-comm-
uting dilation of T consists of the space Γ(Cn)⊗DT and the operator

tuple Ṽ = (V1⊗1DT
, . . . , Vn⊗1DT

). The isometric embedding of H into
the dilation space Γ(Cn)⊗DT is given by the Poisson transform K(T ).
Since T is purely contractive it is obvious that T c is a pure contractive
tuple. We know from Lemma 5.5 that Ṽ

c
= S⊗1DT

on Γs(Cn)⊗DT is a
commuting dilation of T c. On the other hand, the standard commuting
dilation of T c consists of the space Γs(Cn)⊗M whereM = DT c(Hc(T ))
and the operator tuple S⊗1M. Since the standard commuting dilation
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is unique up to unitary equivalence, these two dilations are same if and
only if DT = DT c(Hc(T )).

The last contention can be seen as follows. When Ṽ
c
is a realization

of the standard commuting dilation of T c, then rank (DT c) = rank

(DṼ
c). Also as Ṽ is the minimal isometric dilation of T , rank (DT ) =

rank (DṼ ). Finally as Ṽ
c
= (S ⊗ 1DT

), rank (DṼ
c) = rank (DT ).

The main theorem is the following.

Theorem 5.7. Suppose T is a commuting contractive tuple on a Hilbert
space H. Then the maximal commuting piece of the minimal isometric
dilation of T is a realization of the standard commuting dilation of T .

Our approach to prove this theorem is as follows. First we consider
the standard commuting dilation of T on a Hilbert space H1 as de-
scribed above. Now the standard tuple S is also a contractive tuple. So
we have a unique unital completely positive map η : C∗(V ) → C∗(S),
satisfying

η(V i(V j)∗) = Si(Sj)∗ i, j ∈ Λ̃.

Now clearly ψ = ϕ ◦ η. Consider the minimal Stinespring dilation of
the composed map π1 ◦ η : C∗(V ) → B(H1). Here we obtain a Hilbert
space H2 containing H1 and a unital ∗-homomorphism π2 : C∗(V ) →
B(H2), such that

π1 ◦ η(X) = PH1π2(X)|H1 , for all X ∈ C∗(V ),

and span {π2(X)h : X ∈ C∗(V ), h ∈ H1} = H2.
Now we have a commuting diagram as follows

C∗(V ) −→ C∗(S) −→ B(H)

B(H1)

B(H2)

�
�

�
�

�
�

�
�>

�
�> ↓

↓

η ϕ

π1

π2

where all the down arrows are compression maps, horizontal arrows
are unital completely positive maps and diagonal arrows are unital
∗-homomorphisms.

Taking V̂ = (V̂1, . . . , V̂n) = (π2(V1), . . . , π2(Vn)), we need to show (i)

V̂ is the minimal isometric dilation of T and (ii) S̃ = (π1(S1), . . . , π1(Sn))

is the maximal commuting piece of V̂ . Due to uniqueness up to unitary
equivalence of minimal Stinespring dilation, we have (i) if we can show
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that π2 is a minimal dilation of ψ = ϕ ◦ η. For proving this we actually
make use of (ii). At first the assertion (ii) is proved in a very special
case.

Definition 5.8. A n-tuple T = (T1, . . . , Tn) of operators on a Hilbert
space H is called a spherical unitary if it is commuting, each Ti is
normal, and T1T

∗
1 + · · ·+ TnT

∗
n = 1H.

Given an n-tuple T = (T1, . . . , Tn) of operators satisfying T1T
∗
1 +· · ·+

TnT
∗
n = 1H, it follows by Theorem 3.10 that its standard commuting

dilation is a tuple of normal operators, hence each T ∗i is subnormal (or
see [10] for this result). If moreover the spaceH, where the operators Ti

act, is a finite dimensional Hilbert space then applying the result that
all finite dimensional subnormal operators are normal (see [31]), we get
that normality of Ti is automatic. Thus any n-tuple T = (T1, . . . , Tn)
of operators satisfying T1T

∗
1 + · · ·+ TnT

∗
n = 1H on a finite-dimensional

Hilbert space is a spherical unitary.
Note that if T is a spherical unitary we have

ϕ(Si(1Γs(Cn) −
∑

SiS
∗
i )(S

j)∗) = T i(1H −
∑

TiT
∗
i )(T j)∗ = 0

for any i, j ∈ Λ̃. This forces that ϕ(X) = 0 for any compact operator X
in C∗(S). Now as the commutators [S∗i , Sj] are all compact we see that
ϕ is a unital ∗-homomorphism. So the minimal Stinespring dilation
of ϕ is itself. Hence the standard commuting dilation of a spherical
unitary is itself. So the following result would yield Theorem 5.7 for
spherical unitaries.

Theorem 5.9. Let T be a spherical unitary on a Hilbert space H. Then
the maximal commuting piece of the minimal isometric dilation of T is
T .

The proof of this theorem involves lengthy computations and we refer
the reader to [16] for its proof, omitting the proof here. But assuming
this, we prove the main Theorem.
Proof of Theorem 5.7 : As C∗(S) contains the ideal of all com-
pact operators by standard C∗-algebra theory we have a direct sum
decomposition of π1 as follows. Take H1 = H1C ⊕ H1N where H1C =
span{π(X)h : h ∈ H, X ∈ C∗(S) and X is compact} and H1N =
H1 	H1C , Clearly H1C is a reducing subspace for π1. Therefore

π1(X) =

(
π1C(X)

π1N(X)

)
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that is, π1 = π1C ⊕ π1N where π1C(X) = PH1C
π1(X)PH1C

, π1N(X) =
PH1N

π1(X)PH1N
. As observed by Arveson [6], π1C(X) is just the iden-

tity representation with some multiplicity. More precisely, H1C can
be factored as H1C = Γs(Cn) ⊗ DT (H), such that π1C(X) = X ⊗ 1,
in particular π1C(Si) = Si ⊗ 1 where 1 here is the identity opera-

tor on DT (H). Also π1N(X) = 0 for compact X. Therefore, taking
Zi = π1N(Si), Z = (Z1, . . . , Zn) is a spherical unitary.

Now as π1 ◦ η = (π1C ◦ η) ⊕ (π1N ◦ η) and the minimal Stinespring
dilation of a direct sum of two completely positive maps is the direct
sum of minimal Stinespring dilations so H2 decomposes as H2 = H2C⊕
H2N , where H2C ,H2N are orthogonal reducing subspaces of π2, such
that π2 also decomposes, say π2 = π2C ⊕ π2N , with

π1C ◦ η(X) = PH1C
π2C(X)|H1C

, π1N ◦ η(X) = PH1N
π2N(X)|H1N

,

for X ∈ C∗(V ) with H2C = span {π2C(X)h : X ∈ C∗(V ), h ∈ H1C}
and H2N = span {π2N(X)h : X ∈ C∗(V ), h ∈ H1N}. It is also not dif-
ficult to see that H2C = span {π2C(X)h : X ∈ C∗(V ), X compact, h ∈
H1C} and hence H2C factors as H2C = Γ(Cn)⊗DT (H) with π2C(Vi) =
Vi ⊗ 1. Also (π2N(V1), . . . , π2N(Vn)) is a minimal isometric dilation of
spherical isometry (Z1, . . . , Zn). Now we get that (π1(S1), . . . , π1(Sn))
acting on H1 is the maximal commuting piece of (π2(V1), . . . , π2(Vn)).

All that remains to show is that π2 is the minimal Stinespring dilation
of ϕ◦ η. Suppose this is not the case. Then we get a reducing subspace
H20 for π2 by taking H20 = span {π2(X)h : X ∈ C∗(V ), h ∈ H}. Take
H21 = H2 	H20 and correspondingly decompose π2 as π2 = π20 ⊕ π21,

π2(X) =

(
π20(X)

π21(X)

)
Note that we already have H ⊆ H20. We claim that H2 ⊆ H20.

Firstly, as H1 is the space where the maximal commuting piece of
(π2(V1), . . . , π2(Vn)) = (π20(V1) ⊕ π21(V1), . . . , π20(Vn) ⊕ π21(Vn)) acts,
by the first part of Corollary 5, H1 decomposes as H1 = H10 ⊕ H11

for some subspaces H10 ⊆ H20, and H11 ⊆ H21. So for X ∈ C∗(V ),
PH1π2(X)PH1 , has the form (see the diagram)

PH1π2(X)PH1 =


π10 ◦ η(X) 0

0 0
π11 ◦ η(X) 0

0 0


where π10, π11 are compressions of π1 to H10, H11 respectively. As the
mapping η from C∗(V ) to C∗(S) is clearly surjective, it follows that
H10,H11 are reducing subspaces for π1. Now as H is contained in H20,
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in view of minimality of π1 as a Stinespring dilation, H1 ⊆ H20. But
then the minimality of π2 shows that H2 ⊆ H20. Therefore, H2 = H20.

This theorem puts in perspective the two standard dilations of a
commuting tuple, but that is not its only merit. As an application, the
article [16] goes on to find a neat classification of all representations
of Cuntz algebra On coming from dilations of commuting contractive
tuples. Another recent article by Dey [23] shows that if T is a tuple of
q-commuting operators, then the standard q-commuting dilation is the
maximal q-commuting part of its standard non-commuting dilation.

We finish with the comment that the material presented here are
merely the basics and starting from here one can pursue any of a num-
ber of directions. Popescu has generalized much of the Sz. Nagy - Foias
theory to the case of an infinite set of contractions satisfying the con-
tractivity property, see [41] - [45] and his papers with Arias [3], [4]. The
dilation theory over the years has inspired many a branch. Some of the
prominent upshots are the study of Hilbert modules which have been
systematically studied by Douglas, Misra, Paulsen and Varughese [24],
[25], [26] and the theory of curvature of contractive modules by Arve-
son [9]. The dilations of quantum dynamical semigroups by Arveson
[7], [8] and Bhat [13], [14] draw their original motivation from Sz-Nagy
Foias dilation. In the linked notion of dilating homomorphisms, there
arise natural questions of which contractive homomorphisms are com-
pletely contractive. For a study of this question on various domains in
Cn, see the works of Misra, Pati, Paulsen and Sastry [33], [39], [34],
[35]. For various generalizations of the von Neumann inequality to Ba-
nach space setting, we refer to the monograph of Pisier [40] and the
references therein.
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